THE FORMAL DEFINITION OF A
PARAMETER PASSING LANGUAGE *

by

RICHARD E. FAIRLEY
Department of Computer Science
University of Colorado
Boulder, CO 80302

REPORT #CU-CS-010-72 December, 1972

* This work supported by NSF Grant GJ-660.

THE FORMAL DEFINITION OF A PARAMETER PASSING LANGUAGE

by
Richard E. Fairley *

ABSTRACT :

The formal definition of the syntax and semantics of A Parameter
Passing Language (APPL) is presented. APPL is a simple, nested struc-
ture language which permits the communication of parameters between a
main program and a subroutine using call by reference, call by value,
or call by name. The methodology and techniques of the Vienna Defini-
tion Language are used in the formalization of APPL. The syntactic
definition of APPL consists of phrase structure grammars for concrete
and abstract representations of valid APPL programs. The semantic de-
finition of APPL is in terms of an abstract machine which interprets
abstract programs. The machine specification consists of the machine
state components and a transition function that maps states into suc-
cessor states. The semantics of various parameter passing mechanisms
is thus formalized as the sequence of machine states assumed by the

abstract machine during the interpretation of abstract programs.

* This work supported by NSF Grant GJ660.

I. INTRODUCTION

The formal definition of the syntax and semantics of A Parameter
Passing Language (APPL) is presented in this paper. APPL is a simple,
nested structure language which permits the communication of parameters
between a main program and a subroutine using call by value, call by
reference, or call by name. The definition of APPL thus formalizes the
characteristics of various parameter passing mechanisms. The defini-
tion will also provide a basis for verifying the correctness of APPL
implementations in the future.

The methodology and techniques of the Vienna Definition Language
(VDL) are used in the formalization of APPL. In the VDL methodology,

a distinction is made between the "concrete program", which is the

source string representation of the program as written by the programmer;
and the "abstract program", which is a normalized representation of the
program used in the formal definition of semantics.

The syntactic definition of APPL in VDL consists of specifications
for both concrete and abstract representations of valid APPL programs.
The specifications are in terms of phrase structure grammars; the gram-
mar for concrete programs is called the "concrete syntax" of APPL, and
the grammar for abstract programs is called the "abstract syntax" of
APPL. The correspondence between concrete and abstract programs is es-
tablished by a translator which accepts concrete programs and produces
abstract programs.

The semantic definition of APPL is in terms of an abstract machine

which interprets abstract programs. The abstract machine is characterized

by internal states, and a transition function that maps states into suc-
cessor states. The semantics of APPL is thus formalized as the sequence
of machine states assumed by the abstract machine during the interpreta-
tion of abstract programs.
The formal definition of APPL consists of five components:
1. The concrete syntax
2. The abstract syntax
3. The abstract machine states
4. The transition function
5. The translator
In this paper, the concrete syntax of APPL is specified in the Ex-
tended Backus Normal Form (see LLS 68). The abstract syntax, abstract
machine states, and the transition function are all specified in the
VDL meta-language. The necessary background in VDL can be obtained by
reading WEG 72, and LLS 68. The translation of APPL programs from con-
crete form to abstract form is not specified in this paper.
Before proceeding with the formal definition of APPL, an informal

description of the language will be presented.

IT. INFORMAL DESCRIPTION OF APPL

A Parameter Passing Language (APPL) is a simple, nested structure
programming language which permits the communication of parameters be-
tween a main program and a subroutine using call by reference, call by

value, or call by name.

Typical APPL programs are illustrated by the following example:

1nt XIA) A(3)s 5

ref
proc P(A,B);<{ val »A,B;
name

X <« A;

A <« B;

B<—X;

end;
I+<«1;
A(I) < 3;
P(I,A(1));
end;

The declaration part of this program consists of integer declara-
tions and a procedure declaration. The procedure body consists of three
assignment statements which have the effect of interchanging the values
of the formal parameters, A and B. X is a global variable in the pro-
cedure, and is local to the main program. The memory cells to which
formal parameters A and B refer will depend on which of ref (call by
reference), val (call by value), or name (call by name) is used in the
procedure declaration.

The body of the main program initializes I to "1", and A(1) to
"3", followed by a call to the procedure with arguments I and A(I).

The interpretation of a procedure call is specified by the copy
rule; i.e., the body of the procedure is to be substituted in place of
the procedure call, and parameters are renamed to avoid naming conflicts.
If the actual argdments are called by ref, the formal parameters are re-
placed by the names of the actual arguments, evaluated at the time of

the procedure call; provided the evaluation of the argument results

in a name. If the evaluation yields a value, rather than a name (as

in the case of arithmetic expressions passed by ref), the value is
assigned to the corresponding formal parameter and the parameter is
used as an identifier in the body of the procedure.
The procedure call in the given program expands as follows, when
A and B are ref parameters:
P(L,A(L))s ~ P(I,A(1)); » X <« I
I« A(1);
A(T) <« X;
Interpretation of the three assignment statements results in interchang-
ing the values of I and A(1). |
If the arguments are called by val, the corresponding formal para-
meters are initialized to the values of the arguments at the time of
call and treated as identifiers. Parameters are renamed as necessary
to avoid naming conflicts. The procedure call in the example program
expands as follows, when A and B are val parameters:
P(I,A(1))s » P(L,A(1)); » A< 1y
BB <« A(1);
X <« A;
A « BB;
BB « X;
Note that formal parameter B is renamed BB to avoid a naming conflict
with the integer variable B known in the main program. Interpretation
of the five assignment statements interchanges the va1ués of A and BB,
but does not alter the values of I and A(1).
If the arguments are called by name, the formal parameters are re-

placed by the text of the corresponding argument. This, of course,

precludes the passing of arithmetic expressions to formal parameters
which appear on the left hand side of assignment statements. The pro-
cedure call in the example program expands as follows, when A and B are
name parameters:

P(LA(LI)); » X< I;

I« A(I);
A(I) < X;

Interpretation of the procedure body results in assignment of "3" to I,

and "1" to A(3), while A(1) retains the value "3".

ITI. THE CONCRETE DEFINITION OF APPL

The production rules for the concrete syntax of APPL are presented
in Table I. The meta-language used to specify the grammar of Concrete
APPL 1is the Extended Backus Normal Form. The head of the Tanguage is
the symbol "prog". The terminal vocabulary is the set of symbols which
are not further defined in Table I. AT1 other symbols belong to the
non-terminal vocabulary of APPL.

As defined in Table I, an APPL program is the compound symbol int
followed by a declaration part and a statement Tist. The declaration
part is a non-empty 1ist of variables declared to be type integer, fol-
lowed optionally by a set of procedure declarations. The specification
part of the procedure declaration specifies how parameters are to be
passed.

There are no local variables in a procedure declaration; thus, global
variables and formal parameters are the only permissible variables in
a procedure body. A procedure body is composed of assignment state-
ments; in particular, nested procedure declarations, and calls to pro-
cedures from within procedures are forbidden.

The statement Tist of an APPL program consists of assignment state-
ments and procedure calls. The values of constants, variables, and re--
cursively defined binary expressions may be assigned to variables. For
simplicity, only the integer addition operator (+) is permitted in bi-
nary expressions.

The semantics of a procedure call is only defined when the call is

to the procedure declared in the declaration part of the program. External

procedure calls are not meaningful in APPL, although not expressing for-
bidden by the concrete syntax of APPL. Other syntactically valid constructs
which result in undefined semantics are: Using uninitialized variables,
using the same identifier more than once in a parameter list, failing to
include the specification part for a formal parameter, and passing expres-
sions by name with assignments to the corresponding formal parameter in

the procedure body. Thus, the concrete syntax of APPL generates a class

of syntactically valid programs which is larger than the class of seman-
tically meaningful programs. An APPL program which is both syntactically

valid and semantically meaningful is referred to as a well-defined program.

€S

Cl
c2
€3
C4
C5
Co
c7
c8
C9
c10
C1i
C12
C13
Cl4
C15
Cle
c17
c18

TABLE 1
CONCRETE SYNTAX OF APPL TN EBNF

Vs Vg, C, prog}
{prog, declr-pt, stmt-list, vari, id, par-list, spec-pt, proc-body,

ss-vari, const, assgn, var, expr, ss-var, bin, stmt, proc-call,
arg-list}

{int, end, proc, val, ref, name,;,<,+,(,),,,A,B,...Y,Z, 1,2,3....}

{Cc1, c2,...C17,C18}

prog:: = 1int declr_pt; stmt_list end;
declr pt:: = {,.vari...H[proc id(par 1ist); spec_pt proc body end;]}
vari:: = id|ss_vari

id:: = A[B[C|........ X| Y| z
ss_vari:: = id(const)
const:: = 1|2[3]........

par_list:: = {,.id...}
spec_pt:: = {[val{,.id...};][ref{,.id...};] [name{,.id...};]}
proc_body:: = {;.assgn...}

assgn:: = var < expr
var:: = id|ss_var
ss_var:: = id(expr)
expr:: = const|var|bin
bin:: = expr + expr
stmt_list:: = {;.stmt...}
stmt:: = assgn|proc_call

proc_call:: = id(arg_list)
arg list:: = {,.expr...}

- 10 -

IV, THE ABSTRACT SYNTAX OF APPL

The abstract syntax of APPL is specified by an abstract grammar,
which is defined in terms of elementary objects, selectors, predicates,
and a distinguished predicate, fis—prog". Elementary objects are ter-
minal symbols of concrete programs; they are combined into compound ob-
jects that preserve the linguistic structure of APPL programs. Selec-
tors are used to identify the various components of abstract programs,
and program components are represented as <selector:object> pairs.

An abstract program is a compound object, t, that satisfies the
distinguished predicate is-prog (t). The predicate is-prog is defined
in terms of other predicates that are satisfied by the various compo-
nents of the abstract program. A1l predicates are ultimately defined
in terms of "elementary predicates", which are satisfied by elementary
objects.

Abstract programs can be represented as labeled parse trees of con-
crete programs. The branches of the parse tree are labeled by selectors,
which serve to name the nodes of the tree. Each node and its associated
subtree must satisfy a predicate which is true for that particular class
of objects. The root of the parse tree satisfies the predicate is-prog
and the terminal nodes of the parse tree satisfy elementary predicates.

Formally, the abstract syntax of APPL is specified by a quadruple:

AS = (EO, S, P, is=prog)
where: EO is a set of elementary objects
S is a set of selectors

P is a set of predicates
is-prog is the distinguished predicate in P

- 11 -

The set of elementary objects for APPL is the union of the sets of
symbols that satisfy various elementary predicates. A set of elemen-
tary objects satisfying an elementary predicate, "is-pred", is denoted

as "is:pred". APPL has six sets of elementary objects:

is<int = {1,2,3,...}

is-int = {int}

iscid - {A,B,...Y,Z}

is<idd = is%id U {Ai,Bi,...Vi,Zi]i=1,2,3,...}

is-spec = {ref, val, name}

iscop = {+}
Thus: EO = is-int U is-int U is-id U is-idd U 1s:spec U 1s:op

The selectors are chosen to reflect the Tinguistic structure of APPL.
The set of selectors is not arbitrary; however, the names of selectors are

chosen by mnemonic considerations.

S = {s-dp, s-sT, s-p1, s-sp, s-bo, s-1p, s-rp, s-id, s-ss,
s-op,s-rd, s-al } U is-1dd

The selector abbreviations are:

dp declaration part
s1 statement 1ist

pl parameter list

sp specification part
bo procedure body

1p Teft part
rp right part

id identifier
Ss subscript
op operator
rd operand

al argument Tlist

- 17 -

Identifiers from the set is-idd are also used as selectors.
The set of predicates satisfied by the various Tinguistic compo-
nents of abstract APPL programs is summarized in Table II. A discus-

sion of the predicates follows:
(P1) is-prog = (<s-dp:is-decl-pt>,<s-s1:is-stmt-Tist>)

An abstract APPL program consists of a declaration part and a state-
ment 1ist. The declaration part is an unordered set of entities, where-
as the statement Tist is an ordered 1ist of statements. The convention
of defining a Tist of entities by specifying the characteristics of a
typical element in the Tist will be used. Thus,a statement Tist will
be defined by defining a statement.

(P2) is-decl-pt = ({<name:is-int||is-idd(name)>}, _

is-Q V{<name:is-proc-decl||is-id(name)>})

A declaration part is a finite, unordered set of names, each paired
with the type int, where each name satisfies the elementary predicate
is-idd; and an optional part consisting of identifiers associated with
procedure declarations.

(P3) is-proc-decl = (<s-pl:is-id-list>,<s-sp:is-spec-pt>,

<s-bo :is-assgn-Tist>) -
A procedure declaration consists of a parameter list, which is a

Tist of identifiers, a specification part, and a procedure body, which

is a Tist of assignment statements.

(P4) is-spec-pt = {<name:is-spec||is-id(name)>}

- 13 -

The specification part of a procedure is a finite set of identi-
fiers, each paired with one of the symbols: ref, val, or name. These

symbols comprise the set 1s:spec.
(P5) is-stmt = is-assgn V is-proc-call

The statement 1ist of an abstract APPL program is an ordered set
of statements. Statements are either assignment statements or proce-

dure calls.
(P6) is-assgn = (<s-lp:is-var>,<s-rp:is-exprs)

An assignment statement consists of a left part, which is a vari-

able, and a right part which is an expression.
(P7) is-var = is-id V is-ss-var
(P8) is-ss-var = (<s-id:is-id>,<s-ss:is-expr>)

A variable is an identifier or a subscripted variable. The latter

is an identifer, subscript pair; and the subscript is an expression.
(P9) is-expr = is-int V is-var V is-bin
(P10) is-bin = (<s-rdl:is-expr>,<s-rd2:is-expr>,<s-op:is-op>)

An expression is an integer, or a variable, or a binary expression.
Binary expressions are recursively defined as two operands, which are

expressions, and an operator.

- 14 -

(P11) 1is-proc-call = (<s-id:is-id , s-al:is-arg-list>)
(P12) is-arg = is-expr

A procedure call consists of the procedure name, which is an iden-
tifier, and an argument list. Each element of the argument Tist is an
expression.

Abstract APPL programs can now be defined as members of the set
is:prog. The abstract program corresponding to the typical concrete pro-

gram in Section II is illustrated in Figure 1.

SS~-S

(2)1°

()18

WYdO0dd TddY LOVALSIY TVOIdAL

[FANOL4

du-s

_m«w

- 16 -

TABLE 11
ABSTRACT SYNTAX OF APPL

AS = (EO, S, P, is-prog)
EO = is-int U is-int U is-id U is-idd U is-spec U is-op

S = {s-dp, s-sl, s-pl, s-op, s-bo, s-1p, s-rp, s-id, s-dd, s-op, s-rd,
s-al} U is=idd

P ={P1, P2, ... P11, P12}

(P1) is-prog = (<s-dp:is-decl-pt>,<s-sT:is-stmt-Tist>)

(P2) is-decl-pt = ({<name:is-int||is-idd(name)>},
is-0 V{<name:is-proc-decl||is-id(name)>})

(P3) is-proc-decl = (<s-pl:is-id-Tist>,<s-sp:is-spec-pt>,
<s-bo:is-assgn-Tist>)

(Pi)\ is-spec-pt = {<name:is-spec||is-id(name)>}

(P5) is-stmt = is-assgn V is-proc-call

(P6) is-assgn = (<s-lp:is-var>,<s-rp:is-expr>)

(P7) is-var = is-id V is-ss-var

(P8) is-ss-var = (<s-id:is-id>,<s-ss:is-expr>)

(P9) is-expr = is-int V is-var V bin

(P10) dis-bin = (<s-rdl:is-expr>,<s-rd2:is-expr>,<s-op:is-op>)
(P11) dis-proc-call = (<s-id:is-id>,<s-al:is-arg-list>)

(P12) dis-arg = is-expr

iscint = {1, 2, 3, ... }

~

is-int

{int}
issid = {A, B, ...V, Z}
is-id U{Af, Bi, ...Yi, Zi|i =1, 2, ...}

is-idd

is-spec = {ref, val, name}

is-op = {+}

Selector abbreviations as previously stated.

- 17 -

V. THE ABSTRACT APPL MACHINE

The abstract machine is a sequential machine which interprets ab-
stract APPL programs. The machine is characterized by internal states
and a transition function that maps states into successor states.

The initial state of the machine, £g» incorporates the abstract
program and the input data, so that successor states are functions
only of present states. The final state of the machine is reached
when the transition from some state, Ens yields a null successor in-
struction.

The meaning (semantics) of an APPL program is defined as the se-
quence of machine states, (50, £1> ...gn) assumed by the machine as it

interprets the abstract program.

V.1 The Abstract Machine State

The structure of the machine states is defined in the same meta-
language (VDL) used to define the abstract syntax. Thus, the machine
state, £, can be represented as a tree structured object which satisfies
the predicate is-state(g).

The formal definition of the APPL machine state is summarized in
Table III, and discussed below.

(S1) is-state = (<s-c:is-c>,<s-e:is-e>,<s-dn:is-dn>,<s-un:is-un>,

<s~dp:is-dp>)
The machine state is a 5-tuple of <selector:object> pairs consisting

of a control component, ¢, an environment component, e, a denotation com-

ponent, dn, a unique name component, un, and a dump component, dp.

- 18 -

(S2) is-c = "see Section V.2"

The control component contains the abstract machine instructions
which interpret the abstract program. A detailed specification of these

instructions is deferred to Section V.2.
(S3) is-e = ({<name:is-un||is-idd(name)>})

The environment component is a finite set of <selector:object>pairs,
where each selector is a member of the set of elementary objects 1s:idd,
and each object is a unique name. The environment component associates
each identifier with a unique name. The use of unique names solves the
renaming problem in procedure calls, and permits the sharing of data items

between identifers, as in call by reference.
(S4) is-dn = ({<n:is-den]||is-un(n)>})
(S5) 1ds-den = @ V is-int V is-proc-dn V is-name-dn

The denotation component is a finite set of <selector:object>pairs.
The selectors are unique names, and the objects satisfy the predicate
is-den. The denotation component contains information about identifers.
To Tocate the information associated with an identifier, the environ-
ment component is consulted to find the unique name corresponding to the
identifier (the identifier is the selector, and the unique name is the
object). The unique name is then used as the selector in the denotation
component to locate the information. If the identifier is an integer

variable, the corresponding object in the denotation component is either

- 19 -

an integer from the set is-int, or else satisfies the predicate is-0 in
the case of uninitialized variables. The denotation of procedure identi-
fiers satisfies the predicate is-proc-dn, and the denotation of formal
parameters called by name satisfies the predicate is-name-dn.

(S6) is-proc-dn = (<s-tp:proc>,<s-pl:is-id-Tist>,

<s-sp:is-spec-pt>,<s-bo:is-assgn-1ist>)

The denotation of a procedure identifier is a quadruple of <selector:
object>pairs. The pairs are <type selector:proc>,<parameter list selector:
identifier list>,<specification part selector:specification part>, and

<procedure body selector:assignment statement Tist>.

It

(S7) is-name-dn = (<s-tp:name>,<s-tx:is-arg

The denotation of a formal by-name parameter has two components:
a <type selector:name> pair that labels the identifier as a formal
by name parameter, and a <text:arguments pair which has the text of

the actual by-name parameter from the procedure call.
(S8) is-dp = (<s-dp:is-e>) V (<s-dp:is-&>)

The dump component of the machine state is normally used to save the
environment component of the state when a procedure is called. Thus, the
calling program <identifier:unique name> mappings are saved and restored
upon proceduke exit. The saved calling environment is also used to evalu-
ate actual arguments which correspond to formal parameters in procedure
bodies. The dump is also used to save the entire machine state prior to
abnormal termination of the computation due to run-time error conditions

(see Section V.2).

- 20 -

(S9) is-un = (N;[i=1,2,3...}

The unique name component contains only one elementary object, which
is the next available unique name.
The following predicates have been used in the specification of

APPL machine states. These predicates are defined in Table II:

is-int
is-id
is-idd
is-spec
is-assgn

is-arg

The initial state of the APPL machine, go, is defined in terms of

the construction operator, N (see Appendix I):

£g = u0(<s—c:int-prog (t)>,<s—un:NT>)

where t satisfies the predicate is-prog(t).

The initial control component has a single instruction, int-prog,
and the unique name component is initialized to N]. A1l other state
components are initially null.

The initial machine state is illustrated in Figure 2.

- 21 -

int-prog(t)

FIGURE 2
Initial Machine State

N1

- 27 -

TABLE 111
APPL ABSTRACT MACHINE STATE

Elementary Objects:

EQ = iscint U is-idd U~1§spec U is-un U proc U name U @

Selectons:

S = {s-c, s-e, s-dn, s-dp, s-un, s-tp, s-pl, s-sp, s-bo, s-tx} U
is=idd U is=un

Predicates :

(S1) is-state = (<s-c:is-c>,<s-e:is-e>,<s-dn:is-dn>,<s-un:is-un>,
<s~-dp:is-dp>)

(S2) is-c = "see Section V.2"

(S3) is-e = ({<name:is-un||is-idd(name)>1)

(S4) is-dn = ({<n:is-den||is-un(n)>})
(S5) is-den = @ V is-int V is-proc-dn V is-name-dn

(s6) is-proc-dn = (<s-tp:proc>,<s-pl:is-id-Tist>,
<s-sp:is-spec-pt>,<s-bo:is-assgn-list>)

(S7) is-name-dn = (<s-tp:name>,<s-tx:is-arg-list>)

(S8) is-dp = (<s-dp:is-e>) V (<s-dp:is-&>)

~

(59) dstun = N1 =1,2,3...]

Initial State: Ey = u0(<s-c:int4groc(t)s,<s—un:N]>)

Final State: £, where s-c (£n+1) = {}

Notes: 1. See section V.2 for the definition of the transition function
A, and the control predicate is-c.

2. See Table II for the following definitions:
is:int, is-idd, is-spec, is-un, is-id, is-arg.

- 73 -

V.2 The Transition Funetion

State transitions result from the interpretation of instructions
contained in the control component of the state. Macro instructions
alter the state by replacing the current instruction with a subtree
of instructions. Value returning instructions are deleted as they
are executed, and can modify various components and subcomponents
of the machine state.

Instructions are defined in terms of primitive operators which
manipulate and transform state components. The primitive operators
used in this report are described in an appendix. In addition, the

following abbreviations are used in this section:

E=s-e (g)
C = s-c (g)
DN = s-dn (&)
UN = s-un (&)
DP = s-dp (&)

Components of the current state are thus denoted by capital let-
ters. Other abbreviations used here are defined in previous sections

of the report.

(I1) int-prog (t) =
int-st-1ist (s-s1(t));
int-decl-pt (s-dp(t));
upd-env (s-dp(t))
for:is-prog(t)

- 24 -

The initial state contains the macro instr int-prog (t), where t
satisfies the abstract syntax predicate is-prog. This macro instruction
is replaced by a sequence of instructions to update the environment com-
ponent, interpret the declaration part of the abstract program, and in-
terpret the statement 1ist of the abstract program. An empty statement
Tist will result in an empty control tree, thus producing the final
state of the machine.

(I2) upd-env (t) = null;

{upd-id (id,n); n:un-name|id(t) # o}
for is-dp(t) |

(13) upd-id (id,n) = u(E;<id:n>)
for: dis-idd(id)
is=-un(n)
(14) un-name = PASS:UN

u(£;<UN2N_i+-I>)

The update environment instruction (I2) is a macro instruction which
is replaced by a set of instructions to create <selector:object> pairs
of the form <identifier:unique name> in the current environment component.
An entry is created for each identifier in the declaration part of the
abstract program, t.

Environment updating for a particular identifier is accomplished by
interpreting (I3) and (I4). (I4) passes the current unique name, obtained
from the unique name state component, to the second argument position
in the upd-id instruction, in (I2) and increments the unique name com-

ponent by 1. The <identifier:unique name> pair is entered into the

- 25 -

current environment component by the generalized assignment operator, u,
in (I3). See the appendix for the definition of the primitive operator, u.
The machine state following interpretation of the upd-env instruction for
the abstract program of Figure 1 is illustrated in Figure 3.

(I5) int-decl-pt (t) = null;

{int-deci(id e E, id o t)|id(t) # }
for: 1is-dp(t)
(16) int-deci(n,m) =
is=int (m) -+ u(DN;<n:Q>)

is-proc-decl(m) ~

u(DN;<n:u0(<s—tp: roc>,

, <s—p1:js—1d-1ist>
<§-SpP:1S-Sp>
<s-bo:is-assgn-list>)>)

for: is-un(n)
is-int(m) V is-proc-decl(m)

Interpret-declaration-part, (I5), is a macro instruction which is
replaced by a set of interpret-declaration instructions, (I6); one for
each identifier in the declaration part of the abstract program. The
arguments of int-decl instructions are the unique name of the identifier,
which is retrieved from the environment component, and the declaration of
the identifier, which is retrieved from the declaration part of the ab-
stract program.

Interpret-declaration instructions create entries in the denotation

component of the state. For integer variables, the selector is the uni-

que name, n, and the object is a null object, which symbolizes an unini-

tialized variable.

- 26 -

int-st-Tist(t)
1nt—dec1—gt(t)

N5 N6

FIGURE 3. MACHINE STATE FOLLOWING INTERPRETATION
OF THE UPDATE-ENVIRONMENT INSTRUCTION

- 27 -

For procedure variables, the selector is the unique name, n, and
the object is a compound object having four components: <type:procs,
<parameter list:identifiers>, <specification part:specifications>,
<procedure body:assignment statements>. The specification part speci-

fies the parameter passing mechanisms (val, ref, or name) for the para-

meters. The machine state following interpretation of the int-decl-pt
instruction for the program in Figure 1 is illustrated in Figure 4.

In more general block structured languages (Algol 60, PL/1), the
current environment component is also saved in the procedure denotation,
to permit the evaluation of global variables in the proper environment
in accordance with the copy rule, as modified by the renaming rule.

In APPL, there are only two environments, main program and procedure,
and the main program environment is accessible in the dump component
during procedure activation. Thus, it is not necessary to save the
procedure declaration environment in the procedure denotation.

(I7) int-st-list (t) =

is-< >(t) -~ null;

T > int-st-Tist (tail (t
int-st (head (t)

))s
)
for: dis=s1(t)

The interpret-statement-Tist instruction; (I7), is a macro instruc-
tion whose argument, t, is a statement Tist. The instruction is defined
in terms of primitive list processing functions. If the statement 1ist
is empty, (is-< >(t) = T), the int-st-list instruction is replaced by the
null instruction. Otherwise, the instruction is replaced by two instruc-
tions: one to interpret the first statement in the statement list, and
another to execute the int-st-list instruction for the remaining statements

in the statement list.

: NOLLOMILSNI LdVd NOLLYAV103G 13Id¥3INI
IHL 40 NOILVIFALIIINI ONIMOTT04 FLVLS INIHOVW "¢ FANOI4

/foueu) (Buweu

\@tf / {3adp bl
Amv:w 1 LeA LeA; g bi \
‘L)1 N v/ (1)L | N GN N N ZN
. (2)1° 204d - v

M 1d-s) 5 v 5 5

< . ~_ ds-s' di-s % _ ,

: q-s ~\ GN\ #N| eN/ 2N /LN
o ‘ ISLL-3s-3UL
N

:U«m;

- 99 -

(I8) 1int-st (t) =
is-assgn (t) - int-assgn-st (t)
is-proc-call (t) p (type = proc) -
“int-proc-call (t)

where: type = s-tp o i1d(E) o s-dn(g)

for: is-st (t)

A statement is either an assignment statement or a procedure
call. Procedure calls are valid if the identifier is of type proc.

The type is verified by checking the type component of the unique
name of the identifier in the denotation component of the state. The
unique name of the identifier is located in the current environment
component. Statements which are neither assignment statements, nor
calls to valid procedure identifiers, result in an error condition.

(19) error = u(g;<s-dp: (<s-e:E>,<s-e:C>,

<s=-dn:DN>,<s-un:UN>,
<s-dp:DP>)>)
u(gy<s~c: >)

The error instruction saves the current state of the machine in the
dump component of the state, and replaces the control component with the
empty instruction, placing the abstract machine in the final state. This
is the only instruction which saves all five state components in the
dump. Thus, abnormal termination can be detected by examining the dump
component of the final machine state.

(I10) int-proc-call (t) =

u(€;<DP:E>)
exit;

int-st-Tist(s-bo © ny o DN);
1nst—arg—1ist(a1t, SPy» p1t)

- 30 -

where: ng = s-1d(t) o E

al

t s-al(t)

Spy = S=Sp o Ny o DN

p]t s-pl o Ny ° DN

for: is-proc-call (t)

The interpret-procedure-call instruction, (I10), is a macro instruc-
tion which is replaced by the instruction sequence: install argument
list, interpret statement 1ist, and exit. In addition, a copy of the
current environment component is placed in the dump, where it is saved
until the exit instruction is interpreted. At that time, the main pro-
gram environment is reinstalled as the current environment.

The arguments of the install-argument-Tist instruction are the ar-
~gument list from the text of the procedure call, the specification part
of the corresponding procedure declaration, and the parameter list of
the procedure declaration. The latter two arguments are retrieved from
the denotation component, using the unique name of the procedure identi-
fier which is in turn retrieved from the current environment component.
The argument of the interpret-statement-list instruction is the procedure

body; obtained from the denotation component.
(I10a) exit = (&;<E:DP>)

The exit instruction restores the main program environment on return

from the procedure call.

- 31 -

(I11) inst-arg-list (al, sp, pl) =
len(al) = Ten(pl) A
(W, j) [# j ol <i<Ten(pl) = elem(i,pl) # elem(j,p1)] A
(¥q) [1 <1 < Ten(pl) > el(i) (s-p1) o s-sp # o] +
nu1],

{inst- arg(pari, SPs argi)ll <1 < Ten(p1)}
T - error

where: par; = el(i) o s-pl

Sp; = par; o s-sp
arg; = el(i) o s-al
For: is-arg-list(al)

is-spec-pt(sp)
is-par-Tist(pl)

Install-argument-Tist, (I11), is interpreted only if three condi-
tions are satisfied: the length of the argument Tist equals the length
of the parameter Tist, the same identifier is not repeated twice in the
parameter 1list, and every parameter has a corresponding specification
part. If these three conditions are satisfied, the instruction is re-
placed by a set of instructions to install the individual arguments.

Formal parameters and actual arguments are paired by corresponding
element number selectors in the parameter 1list and the argument list.
Selectors for the specification part are the formal parameter names,

which are the elementary objects in the parameter 1ist.

- 37 -

(I12) inst-arg (par, spec, arg) =

is-ref(spec) A is-var(arg) -
‘upd-id(par, ,n);
n:eval-1p(arg)

is-val(spec) V (is-ref(spec) o is-var(arg)) -~
assign(n,v);
upd-dn(n,Q); v:int-expr(arg,DP)
n:un=name

is-name(spec) ~
upd-dn(n,ug(<s-tp:name>,<s-tx:arg>))
upd-id (par,n);

niun-name

for: is-id(par)
is-spec(spec)
is-arg(arg)

- 33 -

The interpretation given to the install-argument instruction, (I112),
depends on the mechanism utilized to call the argument. If the argument
is call by ref, and if the argument is a variable, the unique name as-
signed to the formal parameter identifier is the same as the unique name
of the argument at the time of procedure call. Thus, the formal para-
meter and the actual argument share the same "memory cell" in the deno-
tation component.

If the argument is call by val, or if the argument is an expression
other than a variable and called by ref, the following actions occur:

a unique name is generated; the environment is updated by the <formal

parameter:unique name> pair; a new entry, with the unique name as the se-

lector, is created in the denotation component; the argument expression

is evaluated in the calling environment (which was saved in the dump);

and the value of the argument expression is assigned to the unique name

in the denotation. Thus, the argument is evaluated in the calling en-

vironment, and the formal parameter is initialized to that value. Ar-

guments other than variables (binary expressions and constants) called

by reference are handled in the same manner as call by value arguments.
If the argument is called by name, a <formal parameter:unique name>

pair is entered in the environment component. The denotation component

- 34 -

is updated by the unique name selector and a compound object consist-
ing of a <type:names> pair, and a <text:argument text> pair. The calling
environment has been saved in the dump. The calling environment and
the argument text will permit the evé1uation of by name arguments in
the calling environment when the corresponding formal parameter is refer-

enced in the procedure body.

(113) upd-dn (n, x) = w(DN3;<n:x>)

for: is-un(n)
is-V0(x)

Update-denotation updates the denotation component using the uni-
que name, n, as the selector and the argument, x, as the object. The ar-
gument, x, is any object which satisfies the predicate is-Vienna Object;
where a Vienna Object is any object described in the VDL notation.

Figure 5 illustrates the machine state following interpretation of

the procedure call in the program of Figure 1.

(I14) int-assgn-st(t) =

assign (n, v);
n: int-1p (Tp(t)),
v: int-expr (rp(t))

for: 1is-assgn (t)

(115) assign (n, v) = u(DN;<n:v>)
for: ds-un (n)
is-int (v)
Interpret-assignment-statement, (I14), is a macro instruction which
expands to interpret-left-part; which returns a unique name, and interpret-

expression; which returns a value. The value is then assigned as the

INTVA A TTVO 04 “SNOLLOMYLSNI A¥INI FANGIO0Ud
IHL 40 NOLLYLFIAFINI ONIMOTT04 FLYLS INIHOYW VG FANOI-d

9N GN tN eN

d\ a\ev| v /1

9N £N N €N ZN

- 35 -

(3)3SF-35-3u1

_ Ve 6N y
Qﬁ-m ,.. , ﬁ q\ v,mnm

up-s' 2-$ -s

9N SN

- 36 -

4

N

m<.

EN

Ly

!

m:
\
2Ny

P

FONFAZ4FY AL TTVO Y04 ‘SNOLLONYLSNI AYINI FAINAID0¥d
IHL 40 NOILYLFIAYIINI ONIMOTT04 FLYLS INIHOVW

e e I PP,

ub d4nb 14
uL se swes,

LN

/

/

/

9N

7

y

SN

av«m

EN

/2N

<IN

, Up-s

98 FNOI4

N ON

(N

EN

€Y

N EN

[]

A

INVN AZ TTYD 404 “SNOLLONYISNI A¥INI FANCID0Ud
IHL 40 NOLLYIFAdYIINI ONIMOTTO04 FLY.LS INIHOVW

*25 2NO14
1 Y
$5-3 Nu.Tm
sweu
_ N oN
I suieu g e .ﬂw '
N droc] s b BLd sE
X1-S\d31-s NG //msmm__\ 7
N T ,
BLy se: ,
N tes. 7 ~8N NN\ SN N /eN o AT
N NN /
o (3)35TI=35-301
N IL%o
1 L
dp-s up-

LN

N

- 38 -

object corresponding to the unique name selector in the denotation com-
ponent by the assign instruction (I15).
(116) int-1p (1p) =
is-name (s-tpo n]p(DN)) + eval-bnlp (1p)
T+ eval-1p (1p)
where: n]p = s~id(1p) o E

for: is-var(1p)

If the left part is a by-name parameter, the interpret-left-part
instruction is replaced by an evaluate-by-name-Teft-part instruction.
Otherwise, int-1p is replaced by eval-1p. By-name formal parameters
are identified by consulting the type component in the denotation of
the Teft part identifier. Formal parameter names are restricted to sim-
ple identifiers. Thus, using the left part as a selector in the environ-
ment component will always return a unique name if the identifier is

a by-name formal parameter.

(I17) eval-bnlp (1p) =
is-id(s-tx o n]p(DN)) + pass:s-id(s-e o DP)
is-ss-var(s-tx o Ny (DN)) ~ pass:s-idd(s-e o DP);
P chk-ss(s-idd, s-e o DP);
s-idd:conc (id,v);
viint-expr(ss)
T -+ error
where: nyp = s-id(1p) o E
id =s=-id o s-tx o n1p(DN)
$5= §-85 o s-tx © n]p(DN)

for: is-id(1p)

-39 -

If the text of the argument corresponding to the by-name left part
is an identifier, the unique name of that identifier in the calling en-
vironment is returned. If the text of the argument is a subscript vari-
able, the subscript is evaluated in the calling environment; the current
name of the subscripted variable is formed by concatenating the identi-
fier and the value of the subscript ; a check is made on the subscript
range; and the unique name of the subscripted variable in the calling
environment is returned.

If the text of the argument corresponding to a left part by-name
parameter is not a variable an error instruction is executed, in accor-
dance with the copy rule.

(118) chk-ss(id, e) =

- s-id(e) # @ »~ null;
T - error;
for: is-idd(id)
is-e(e)
(119) conc (id, v) = pass:idv
for: dis-id(id)
is-int(v)

The concatenate instruction, (I19), concatenates the identifier and
the value of the subscript to form an elementary object in is%idd, and
returns the concatenated value. The check subscript instruction, (I18),
verifies the existence of the concatenated identifier in the given environ-
ment component by self replacement with the null instruction. Otherwise,

it is replaced by the error instruction.

- 40 -

(120) eval-1p (1p) =
is-1d(1p) > pass:Ip o E
is-ss-var(Ip) + pass:s-idd o E;
chk-ss (s-idd, E);
s-idd:conc(id, v);
v:iint-expr(ss)

where: id = s-id o 1p
SS = $-SS o 1p

for: is-var(Tp)

Evaluation of a left-part which is not a by-name parameter returns
a unique name from the present environment. As before, subscripted
variables are evaluated and concatenated into simple variables, and the

existence of the resulting identifier is verified.

(I21) int-expr (rp, e) =
is-int (rp) - pass:rp
is-var (rp) -~ pass:eval-var (rp, e)
is-bin (rp) » pass:valu (rdl, rd2, t);
rd1:int-expr(s-rdl o rp);
rd2:int-expr(s-rd2 o rp)

for: is-expr(rp)
is-e(e)

(122) eval-var (rp, e) ? (o)) ()
is-name (s-tp o n__(DN)) - eval-bnrp (rp
Py -+ eval-rp irp, e)

where: Ny = s-id(rp) o E
for: is-var(rp)
is-e(e)

If the right part is a by-name formal parameter, the evaluate-variable
instruction is replaced by an evaluate-by-name right-part instruction.

Otherwise, evaluate-variable is replaced by evaluate-right-part. As

- 47 -

explained in (I16), by-name formal parameters are identified by the type
component in the denotation of the parameter. Also, formal parameters
are restricted to being simple identifiers. Thus, using the right-part
argument as a selector in the environment component will return a unique
name if the right-part is a by-name formal parameter.

Figure 6 illustrates the machine state following exit from the pro-
cedure and return to the main program environment for the program of

Figure 1.

- 47 -

INTYA AZ TTYD 404 2LVLS INIHOVW TYNI4

N T T T

N

N

N

/
/AJERY!
e auwes, /

/,\

~8N N NNV \GN

9N

‘P9 INO14

GN

oN

N

ey

EN

v,

N

L r—ie——

\ a4nbL4 uL
\ se auwes /

\ /

/

JONTI4TY A9 TTVO 404 3LVLS INIHOYW TYNI4 *99 ZNoI4

'%».,%‘

NN G, N eN /N

dp-S up-s'

LN

ON GN

IN

N

\EV

sy

N

/

TN T
\ 3G /aanbL4
\ ulsse sues
\ oy A
\/
S (Ba)e-s
.St aues
~ /
i
<
3
1

-

w,

dp-s

O

INVYN A TTVO 404 ILVLS INIHOVW TVYNIA

9N

v\ SN N AN AN

6N

up-s\ 9-s jun-s

09 D14

GN

N

LY

EN

¢N

Lh

- 45 -

REFERENCES

LLS 68 : Lucas, P.; Lauer, P.; and Stigleitner, H., "Method and Nota-
taion for the Formal Definition of Programming Languages."

TR-25.087, IBM Lab. Vienna, June 1968.

WEG 72 : Wegner, P., "The Vienna Definition Language," ACM Computing
Surveys, Vol. 4, No. 1, March 1972, p. 5-63.

REF :cah

- 46 -

APPENDIX I
DEFINITION OF PRIMITIVE OPERATORS

The two classes of Vienna Objects utilized in this paper are Ele-
mentary Objects and Composite Objects. Elementary Objécts are atomic
elements that have no structural components. Composite Objects have
components that are selected by unique selectors. The components of
composite objects are either elementary objects or composite objects.
The notation for selector-object pairs is of the form <S:0B>.

1. The Construction Operator

The construction operator, Hos accepts a variable number of ar-
guments, each of which is an <S:0B> pair. The effect of apply-
ing Ho to a set of selector-object pairs is to create a new

composite object. For example, uo(<s],t]>,<32,t2>,<53,t3>)

t
1 2
where the ti may be elementary or composite objects.

2. The Selection Operator

Selectors may be used as operators to select components of
composite objects. The operation s(t), where s is a selector and
t a composite object, selects the object that is the s-component

of object t. If t has no s-component, then s(t) = o .

4.

- 47 -

Selectors are either simple selectors or composite selectors.
A composite selector is a sequence of simple selectors of the

: . °S,
form ¥ i1

00 S, © 5y (t)
Composite selectors are applied in right-to-left order:
S50 8, ° sq(t) = 53(52(s](t)))
It 1is sometimes convenient to use an elementary object, si(te),

as a selector in a different composite object, tj. The nota-

tion is of the form:
S © Sgaq 000 S4(ty) coo sq(ty)

The Generalized Assignment Operator

The generalized assignment operator, u, has two arguments: an
object, t, and a selector-object pair, <x,w>. In general, x
is a composite selector, and t,w composite objects. The re=-

sult of applying u(tj<X:W>) is defined as follows:

a. If object t has a x-component, replace the x component with

H

w; unless w = Q. If w =, delete the x-component of ob-

ject t.
b. If object t has no x-component, create a x component and

assign w as the object.

PASS

Value returning instructions are of the form: PASS:expression

- 4§ -

The value of the expression is to be passed to predecessor in-
structions, and stored as the value returned by the present in-

struction.

List Operators

Ordered sequences of objects are referred to as lists. The
elements of a Tist are ordered by selectors of the form
el(i); i=1,2, ...n. A list of n elements is a composite

object of the form:
t = (<e1(1);t]>,<e1(2):t >,<el(n):tn>)

An empty list is denoted by the sumbol < >, and satisfies the

predicate is-< >.

The following operators apply to Tists:
a. len -- The length of a Tist is the index of the last element

in the Tist; e.g., Ten(t) = n.
b. head -- The head of a Tist is the first element; e.g.,

head (t) = t1.

c. tail -- The tail of a Tist is a new Tlist consisting of all
elements except the first; e.g.,

tail (t) = (<e1(1):t2>,<el(2):t3>, ...<e1(n-]):tn>)

d. elem -- A givenue1ement of an indicated 1ist is returned

by this function; e.g., elem (2, tail(t)) = ts.

