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1. introduction

Let X be a set and f a bounded real valued function over X.
Let NGCX be a finite set and suppose that f restricted to N {in
symbols £ N) is known. We will define an algorithm to estimate f£(x)

for any x € X. Let a collection ¢ of subsets of X be given such

that € covers X.
For any bounded non empty set S of real numbers, mid$S =

#(supS + infS) and diam§ = sup$ inf s .

Algorithm. Given x € X we choose C € C such that x € C,
CNN#ZP and diamf©C N N) is small and we estimate f(x) &8
mid £CNW.

This is a familiar procedure if X is & metric space, f im
continuocus and all sets CEEE have small diameters. But we are
]30

interested e.g. 1in the case X = [0,1 . In this case every covering

S of X with sets of diameters < 1/n contains more than n@g sats
(in other words the entropy of i is high, see [8]) and the Algorithm
will not work unlesﬁ N has at least n30 elements (otherwise N
could not intersect all sets of a subcovering of E). Thus our assump-
tion that £ N is known entails the storage of an enormous amount of
information. It ie the purpose of this papér to discuss stronger
suppositionse on £ and g which imply that the Algorithm works and
ellow for smaller C and N.

In our case it is mora.matural to assume 8 probabllity measure
b over X send ‘smell measure' will play the role of 'small diametors’

of the sets in .



This setting suggests other algorithms related to statistical eatim
mation procedures. E.g. choose Cég with x€C such that the eytimated
varience of ¢ over C 1is small. Then estimaﬁe f(x) as the estimated
mean of f over C. (me could also think of algorithms using seversl
(or all) CEE with x€C and estimate f(x) as some weighted mean of
the estimated means of £ over the C's (weights could be functions of
the estimated variances of f over the C’s). (See Remark 5 in Section
3 for some references related to such ideas; see also [13] for Stone-
Weierstrass-type approximations to measureable functions) .

But in this paper we will consider only the simple Algorithm stated
at the beginning. In Sections 2 and 3 we prove some theorems about it
The remeining section is a study of some finite functions which we call
k-continuous and for which the Algorithm is efficient.

Cur motivation for this work were attempts to imagine a mechaniﬁm
having certain properties of the brain in psrticular its learning and
recognition ability. In Section 3 Remark 3 we state a conjecture on the
learning wmechanism of the brain. This conjecture says that learning
peurons use an interpolation algorithm as above.

We are indebted to R. McKenzie, W. Taylor and 5. M. Ulsm for many
discussions concerning the subject of this paper. In particular the idea
of the Algorithm is partly due to Taylor. The first part of Theorem 24

is due to Mrs. F. Yso.
Theorem 9 was announced in [12].

2. General Theorems

et €2 0 sand let Ie

¢ be the closed interval [t -¢,t+€];

in particular 12 = {t}.
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temma 3. If AN T (If(x));éqb then

l2ex) - mid £¢a)] < & + ddtam £(a),

Proof. Choose yGAﬁf“I(I ) . Then

£
£ (%)

2 - mid 2| < |2 - 2| + |2 - mid £y
£ € 4+ %diam £{A) .
Q.E.D.
Let P be a probability measure over X and let £ and all
GEE be p-measurable.

let the sequence x xn,xéx he choosen at random. We put

LR

N = {xl,...,xn}. Thus N is a random variable over the probability

measure space {x°,p™) .

Iet K be a relation over, i.e. a subset of, the space x™ X R" x
XXC.

We define

P(£,C,K,n,€) = Probability {c ﬁNﬂfnl(I £ P

£
f(x))
for all CE€C such that

(g, ... ,xn,f'(xl) by 20 ), %,CYEK]) .

By Lemms 1 we get immediately the following

Theorem 2. With probability not less tham P(f,C,K,n,£) the
inequality
1) l£(x) - mid £CNW| s ¢ + HdtamtCNW

is true for all Cég with (xl,.H,xn,f(xl),...,f(xn),x?C) € K.

This theorem is still too general to have practical importance
since P may be close to 1 by the mere fact that the probability of

the existence of any C€C such that (g0 - ,xn,f(xl) oo ,f(xﬂ) ,x,C) €K



is very small. On the other hand one may have some K's free from

this defect. In fact the only K considered in this paper is as folliows
(...,x,C) €K 1ff x€C. Thus, since € covers X, the above objec-
tion does not apply. (It is possible however that other K's &are
interesting, especially X's involving a condition cardCNN) 2 g.)

Let

Po(f,c,n,E) = Probability {CNnN f”l(l @

£

f(x)) #
for all C€C such that x € C}.

By Theorem 2 (or directly from Lemma 1) we get the following

information on the algorithm,

Corollary 3., With probability not less than Pq(f,g,n,ﬁ‘) the

inequality (1) is true for every C€(C with x€C.
The following basic Lemma will be used in our estimates of Po.

Let . D be a finite collection of p-measurable subsets of ¥X. We

put
d = card (E)
and
b, =min{u() : DED} .
Lemma 4. The probability that NOD £¢ for every DED 1is not
less than

1 - au-»p.a)” .

Proof. Let 8(N) be the number of sets DED which are not

intersected by N. Clearly the expected value of s(N) is < d(l = u,o)n,

8ince s(N) =0 or s(N) 21 therefore the probability that s(N) = 0

s 2 1-dQ -u"  q.E.D.



Let now XOEX be p~-measurable and for every XGXO let Dix)

be & collection of p~measurable subsets of X such that for every

Cec with x€C there exists a DED(x) with Dg_:Cﬁfml(IZ(x})
We put

d = max{card (D(x)) : x€ XO}
and

By = inf{p (D) :neyx},xexo}.

3 , n
Theorem 5. Po(f,g,n,ﬁ) Z M(XO) {1 = do(l o NO) ) .

m. Clearly
Po(f,_(_;’_,n,e) 2 Probability {XGXQ and
NOD # ¢ for every DGE(X)}
2pE)A-da -y,
o ] o
the last inequality following from Lemma 4. Q.E.D.
In the next Section we shall consider a more concrete situation,
with € = 0, and define E(x) 80 that Corollary 3 and Theorem 5 will

vield interesting estimates.

Let now

€

N -1
Q,(f,C,n,€) = Probability {cNn0t (Ifm

) A9

for all x€X and all CE€C with x€C}
The following theorem is analogous to Corollary 3 (a similar
analog of Theorem 2 would be also possible) and follows immediately

from Lewmma 1.

Theorem 6. With probability not less then Qo(f,g,n,ﬁ) the

inequality (1) is true for all x€X and all CE€C with x€C .



Let now D{&x) and gLQ be as in Theorem 5. We put

d, = card( U bpx)).
x€x

Theorem 7. Qﬁ(f,g,m,ﬁ) 2 ua(Xo) (1 = dl(l - um)n) .

The proof is similar to that of Theorem 5.

3. Interpolation over {0,1}".

m ’
{0,1} denotes the set of all sequences of 0's and 1's of

length m. Let k< m.

A kecylinder in {O,l}m i any set ﬁ%{o,l}m which i8 of the

form

C = {(gl,,”,gm) : gil,...,gik} = (cl,.,.gci{)},

where 1 < iy < L. < 1k £ m and (CI."”’ck) e{ﬂ,l}k . We put also

BEC) = {il""’ik}; C, denotes the family of all k-cylinders.

Let f be a function with domain XC{0,1}" and p a probability
measure over X . We shall say that £ 1z kecontinuous if ¥ cean bé
covered with a collection C of k-cylinders such that £ € NX 1is

a constant for every 'CQC. (See Section 4 for examples of such

functions.)
We put

b, = minfe €N 20 b :CEC, and x€CNX)

Theorem 8, If xl,..,,xngxéx sre chosen at random thm, with

-
probability not less than 1 = <k>(1 - ;J.ﬂ,)m R



f{x) = v

for every C and v such that xGCECk and f(xi) = v for all

xiGCﬂ{xI,.“,xn}.

Proof. For all x€X we put D(x) = {Cnf”}‘{f(x)} 1 x€C &Ck} .
m
Then card(D{x)) < (k> < Hence Theorem 8 follows from Corollery 4 and

Theorem 5 for XQ =X and € = 0.

Remark 1. Although Theorem 8 is valid without any sssumptions on
f, it is more interesting for k-continuous £'s since for such f's

there are CECk with x€C and £7C being a constant. Moveover

the probability that CN #¢ for any such C is

(1 - pENCyH™.

f will be called regular k-continuous if, for every r in the

range of f, ful{r} 18 a union of k-cylinders. (See Section 4 for

examples of such functions.) Let | be the probability measure over

X defined by

) B (Y} = card(Y)/card(X) , for all YEX .

Theorem 9. If f is regular k-continuous, § 1is defined by (2),

C and v are as in Theorem 8 then f{x} = v with probability not

1 »(m; k)(l - 4”k)ﬁ.

Proof. For every x€X let xECxégk, ngfnlff(x')}p

less than

snd B(x) = {C ﬂcx:xéﬁégk and BE) ﬁ'B({Zx) =¢}. Clearly D(x)

P k\
gatisfies the condition preceding Theorem 5 and card(D(x}) = “ k ) .



=k
Also w(D) = 4 for every DED(x) . Thus Theorem 9 follows from
Corollary 3 and Theorem 5 with xo = X and € = 0.

In practice it may be more useful to formulate Theorems 8 am9

a8 follows

Corollary 10. (1) Under the suppositions of Theorem 8 the

probability that f(x) #v is < p 1if

rmN
10g\k> ~ logp
(3) n 2

- log(l - up) ,
(11) Under the suppositions of Theorem 9 the probability that

f(x) #v 18 < p 1if

,m -k
1°g&. X ) - logp
ne

- log(l - 4wk)

(4)

and Theorem 13 (see below)
Remark 2. We think that Corollary 10pindicate that the Algorithm

ie epplicable in some gituations (a difficulty is pointed out in Remark
10 at the end of this paper). Although the estimates (3) and (4) depend
very much on uf and k respectively (since - log(l - a) s a for
small «) still for some £ it may happen that the true vslues of n
which secure the required p are much smaller then the above estimates.
Let n(m,p,k) be the least integer n which satisfies (4). We

have the following table of values of nfm,p,k).



m kp 1/20 1/100 1/1000
1 29 a5 43

2 200 225 261

3 1082 1185 1331

200 4 5340 5751 6340
5 25098 26746 29102

6 114452 121043 130473

7 511155 537523 575248

1 33 38 46

2 229 254 289

3 1259 1361 1508

500 4 6294 6705 7293
5 29898 31545 33902

6 137614 144206 153636

7 619810 646179 683903

1 35 41 49

2 250 275 311

3 1392 1494 1640

000! 4 7008 7419 8008
5 33481 35128 37485

6 154859 161450 170880

7 700469 T26837 764561

3. Perhaps the learning neurcons in the brain learn in fact
k-continuous Boolean (i.e. two-valued) functions f  with small k

Ry

(or functions of some related class). They store a sequence Kyvoo 0

f(xl)""’f(xn) or some information extracted from this sequence
{where zﬁ.é{o,l}m and m is the number of inputs of the neuron) and
then estimate f(x) using the Algorithm with ¢ = Ck or some related

algorithm. It is not clear how the values f(xi) are taught to the

neuron but one can imagine various mechanigms for such self-teaching

of the braim. All this suggests studying nets built from k-continuous



10

Boolean functions. For some information on such nets see [3] and
[9], but learning nets of this sort have not yet been studied.

Is it so that some neurons in the central nervous gystem are
k-continuous Boolean functions with small k (say k < 10)? (Neurons
usually have hundreds of inputs and probably depend on most of them).

In theory one could try to prove this checking the predictability of the
activity ofva neuron, from its past activity, applying our Algorithm.

4. It is not clear, although it seems probable, that k-continuous
and regular k-continuous functions constitute the natural domain of
epplications of the Algorithm. But those are the only interesting (aimple
enough) classes of functions related to the Algorithm which we know. We
shall study them in the following sections of this paper.

3. There exist other functions (different from k-continuous ones)
depending on may varisbles for which efficient interpolation algorithms
are known. It seems that these algorithms are all closely related to
linear approximation theory, like the least squares method, the Monte
Carlo methods (see [6], Chapter 12, [15] and [ls])}the perceptron learn-
ing theorem and equalizing algor;thms (see [10] and [ll]). Some of
them yield small mean aﬁuare errors rafhar than uniform approximstions
like the Algorithm of this paper.

6. lemma 4 implies the following

Proposition 11. 1f the elements xl,...,xnéi{ﬂ,l}m are cheosen
| k™ wle, T
at random then, with probability not less than 1 - 2 (;k‘)(l - 2 k§
{xl,...,xn} intersects every k-cylinder.

Lst n(m,k) be the minimal number n such that there exists a

set {xl,...,xn}g {0,1}" intersecting every k-cylinder. Clearly



il

k™

Proposition 11 implies that n{m,k) S n if 2 \‘k//(l - 2«k)n

<1,

This was proved by J. H. Spencer [14], Theorem 2.3.1. We do not know
gny sharper estimate of n{(m,k) wunless k =2 or m - 1. Of course

n(2,2) = 4, and if m > 2 then n{(m,2) i8 the least integer n such that

n -1
n] _ L> 2 m. Ralph McXenzie remarked that this follows from ErdBu,
2

[4‘/%£]”m\ (;[
‘ oA
Ko and Rado [4], Theorem 1, see also [7], if one uses the following

obvious lemma: If M 18 a Ol-matrix with m columns which are
characteristic functions of a collection of m sets such that no two
are included in one another, each two intersect and the complements of
each two intersect, then the set of rows of M intersects every

m w1
2-cylinder in {0,1} . He noticed also that n(m,m - 1) =2 .

7. For other applications of probability to combinatorics, see

[5] eand [14]. Another application of Lemma 4 is the following

Proposition 12. 1If fi: {1,..~,m} “» {1,.,.,k} are functions

chosen at rendom for 4 = 1,...,n then, with probability not less than
., Kt P
1 -(k) \\l o E) , W& have

(*) for every set AC {1,...,m} with k elements there is

an 1€{i,...,n} such that f, restricted to A is

one-to~one.

et n(m,k) be the minimel n such that there exists o f

i R n

#8 in Proposition 12 setisfying (¥). C(learly Proposition 13 implies

rm ]
that n(m,k) s n if \th(l - Eﬁ)n‘< 1. Agein (a8 in Remark §) we do

k

not know any sharper estimate of n(m,k) unless k =2 . [t is
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easy to check that n{m,2) is the least integer not less than
ldgm
log 2

The following Theorem follows from Theorems 6 and 7 in the ssme

way in which Theorems 8 and 9 followed from Corollary 3 and Theorem 5,

Theorem 13. If £ 1is regular kmz:entinuous, b is defined by (2)

and xl,...,xnéx are chosen at random then with probability not less

than

» W .
k;’ A\ mk n
1-»4‘\2kj(1w 4 )

T(x) = v for every x€X and eévery v such that there exists a

C = .
Cégk with x€C and t(x) =v for all xiGCﬂ{xl,...,xn}

Proof. Let, for every x€X, D(x) = {C:xecec

«-Zk} . Hence for

every x€X and every Céck with x€C there exists a D&?Q(m)

such that DQCﬂfml{f(x)} « Clearly for every D€ D(x) s WD) @ {k

and

k' ®
card(xléxg(x)) £ card(;gm&) = 4 \2k)

Hence Theorem 13 follows from Theorems 6 and 7 with x@ m X and

€ = @ .

Remark 8, The estimate
m

- log(l - 4%
similar to Corollary 10 (11), which follows from Thecrem 13 is not
Buch worse than (4). E.g. if n(m,k,p) 48 the smallest integer

satisfying (3) we have the following table of values of nim, k,p)
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m o P 1/20 1/100 1/1000
1 50 56 64
2 369 393 429
3 2051 2153 2299
200 4 10267 10678 11266
5 48696 50342 52700
6 223490 230082 239512
7 1002989 1029257 1067081
1 57 62 70
2 426 451 486
3 2403 2505 2651
500 4 12161 12537 13161
5 58215 59863 62219
6 269356 275947 285377
7 1217777 1244145 1281869
1 61 67 75
2 469 494 529
3 2668 2770 2916
1000 | 4 13585 13997 14585
5 65356 67004 69360
6 303694 310286 319716
7 1378274 1404643 1442367

4., k-continuous functions

k-continuous and regular k-continuous functions are defined prior

to Theorem 8 and Theorem 9 respectively. We shall change the notation

in this respect that, for any x€ {0,1}m N will be the i-th

coordinate of =x, thus X = {x

s 00 g & .
.10 lm)

if XE{O,I}m and £ 18 & function with domain X we ghall sey

that f depends on the variable x, if there are x,y€ ¥ such that

b 4 for all J A4 but £ £ £{y) .

157
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Cur mein interest will be in the question on how many varisbles
can & k-continuous or regular k-continuous function depend.

Example. The following function £ . {'0,1}‘7 » {0,1} 1s regular

d-continuous
fx4 if xl = 0 and x2 =0,
xs it x1 = 0‘ and xz =1,
£ (xi,a,.,xy) = <

x6 if xl = 1 and xg =0 .
f = = .

kx7 i xl 1 and x3 1

Proposition 14. For every integer m > 1 there are

2-continuous functions f:X 2{0,1} where x< {o,1)" depending on »ll

m variables.

Proof (due to D.B. Thompson). Let X be the set of all sequences

©.9,..-,0,3,1,...,1) , where 1 € {0,1,...,m}, and £(x)
i I § :

i(mod 2),

]

It is sasy to see that 'f is 2-continuous and depends on all its m
variables,
Let @P(k) be the maximum number of variables on which a ragular
k-continuous Booleun (i.e., two-valued) function may depend and qa(k)
the maximum m for which there are k-continuous functions £: {0,1}" +{0,1}
depending on all m variables. |
Theorem 15. 2k +(f$) < wb(k-@l) s Pk+1) g (2k+1)4k . *
Tﬁia theorem follows from Propositions 16 and 17 and Theorems 23 and

24 proved below. It shows that regular k-continuity is a much stronger

condition than k-continuity,

" Sa Themen [TA oed 25A odded v prwef.
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Proposition 16. If £ 4s a k-continuous function with domain

{G,I}m then £ 1is regular k-continuous.

Proposition 17. There are (k + l)~continuous functions

-2k
/
t:{0,1)" = {0,1}, where m = 2k + \ k,> , depending on all m

varisbles.

Proof. Let M =Kyd{A:aACK, card(A) = k}, where
card(K) = 2k. Hence card(M) = m. Let xéifa,l}M i.e. x:M-{0,1}.
Now we define f :{0,1}M‘* {0,1} as follows: 1° if card{t €K: x(i) = 0}
> k then f£(x) =0; 2° if card{i €K:x(i) =1}> k then f£(x) = 1;
3° 11 A ={1€K:x(1) =0} and card(A) = k then £(x) = x( A).
It is not hérd to check that £ 18 (k +1)-continuous and depends on

all m variables.

2k
-
Problem. We do not know if the number 3k + \»k :) in Proposition

17 is maximal nor if P (k) < @(k) for some k . (See Theorem 174y .

Proposition 18, A function £:{0,1}" = {0,1} is k-continucus

iff f can be represented as a disjunction of conjunctions of variables
and negations of variables each conjunction having no more than k
terms and also as a conjunction of disjunctions of varisbles and NG @

tions of variables each disjunction having no more than k terms.

Proposition 19. 1If fi is kiwecntiﬂuous with domain Xiﬁifoﬁl}m

and renge R1 for 1 =1,...,n and g 1is any function with domaln

n .
ig;ni then f£(x) = g(!l(x),..a,fn(x)) 18 8 (ky + ...+ kn)uaontinuous
n

tunction with domain N ¥
i=1 1
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Proposition 20. If f 1is a (regular) k-continuous function with

m

domain XC {0,1} then g(x) = £f(T(x) + ¢) 1is (regular) k-continuous
-1

with domain m "(X~-c) where T is any permutation of coordinates, +

denotes vector addition in {O,I}m treated as a vector space over the

Galois field GF(2), and c 1s any vector in {0,1}".

Proposition 21. If f and g are regular k-continuous and f-

continuous functions respectively with the same domain X, NG X, M

intersects every (k + f)-cylinder included in X and fI N =gl N

then { = g,

Proof. Let x€X. Choose a k-cylinder Cl and an f-cylinder

- < r .

Cz such that xECI__X, xGCZ“_x, and £l C1 and g Cz are
constants. Since Ci ncz includes a (k + {)~cylinder it contains

an element yE€N. Since f(y) = g(y) it follows that f(x) = g(x).

Theorem 22. Given a set X< {0,1}" which is a union of k-cylinders
such that X includes exactely d 2k-cylinders, and a set R, there are

4klo card (R)
no more than d & regular k~continuous functions f:¥ - R.

Proof. By Lemma 4 if xl,...,xn are chogsen at random in X then

with probability not less than 1 - d(l - 4- 9" the set ¥ = {xl,,.,,xn}

) -l
intersects every 2k-cylinder included in X. Hence if d{(1 -~ 4 )n < 1

i.e.

logd

n > -
- log(l - 4 )

then there exists a set N with n elements at most which intersects

k
every Zk-cylinder included in X. Therefore, since 4 logd >
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-k
(logd)/ (- log(l - 4 7)), and by Proposition 21,to define a regular
k-continuous function f:X 2 R 1t is enough to fix the values of [
over a set N with no more than 4klogd eloments. This can be done

k

k
4 logd _ d4 log card (R)

in no more than (card(R)}) ways. Q.E.D,

Problem. Improve the bound given im Theorem 22. (Cf. Theorem 15.)

Proving a conjecture of K. Kuratowski,K Mrs. Calczyﬁskamxarlowicz

§
[2] found the following lemma.

(6) For every positive integer k there exists a positive integer
" such that if _é and B are two collections of k-element sels, |
such that ANB £ ¢ for every Aéi\_ and BEE, then there exists a
set M with ® elements at most such that M0NaANB AP for every
A€A and BEB.

Theorem 24 proved below is a refinement of (6).

Let (k) "be the smallest # satisfying (6) and (k) as defined

prior to Theorem 15.
Theorem 23. @ (k) = (k).

Proof. @(k) 2 nk}. Let A and B be two collections of
k-element sets and M a »(k)~element set which is minimal such that
MNANB #¢ for every A€EA and BEB . We define two unions of

k«cylinders

Fo = U {xe{o,1}M : x(J) =0 for all JEMNA},
A€A

F, = U {xé{o,l}m tx(3) =1 for all JEMNB}.
1 pes



i8

It i8 clear that FoﬂFl =@ . We put X = FOU F, and define

-1 -
£:%x - {0,1} putting £ 1(0) - F, and ') -

1
Thus f is regular k-=continuous.
To see that f depends on all its n (k) variables let {€u.
Hence since M is minimal there are AE:@ , 865 such that

MNANB = {1}. Let

¢ for jE€EmNa,

x(
1 for jJEM- A,
end y(J) = x(J) for J#1 and y() = 1. Hence y{I) =1 for all

JEMNB. Thus f(x) =0 and f(y) =1 but x and y differ only

at the i-th coordinate,
Therefore (k) 2 M{k) .

¢(k) sudk) . Let f£.3x - {0,1} be regular k-continuous and X
be a union of k-cylinders in (0,1y$<k)+t and let f depend on (k)
variables xl,...,xw(k) . For each k~cylinder C 1in {0'1}¢(k)+t
we put

(7) | FC) = a,

where a:B(©) = {0,1} 1s such that

C={x€{0,1™* . 4 rpey < o}

(hence a 1is g function and is a set of k ordered pairs). Let
1-2:BC) » {0,1} be defined by (1 - 8)(1) =1 - a(i) for all

1€BC) . we put

A= {F©C) :CCx, C 4s a k~cylinder, 1) = {0}}.
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B = {1-FC):CCx, C 1is g k-cylinder, £(C) = {1}}.

We have ANB #¥@ for each A€ A and B5 R since otherwise there

would be a k-cylinder COE.Z,X with f(CO) = {0} and a k-cylinder

Clg_;_x with f(Cl) = {1} such that F(CO)UF(CI) is a function. But

then CO ﬂcl #¢ , which is a contradiction.

Now we will show that if MNANB £¢ for each A€A and BEB
then for every 1€{1,...,p(k)} there is a pair {(i,b) , where
b€ {0,1} s Which belongs to M. This will finish the proof since it
implies that M has at least .t:p(k) elements and hence u (k) 2 (k) .
8ince f is k~continuous and depends on xi for every
1€ fl,...,cp(k)} it follows that for each such i there are two disjoint

k-cylinders CO and Cl such that iEB(CO) ﬂB€Cl))

ST WK
ey e P R T Y
AT A L

F(CO) (1) # F(Cl) (1) and F(CO) 3 = F(Cl) 3y for
every JEB'(CO) HB(CJ.) - {1} . Hence
F(CO) nqa- F(Cl)) is & singleton {(i,b)} and (1,b) €M since

MﬂF(CO) N - F(Cl)) #0. Q.E.D.
2k
Theorem 24. 2k 4+ ( k> Suk + 1) £ 2k + 1)41‘. *

‘ m The first inequality is due to Frances Yao. Her proof is
the following. Let K be a set with card(X) = 2k . Let A=
{aUu{a}: AC K and card(d) =k} and B={(-mU{a}:ACK and
card(A) = k}. Thus for each A€EA and ’BGE we have card(A) =
card(B) = k + 1 and ANB #£¢ . Also it is clear that the minimal

set which intersects ail intersections ANB 1is

" See Thnewn 174 ood 254 odided o M
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KU {{a}: AC K eand card(a) = k},

which has cardinality 2k + K k> az desired. {(An alternative nroof
follows from Theorem 23 and Proposition 17 Y.
To prove the second inequality we need the following lemma.

Lemma 25. let A,,...,A, B,,...,B_ be k-element sets such
mmenagerereancs 1 n 1 n
that AiﬂBJ =¢ 1ff 1 =3. Then
ns 4k .

Proof. Let n(k,m) be the maximal n as above such that A

n

and B1 satigfy the additional condition card( Ul(AiUB J) S m.

Thus nk,m) $\k) . We need the following auxiliary facts

(8) n(k,m) € n(,m + 1) ;
.2k
(8) nk,2k) = )
2L
(10) nGe,2G + ), ) S nlc+ 4,20k + D) .

(8) and (9) mre obvious. (10) is proved as follows. Let A Bi”

card(V) = 2(k + £) , card(Ai) = card(Bi) =k and AiﬁBJ =¢ 17

=3 for 1,3

i

,...,n(k,2(k + £)) . Let u = U= (A1U31) .

- 2£
1 I/
2f . Let Cr for r=1,... ,\") be the sequence

i

Hence card (Ui)

of all subsets of Ui having £{ elements. We put

i 4
= = - 07y,
Ajp =A UCL and B =8 Uy - CDH

Hence card(Air) = ca,rd(Bir) =k + £ for all 41 and r,

cnrd(U(Auu Bir)) < card{U) = 2(k + £) and Ay N Bm =0 41ff (4,7) =

(J,8), and (10) follows.
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By (9) and (10)
,2(k + &)y ;. 21
nlk, 20 + 1)) <, . <)/<\ z,)‘

Since :i!:\‘ K a2 X p ) = 4 and by (8) we get Lemms 25.

Now we conclude the proof of Theorem 24. Let A and B be
collections of sets such that for every A€A and BEB card(A) €< k + 1,
card(B) < k + 1 and ANB £¢ . We can assume without loss of

generélity that for every u€U, where U = U (AU B), there are
AEA,BEB

A€A and BEB such that ANB = {u}. Thus the proof of Theorem 24

will be completed if we show

(11) card () < (2k + 1)4k .

To show this let a set FC U be called free if for every ué€ F
there are A€A and BEB such that AN B = {u} and (AU B NF =

{u}. We shall prove first that

(12) U 418 a union of no more than 2Kk + 1 disjoint free sets.

We shall produce a sequence F of disjoint free sets

1 Fara

covering U by assigning one by one the elements of U to the Fi .

Given u€ U not yet assigned let {u} = ANB for some A€A and
BEB. Thus card(AUB - {u}) < 2k. We assign u to any of the sets

F, which is still disjoint with AUB - {u} (such an F, exists since

there are 2k + 1 of them). If the original set Ft was free thaon

the extended set Fi is still free. ’I’hus (12) is proved.

{(13) A free set has no more than 4k elements.
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Let F be a free set and for every u€F let AuéA and
sué_g be such that AuﬂBu = {u} and (A, UB) NF = {u}. The
systems A - {u}, B, ~ {u}, where u€F satisfy the assumptions of

Lemme 25 (except possibly that some of these sets may have less than
k elements, but then they could be extended so to have exactly k) .
Hence card(F) < 4k and (13) follow.

By (12) and (13) we get (11). Q.E.D.

2k
« e ~,
Remarka., 9. Since \ k/~ 4k/,~/ﬂk it followa that the

estimates of Theorem 24 are not too bad. Still in view of the next
remark one would like to know more.

10. what is the best way to organize the computation of a
k-continuous function £ known on a sufficiently large set N? Some-
times it may be better to store the pairs (F(C),b(C)) (see formula
(M), where £CNX) = {b(C)}, for a minimal set of k-cylinders C
covering the domain X of f and such that f(CNX) = {0} or
fCNX) = {1} . Then given x€X, at which we want to evaluate f ,
we look for such F(C) in this memory which satisfies FCY € x,
end the corresponding b({) is f(x)‘. But there may be large
irredundant coverings of X with k-cylinders while very small ones
exist too. How to find & small one (1f it exists)? (See {l] for
material somewhat related to this problem).

This question is important in view of the following difficulty of
applying the Algorithm. Suppose that we have a table of £l N for

200 2-wodued and
NG {o,1} , card(N) = 26,746 and 7 ispS-continuous. Given
xE{O,l}zoO » to apply the algorithm for estimating £ (x) , we must

find a S-cylinder C containing x such that ¢7 (NNC) 14is a
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constant. But there are | /‘a 2,535,650,040 S5-cylinders

containing = and hence the search is rather prohibitive.

11. 1In view of Theorem 22 and Remark 10 it would be interesting
to estimate the maximum number of k-cylinders in a minimal covering
of {0,1)" or of any union of k-cylinders in {0,1}". In this respect
we have the following observations made by D.B, Thompson and the referse,
(1) For m>» 1, {0,1}m has a minimal covering with 2m 2~-cyliuders
{=: x =x =v} and {x: X, =V, X, ,=1-v}, where v =0,1 and
i=1,00.,m=1 ., (2) {O,I}m - {(0,...,0)} has a minimal covering with
m l-cylinders and, if m 4is even, with g:n 2~cylinders

2
{x: x, = xi+m/2(3 1} and {x: Xeo= 1y K e = 0}, where i =1,...,m

and + denotes addition mod m. (3) {x ¢ {0,1}": X) +eentm 2 K}

in

bes minimal covering with (k

) k-¢cylinders.
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Notes added in Septembor 1972,

1. J.H. Spencer (see [5]) proved the following theorem related to

Lemma 4
Theorem. There exists a set N ¢ X such that N D £ ¢ fTor
every D € D and card(N) is the least integer not less than

log g +}.+log(«1og(1-uo))
-log(l-u0)

This theorem permits to improve some estimates following Propositions
11 and 12, But his construction of this set N 1is not random as in
Lemma 4 , and hence it does not permit to improve our results, say

Theorem 9.,

2. A matrix similar to the Ol-matrix in the proof of McKenzie in
Remark 6 was used by J.H. Spencer, "Minimal completely separating

systems", Journal of Combinatorial Theory, 8(1970), 446-447.

3. Proposition 17 and the first inequality of Theorems 1% and 24

can be improved as follows.

Theorem 17 A. There exist (k~+2)wc0ntinuous functions

2k
£: {0,1}" = {0,1} , where m = Zk-PQ(BC) , depending on all m variables.

Proof. Let K be a set with card(K) = 2k and £, {0,1}4 - {0,1}
be a 2-continuous function depending on all 4 varisbles (e.g.
to(x,y,u,v) =20 1if X =y =0 or u=v =0 and fo(x,y,u,v) = 1 4if

1€ {xy}n{uvl). weput
M=Ky ({A: AcK and card(d) = k} x {0,1,2,3} ) .

Hence card(M) =m . Let us define f: {0,1}M‘w {041} as follows.



£y

1t x ¢ {0,2}" then 1° ir cara({i € K: x(i)

i

0}) > k then f(x) = 0;

o

2° 1f card({i € K: x(1) =1}) >k then £(x) = 1; 3° 4if A =

i

{t € K: x(1) =0} and card(A)) =k then let y(j) = ®((A_,3)) for
J =0,1,2,3 and let #£(x) = fofy) .

To see that f thus defined is (k +2)-continuous notice that if
case 10 or 2° applies then there exists a (k +1l)-cylinder € with
X €C and £[C is a constant. If case 3° applies and 1.0 =0
and Cy < {0,1}4 is a 2-cylinder with y ¢ Cy and fOf“Cy a constant,

then the (k +2)-cylinder
c={zc¢ {O,I}M: z(i) = x(1) for i ¢ AU ({Ax} % B(C;))}

contains x and frC 18 a constant. While if fo(y) = 1 and Cy

is as above then the (k+2)~cylinder
c={ze{o,}": 21) =x(1) for 1 ¢ K- U (A} xBC )}

also contains x and £[C is a constant. Thus f is (k +2)~continuous.

It is also visible that f depends on all m variables. Q.E.D,

Lemma 25 can be improved as follows

Theorem 25A. If card (Al) ees = card (An) = g, card (Bl) =

+ b
a
cee = card (Bn)mbandAin Bjmtp iff iﬂjth&ﬂni<a )e

This theorem follows easily from a very strong Theorem 2 of B.
Bollobds, On generalized graphs, Acta Math. Acad. Sci. Hung. 16(1965)
447-452.

By Theorem 254 the upper estimate in Theorems 15 and 24 can be
' 2k

K (without changing our proof).

diminished to (2k + 1) <

4. An example of regular k-continuous functions depending on

k..
3:2 1-2 variables,

Consider the following partitions of a square into 3 °2k~1 - 2

BGUA TOS .
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Let Ak be the collection of sets oé squares of the k-th picture whose
interiors can be intersected by one horizontal line and gk be the
collection of sets of squares of the k-th picture whose interiors can
be intersected by one vertical line. Now if M N A N B £ ¢ for all

A € ék and B ¢ gk then ﬁ consists of all the aquares of the «~th

picture. The regular k-continuous functions are constructed from ék

and Ek 88 in the first part of the proof of Theorem 23.

5. We give an example of a regular 3~continuous function £: X = {G,i}g
wvhere X ¢ {0,1}8 » 8ugh that £ cad not be extended to & 3~continuous
tunction £°: {0,1}° 4 {0,1} . Let + demote sddition mod 8 . We
define two unions of 3-gylinders

x, = {x € {0,1}% a( (x, ) = (0,0,00]} ,

141° %142

8 Cqa
xl = {x & {0,1} : ﬂi{(xi,xi*z,xi"'s) = (151;1)]} @

We put X = XO Y xl and, eince x@ 0 xl = ¢, we can define £ putting

£20) = Xy s 1) = X, . It is easy to check that every 3-cylinder

containing the point (0,0,1,1,0,0,1,1) intersects both xn and Xl .

]
Hence no ¢ can exist,



a7

Problem. Under what condtions can a regular k-continuous function

with domain included in {O,I}m be extended to & k-continuous function

over {0,1}" 7
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