A STOCHASTIC MODEL OF MULTIPROCESOR ACCESS
TO AN INTERLEAVED MEMORY

by

LEON J. OSTERWEIL
Department of Computer Science
University of Colorado
Boulder, CO 80302

Report #CU-CS-006-72 Oct. 1972

* This work supported by NSF Grant GJ-660.



A STOCHASTIC MODEL OF MULTIPROCESSOR ACCESS
TO AN INTERLEAVED MEMORY

by

Leon J. Osterweil *

ABSTRACT

In this paper we create a model of the way in which proces-
sors access a shared central memory. We investigate the way in which
overall system efficiency increases as the amount of central memory
interleaving is increased. We discover that studies such as this can
have profound importance. For example, we see that a two-processor
computer system having the characteristics of our model will Tose about
70% of the processing power of one of its processors if central memory
is only two-way interleaved. This loss of power drops sharply for
four-, eight- and sixteeh-way 1nter]eaving; At the end of the paper
we also advance proposals for sharpening this admittedly-crude model

and for modeling n-processor systems.



I. INTRODUCTION

In most large computers, the central memory is divided into
modules, often called banks, of words. In such cases each module or
bank contains its own addressing hardware. Thus, the several banks
are capable of making memory references simultaneously.

Through the years, this architectural feature has been used
in many different ways. For instance, by putting a program's instruc-
tions in one bank of consecutive memory locations and its data in another
bank of consecutive memory locations, it is possible to speed program
execution by using a technique called overlap. The general idea here
is to fetch a particular instruction from memory location L during
machine cycle n, and also compute the address of the instruction's
operand at this time. Then during machine cycle n + 1 the operand
can be fetched from the program's data bank while the next program in-
struction is simultaneously fetched from location L + 1 of the instruc-
tion bank. The objective here is to roughly double the execution time
of a program.

In other machines, the goal of using separate banks is to en-
able the interleaving of the memory. In an interleaved memory, a bank
consists not of a block of consecutive words but rather of a block of
words whose locations are the same modulo b, where b is the number of
banks (invariably a power of 2). Such a memory is often referred to
as a b-way interleaved memory.

In machines such as the ILLIAC II and the CDC-6600, the memory

is interleaved because memory reference speed is slow relative to the



speed or processing power of the central processor. In these machines
a program's instructions are placed so that consecutive instructions
wind up in consecutive banks of memory. Thus it is possible to fetch
b consecutive instructions simultaneously. The goal of doing this

is to get several instructions into the processor more or less simul-
taneously where a great deal of decoding and processing can be done
while another fetch of the next several words is going on.

With the advent of multiprocessor machines designed to do
multiprogramming a new use for interleaved memories has become appa-
rent. This use can be illustrated by the following situation: Let
us assume we have a multiprogramming machine with two identical pro-
cessing units and a central memory shared by them. Suppose there are
two users -- each with control of a different processor and each at-
tempting to execute his own program. Let us further assume that the
two programs are stored in the central memory in such a way that the
two instruction sets reside in the same bank of memory and/or the two
data sets reside in the same bank of memory. It is worthwhile to note
that this Tast assumption is not an unreasonable one. In a multipro-
gramming system, frequently-used systems such as compilers are often
implemented using reentrant code so that several concurrent executions
of that program will nevertheless require that only one instruction
set be resident in central memory. Hence two users using the same
reentrant program would actually be using instruction sets Tocated in
the same bank of memory (namely, the same instruction set).

This utilization of memory results in serious problems.

Since only one processor may access a memory bank during any memory



reference cycle we see that if, say, the instruction sets for two dif-
ferent users share a single memory‘bank, then any instruction reference
by one user can "freeze out" or block any instruction reference by the
other user. In the extreme case where each instruction takes exactly
one memory reference cycle to execute, this could result in complete
blockage of one processor by the other.

It is impractical to alleviate the problem by loading pro-
grams into memory in such a way that all user instruction sets go into
different banks, and all user data sets go into different banks. In-
stead the problem is attacked through the use of interleaved central
memory .

As an illustration, let us hypothesize a machine having two
processors which share a b-way interleaved central memory. Let us
suppose that each processor is attempting to execute the same reentrant
program. (Thus the processors share the same instruction set and have
different data sets). The two processors may access instructions si-
multaneously provided that the instructions they fetch have addresses
which are different modulo b. Moreover, if on a given machine cycle
there is no blockage and each processor executes a nontransfer of con-
trol instruction having a c-machine cycle duration then we are assured
that no blockage will take place on the next instruction fetch either.
Hence, we see that the rate of blockage can be reduced by the use of
central memory interleaving.

It is apparent, however, that there are many factors which

cause the rate of blockage in such a system to be nonzero. For example,



should a processor execute a transfer of control statement Tocated

in bank b then we can no Tonger assume that it will attempt to draw
its next instruction from bank b + 1 (mod b). Hence, its next in-
struction fetch may block or be blocked by the instruction fetch of
another processor. On most machines, moreover, different instructions
take varying amounts of time to execute. Thus we cannot assume that
all processors will move from bank to bank in unison. Hence one pro-
cessor may "catch up" to another causing blockage.

In addition, we must recognize the fact that most machines
attempt to overlap execution of instructions as described above. Hence
each processor will attempt to make up to two memory references during
each instruction execution rather than just one. Each of these refer-
ences may independently result in a blockage and it is important to
observe that these blockages may propagate. For example, let us as-
sume that two processors attempt to access instructions from different
banks, but both attempt to access data from the same bank. If we as~-
sume that the one processor which is blocked sits idle for this cycle,
then we must recognize that both processors may now attempt to access
instructions from the same bank on the next cycle even though no trans-
fer of control may have been executed. Clearly this resulting block-
age may cause a data fetch blockage on the next cycle and so forth.

Thus the problem of determining the probability of blockage
in a multiprocessor system utilizing interleaved memory is formidable
but it is a significant problem which should be of vital concern to

computer architects. A computer with too many processors sharing an



inadequately interleaved central memory may be doomed to needlessly

underutilize those processors.

2. A TRACTABLE YET INTERESTING MACHINE ARCHITECTURE

We have hypothesized a machine architecture which is not
too unreasonable by contemporary standards, yet which is amenable to
analysis. Moreover, the analysis of the machine leads to remarkable
results.

This hypothetical machine has two identical processors, P]
and P2,shar1ng a b-way interleaved memory which is, nevertheless, di-
vided into two separate areas. One area of memory is reserved solely
for the storage of instructions -- the other is reserved solely for
the storage of data. Each of these two areas is b-way interleaved.
Thus the memory contains 2b banks. The following assumptions apply
to instructions: Each instruction occupies exactly one word; each
instruction executes in exactly one unit of time (a machine cycle);
and the execution of an instruction is always overlapped with the
fetch of the next instruction; the execution of an instruction always
requires the fetch of an operand from the data storage area. Hence
on this machine each processor must do both an instruction fetch and
a data fetch during each machine cycle. We assume that in case of a
blockage P] will be allowed to do both accesses, and P2 will remain
idle for one cycle attempting to make the samé pair of accesses on

the next cycle.



This model does not seem to us to be overly unrealistic.
The greatest oversimp]ifications seem to be the assumption of uniform
execution time for 1nstructions and the assumption of a data fetch
for every instruction execution. We expect to analyze models of more
realistic machines in subsequent research. For now, however, we find

this model challenging and provacative.

3. A STOCHASTIC MODEL OF THE MACHINE

We have studied the machine described above by means of
stochastic modeling techniques. It seems clear that the rate of block-
age for our hypothetical machine is stfongly dependent upon whether
or not the pattefn of memory accesses required by the processors is
cyclic. For example, if a processor never executes a transfer of control
statement, then it will attempt to access locations in the instruction
area in a purely sequential fashion. Hence it will attempt to access
bank 0, then 1, then 2, ... then b-1, thenvO, «es This orderly pro-
cession of bank accesses will be interrupted only by the execution
of a transfer of control instruction which we shall call an instruc=
tion jump. Clearly, the cyclic order of bank accesses is disrupted
only if the instruction jump involves a jump of length other than 1
modulo b.

Similarly if consecutive instructions attempt to access con-
secutive data words, then the pattern of data bank references will be
orderly (cyclic). Otherwise, we shall say the processor has executed
a data jump. Clearly a processor can execute either, neither, or both

types of jumps on any given instruction execution. Moreover, it seems



perfectly reasonable to consider the execution of an instruction jump
and the execution of a data jump to be indépendent events in the proba-
bility sense,

We note that if b > 1, and both processors have begun simul-
taneous execution, then if neither processor ever executes a data or
instruction jump, there is no possibility of subsequent blockage.

The execution of jumps can, on the other hand, Tead to blockages.
Hence in order to determine the probability of processor blockage, we
must study the way in which jumps can produce blockages. We do this
by means of stochastic modeling techniques.

Let us assume that for each processor, the probability of
executing an instruction jump on any machine cycle is i, and that the
probability of executing a data jump on any machine cycle is d. As
noted previously, it is reasonable to regard these events as indepen-
dent, and we shall do so. On any machine cycle, the machine may be in
one of four states:

1. There is an instruction blockage and a data blockage,

2. There is an instruction blockage, but no data blockage,

3. There is no instruction blockage, but there is a data
blockage,

4. There is no blockage of either type.
The probability of blockage is thus the fraction of time the machine
spends in the first three states or 1 - the fraction of time spent

in state 4.



This fraction can be computed by standard methods for mani-
pulating Markov Chains (for example, see [1]) provided transition
probabilities can be computed between all the states. We can compute
these probabilities as functions of b, i and d.

We shall denote by T the matrix of transitions between these

four states. By Tij we denote the probability that the machine will

move from state i to state j. T.. will be the 1, jth entry in T. The

1]
matrix T is given by:

.

. id
T =

o

. ¢

T -5

T

12°
) iy d
T3t (0-5)p

g 0-g) 0-F)

Cifd T
oyt B‘(E*b""—‘ﬁ (1 ‘d),)

Typ: %(mb‘] d+b:2(1-d))

s (-5 @ (5iy)0- )
-

T

T

24°
e (oty 0-1) ¢

32 (%*”5“}"1"(""))0-%
33° (1"%*5:% “'”)%
swi (-5 525 0-1) (-8)
T (5) - DE (2-d)

Te-0ra-a2+ -1 (2d- a3

T

T

T

T42:



Tt [O-DF+0-L)@i-i918@-q

Tr [O-D%+0-0) @ -1 00-0%+ (1-1) (2 - d))]

T

Let us denote T by M. We can now use this matrix to produce

results concerning‘the probability of blockage. Let:

be a column vector where X5 is the probability that the machine is 1in
state 1 during any cycle. If we assume that the machine has reached
an equilibrium condition with both processors involved in the execution
of a reentrant program, then we can say that MX = X or (M - I)X =0,
where I is the identity matrix of degree four. We can now solve this
matrix equation for X. The probability that P2 is blocked on any machine
cycle is then given by 1 - Xg-

The matrix M is a stochastic matrix, hence M - I is a singu-
lar matrix. Hence X is not uniquely determined. However, it is clear
that §: X; = 1

Thus, it is possible to solve (M~I)X = 0 for X
i=1

4
subject to the condition that > x; = 1.
i=1

4. SOME RESULTS OBTAINED

As already noted, we are interested in studying R, the proba-

bility of blockage for our machine. We noted that R=1 - Xg and 1is



-10-

therefore a function of the three variables b, i and d. Since Xg is
determined by solving the matrix equation (M - I)X = 0 where each entry
of M is a function of b, i and d, it seems that obtaining an explicit
formula for the blockage is difficult. On the other hand, we can
certainly evaluate all sixteen entries in M for a particular triple

of values for b, i, and d. Under these circumstances we can readily
compute a numeric value for Xgs and hence the probability of blockage.
Using a computer we have generated the results tabulated in Table I and
I,

The results in Table II do not immediately suggest the func-
tional relationship between R and its parameters b, i, and d. They
do, however, seem to suggest some interesting conclusions. For example,
we see that R seems to be strongly dependent upon b, but remarkably
far less dependent upon fluctuations in the values of i and d.

These computations seem to indicate that two-way interleave
is quite inadequate for our machine. Four-way interleave seems to be
far better. Eight- and Sixteen-way interleave offer further but less
dramatic improvements.

These observations are, of course, no substitute for an ex-
plicit formula for R in terms of b, i, and d. Such a formula might
be obtainable through the symbolic solution of the matrix equation
(M - I)X = 0. This task appears forbidding, however. Alternatively,
some sort of curve fitting technique might be applied to the data of

Table II in an effort to obtain an approximating formula.



TABLE 1

EVALUATION OF Xg> OF 1 - R(b, 1, d)

For b = 2

i\\\ d 1 .2 .5 .6 .8 .9 1.0

.1 5 .3322 .3311 .3279 .3268 .3247 .3236 .3226
.2 .3311 .3289 .3226 .3205 .3165 .3145 .3125
.3 .3300 .3268 .3165 .3145 .3086 .3058 .3030
.5 .3279 .3226 .3077 .3030 .2941 .2899 . 2857
For b =4

1\\\\d 1 2 5 6 8 .9 1.0

.1 .8776 .8322 . 7373 .7161 .6857 .6760 .6697
.2 .8322 .7936 .7109 .6919 .6645 .6555 .6497
.3 .7945 7611 .6880 .6709 .6458 .6375 .6320
.5 .7373 .7109 L6512 .6368 .6152 .6079 .6029
For b = 8

i \\\d .1 .2 .5 .6 .8 .9 1.0

!

1 L9477 .9258 .8768 .8655 .8495 .8448 .8422
.2 .9258 .9054 .8595 .8488 .8337 .8293 .8268
.3 .9068 .8877 .8444 .8343 .8199 .8157 .8133
.5 .8768 .8595 .8202 .8109 .7977 .7938 .7916
For b = 16

i \\\d R 2 5 6 8 .9 1.0

.1 .9752 .9644 .9399 .9343 .9264 .9243 .9233
.2 .9644 .9540 .9303 .9248 L9172 .9151 .9142
.3 .9550 .9449 .9218 .9165 .9091 .9071 .9061
.5 .9399 .9303 .9083 .9032 .8961 .8941 .8933



PROBABILITIES OF BLOCKAGE, R(b, i, d) =1 - x4(b, i, d)

TABLE II

For b = 2

1\\\ d N .2 .5 6 .8 .9 1.0

. .6678 .6689 6721 6732 6753 .6764 6774
.2 .6689 6711 .6774 .6795 .6835 .6855 .6875
.3 .6700 6732 .6835 .6855 .6914 .6942 16970
.5 6721 6774 .6923 .6970 .7059 .7101 .7143
For b = 4

1\\\ d N 2 .5 .6 .8 .9 1.0

N 1224 .1678 .2627 .2839 .3143 .3240 .3303
) .1678 . 2064 .2891 .3081 .3355 .3445 .3503
.3 .2055 .2389 .3120 .3291 .3542 .3625 .3680
.5 .2627 .2891 .3488 .3632 .3848 .3921 .3971
For b = 8

1\\\ d . 2 .5 .6 .8 .9 1.0

. .0523 .0742 .1232 .1345 .1505 .1552 .1578
.2 .0742 .0946 .1405 1512 .1663 .1707 1732
.3 .0932 1123 .1556 .1657 .1801 .1843 .1867
.5 .1232 .1405 .1798 .1891 .2023 .2062 .2084
For b = 16

1\\\ d N .2 .5 6 .8 .9 1.0

1 .0248 .0356 .060T .0657 .0736 .0757 .0767
.2 .0356 .0460 .0697 .0752 .0828 .0849 .0858
.3 .0450 .0551 .0782 .0835 .0909 .0929 .0939
.5 .0601 .0697 .0917 .0968 .1039 .1059 .1067



-11-

We note that the values of R for b = 2 appear to approximately
satisfy the equation R(i, d) b=p = %,_ %%‘. On the other hand, the
values for b = 4, 8 and 16 do not appear to be linear in either i or
d. Hence it appears that the relationship between R and its parameters

is not a simple one.

5. FUTURE RESEARCH AREAS

It seems clear that there are interesting and surprising re-
sults to be obtained in this area of investigation. Moreover, the im-
portance of such work should be clear. Computer system efficiency
seems to depend in important and subtle ways upon the relationship be-
tween numbers of processors and extent of memory interleaving. Results
in this area should be available to computer hardware system designers.

The results given here are just a beginning. Much more work
is needed in this area. Perhaps the most obvious extension of this
work would be to consider computer systems with n processors, where
n 2. This would entail the analysis of larger stochastic matrices.

Another important extension of this work would be to change
the model of the machine we are analyzing. It is unrealistic in terms
of present day architecture to model a machine in which all instruc-
tions execute in the same length of time and in which each instruction
must reference an operand in memory. The model should be altered so
that these restrictions are removed. Since we are already dealing
with a stochastic system, this could be done by parameterizing the

probability of an operand reference and the probability of execution



-12-

of a multicycle instruction. It is reasonable to guess that blockage
rates for such machines might be radically different from those obtained
here and perhaps might be strongly dependent upon such parameters.
Finally, it seems that further attempts at determining the
functional relationships between R and the various parameters should
be made. The symbolic solution of the stochastic matrices developed
here could be pursued perhaps through the use of a symbol manipulation
package on a computer. Such a course of action may be reasonable for
the small 4 x 4 case considered here, but it unlikely to be a fruit-
ful approach when dealing with the subsequent research suggested in
this section. Some sort of curve fitting scheme is more likely to be

successful in determining the desired relationships.

cah



REFERENCES

1. W. Feller, An Introduction to Probability Theory and its Applica-
tions, Volume 1, John Wiley and Sons, Inc., New York, 1950.

LJ0O:cah



