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ENUMERATION OF NON-SEPARABLE GRAPHS ON FEWER THAN TEN POINTS

by Leon Osterweil

ABSTRACT :

Until recently, the number of non-separable graphs on seven or
fewer points was known due to hand computations carried out by DeRocco
[1]. By implementing an algorithm of Robinson [2] on a digital com-
puter we weré able to compute the number of non-separable graphs on

nine or fewer points. This paper presents these numbers.



1. SOME BASIC CONCEPTS

In this paper we will be dealing exclusively with unlabeled graphs
having no Toops and no multiple edges, commonly called Tinear graphs.

Two points, a and b, of a graph are said to be adjacent if there
is an edge of the graph having a and b as its end points.

The graphs G; and G, are isomorphic if there exists a one-to-one
mapping of the points of G; onto the points of G, which preserves ad-
jacencies. If no such mapping exists, then G; and G, are said to be

nonisomorphic.

A point p of a connected graph G is said to be a cut point of G
if G', the graph resulting from the removal of p and all edges having
p as an end point, is not connected.

A non-separable graph is a connected graph having no cut points.

Throughout this paper, we shall denote the group of all permutations
on n letters (known as the symmetric group) by S,- [If meS, ., then we
define pr(w) to be the permutation of pairs of letters induced by the

letter permutation, w.

We shall also denote by Rn the group of all n! permutations of
all Diﬂ%ll- unordered pairs of n labelled points which are induced by
permutations in Sn.

By the automorphism group of a graph, G, we shall mean the group

of all permutations which map G onto itself.
The polynomials to which we shall refer in this paper may be poly-

nomials in arbitrarily many variables, and may have an arbitrary number



of terms. The coefficients of the terms will always be rational numbers.
We shall make frequent use of the composition of two such polynomials,
defined as follows: If f(sl,sz,,..,si,...) and g(sl,sz,...,si,...) are

polynomials in the variables 15525535 ++5S55..., WE define their compo-

S'i't'iOﬂ, f(519529-~~) [9(519529"’)]’ to be f(g(sl,SZ,-..S.i,...), g(523
SL{_,...,Sz-E,...), g(Sg,Sg,...,Sgg-i,...),...).
We shall have occasion to use the cycle type of a permutation, =, on

n points. This is denoted by Z(n), and defined to be the monomial in n

variables, sltl sztz Sgt3 ... tn, where t is the number of cycles

n
of length j in =.

Let us now consider a graph, G, and A(G), the group of all automor-
phisms of G (i.e., all permutations of the points of G which leave G

fixed). The mean of the cycle types of all automorphisms of G, Tﬁ%GTT

Z Z(g),

geA(G) "~ shall be called the cycle index of the automorphism group
of G, and will be denoted by Z(A(G)). Hence, for example, ﬁ%- Z(s,)

is the cycle index of the automorphism group of the graph on n points
having no Tines. In this paper, we shall be concerned largely with
the computation of the sum of the cycle indices of the automorphism
groups of all non-isomorphic graphs having a particular property.

We say that we can enumerate graphs having property P provided that
for any n we can compute, by means of closed or recursive algebraic
equations, the number of non-isomorphic graphs on i points having prop-

erty P. In this connection, we shall use the term counting polynomial,

defined as follows. The polynomial p(x) = Ef a,ix1 is said to be the
i=]
counting polynomial for graphs having property P provided that there

are exactly a; non-isomorphic graphs on i points having property P.



In general, we shall obey the following convention: If p is the
counting polynomial for graphs having property P, then 6 will denote
the sum of the cycle indices of all graphs having property P. HWe shall
call ﬁ the cycle index polynomial for graphs having property P.

The method for enumerating non-separable graphs which is described
here was developed in 1963 by R. W. Robinson in his senior thesis at
Dartmouth College. It allows wus to compute the cycle index polynomial
for non-separable graphs. In order to do this, we first find the cycle
index polynomial for Tinear graphs. Using Robinson's extension of
Ridde1's Equation, and the cycle index polynomial for Tinear graphs,
we can obtain the cycle index polynomial for connected graphs. To this
result, we can then apply a recursive technique developed by Robinson
which yields the desired cycle index polynomial. The counting polynomial
for non-separable graphs can then be derived by composing this cycle
index polynomial over x.

Thus we see that in order to obtain the counting polynomial for non-
separable graphs, it was first necessary to compute the cycle index poly-
nomials for linear and connected graphs. By composing these polynomials
over x we obtained counting polynomials for linear and connected graphs.
These intermediate results, perhaps of interest in their own right, are

included here also (see Table I).

2. ROBINSON'S METHOD

The following expositon merely states the important equations used
in enumerating non-separable graphs. For detailed explanations of their

derivations, the interested reader is referred to [2].



TABLE I

The Number of Connected, and Non-Separable

Graphs on Nine or Fewer Points, and the

Number of Linear Graphs on Eleven or Fewer Points

Number of Number of Number of Con- Number of Non-
Points Linear Graphs nected Graphs Separable Graphs
1 1 1 1
2 2 1 1
3 4 2 1
4 11 6 3
5 34 21 10
6 156 112 56
7 1,044 853 468
12,346 11,117 7,123
9 274,668 261,080 194,066
10 12,005,168

11 1,018,997,864



We can compute Q, the cycle index polynomial for linear graphs from

the equation:

l

2 (Zlpr(n) [2]) 2(n)

2.1 q =
’ n

ni

Let us call a sequence of integers, t;, tz,...,tn, a partition of
n
nif 1 i ti = n. If ty, tz,...,tn is a partition of n, then there
i=1
nl

1 ¢yt ntn g

are exactly permutations in Sn having cycle

type
: sltl sztz o t

By brute force observation of special cases, we can compute that if
to t

Z(w) = sltl sp % ...s."n, then
, t. (-l
i 2
2.2 n! il S5
Z(pr(m)) = t t i<n
1l Mt i odd
t, (2 - 1) t. .
I s; 12 5q 1 T it (t.-1)72\ [ @ t.t.(1,3)
i<n 2 i<n® 17 i<j<n °[i,51 'Y
i even

where (a,b) is the greatest common divisor of a and b, and [a,b] is the
least common multiple of a and b.
Hence it follows from 2.2 that if mjand =, are permutations having

the same cycle type, then Z(pr(m)) = Z(pr(mny)). If ti, toseoonty is a

partition of n, then we define Y(tl,tz,...tn) = Z(pr(w)), where = is any

t, t

partition having cycle type sltl S Z...5, 7N,



We can now write:

23 Q=3 Z. = ]t

! t
n=1  partitions 1 | ng o, Y(ty,....t )[2]s; !
of n, til...n tn. n

t1otos. ..t

Riddel's equation states that:

® r
24 Y lqi") = -y L)
r=1 r=1
where gq(x) is the counting polynomial for connected graphs. Robinson

has shown that Riddel's equation remains valid when q(x") and Q(x) are

replaced by Sr[a] and é, respectively. Equivalently,

N

2.5 Q=-exp (2 syLa] ) -1

n=1 n

]

o ©

2.6 - ﬁi Sy [&] ¥ l.( > Sh [&] )2 +.l > Sn [a] )3+ ...
n=1 ~— n . 6 "n=1 n

A

Again, g can be determined recursively from 6.
We can now define the operator, ', which operates on polynomials in

n variables, S15525535++++5S5 aS follows:

dp(sl,sz,sg,...,sn)
dSl

p(Sl,Sz,Sg,....,Sn)l =

Let us now define R = &'. Let B be the sum of the cycle indices of
the automorphism groups of all non-separable graphs. Then

o]

2.7 R = exp (n:Z] (% s, [(8' - 1) [5:R]))

enabling us to solve recursively for B,



Moreover:

2.8 q‘sl=0 = (Bl51=0) [siR] enabling us to determine Blsl=0.
We now observe that:
2.9 B=_[*18 ' ds; + B [s;=0.

Hence 2.7 and 2.8 suffice to determine B. B(x), the counting poly-

nomial for non-separable graphs is obtained by noting that

2.10  B(x) = B [x].

3. THE COMPUTER PROGRAM

The numbers in Table I were produced by implementing Robinson's
method by means of a FORTRAN program on an IBM 7094 computer. The cycle
index polynomials were represented and manipulated internally through
the use of data packing and elementary list processing techniques. Numeric
values were represented as integer pairs (numerator and denominator)
in order to insure complete accuracy. Unfortunately, the representation
of some of the intermediate numeric results of this method taxed the
integer representation capacity of the 7094 machine word.

Hence we were unable to use this program to compute the number of
non-separable graphs on ten points or more. It is clear that by repre-
senting numeric values differently and/or using a computer with larger

word size we could extend the results tabulated here.
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