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ABSTRACT

In this paper, we shall present the concept of a uni-
quely n-colorable graph, and then introduce a class of graphs

which we shall call 6-clique rings. We shall show that 6-clique

rings are useful in generating some classes of uniquely 3~
colorable graphs. Moreover, we shall demonstrate how the tech-
niques used in producing uniquely 3-colorable graphs from 6-
clique rings can be extended to allow the production of other
classes of uniquely 3-colorable graphs, as well as the produc-

tion of uniquely n~colorable graphs, where n>3.



1. INTRODUCTION

Several workers have investigated the properties of uniquely
n-colorable graphs (see for example [1], [2], and [4]). A number of
necessary conditions for unique colorability have been found, as well
as a number of sufficient conditions. A rather complete summary 5f
these results can be found in Harary [3]. In this paper we study pri-
marily the more specific problem of characterizing uniquely 3-color-
able graphs, We are able to characterize a number of classes of uni-
quely 3-colorable graphs. The techniques used here seem applicable

to the more general study of unique n-~colorability in graphs.

2, SOME DEFINITIONS

In this paper we shall follow the notations and terminology
of Harary [3]. The definitions of the more élementary concepts can
also be found in Harary [3]. Note that we shall be concerned here
only with finite unlabeled graphs having neither loops nor multiple

edges.
It is first necessary to establish a few definitioms.

Definition 2.1: A k-coloring of a graph, G, is a function,. ¢,
which maps the vertices of G onto {1,2,...,k} in such a way that if

v, and V, vertices of G, are adjacent, then ¢(v1)#¢(vz).

Definition 2.2% Let ¢ be a k-coloring of the graph G, The

o~1(i), 1<i<k, are called the color classes of G.

Definition 2.3: A k-colorable graph is a graph for which there

exists a k-coloring.

Definition 2.4: The chromatic number of a graph, G, is the

minimum n for which G is n-colorable. We shall denote the chromatic

number of G by x(G).



(2a.)

Definition 2.5: Two k-colorings of G, ¢l and ¢, are equivalent
(we denote this by ¢l%¢2) if there exist T, an ‘automorphism of G, and

v, a k-permutation such that ¢1(T(V))=v(¢2(v)) for all v, vertices of G.

Definition 2.6: G is uniquely n~colorable provided that n=y(G)

and that all n-colorings of G are equivalent,

In the following sections 6f this paper, we shall be most

interested in graphs of the type which we new define.

Definition 2.7: A 6~c¢lique ring is a graph, G, consisting of six

cliques which can be labelled CO,Cl,...,C5 in such a way that no point
of any C;, 0<i<5, is adjacent to any point of any C;, 0<j<5, unless i=j,

i-j=1 (mod 6), or i~j=5 (mod 6).

If C; is a clique of G, a six-clique ring, then we shall say

and C

that C are Ci's neighboring cliques or

i+l (mod 6)
neighbors.,

Hence, intuitively we can think of a six clique ring as being

i+5(mod 6)

a graph consisting of six cliques arranged in a circle so that the points
of a given clique are not connected to the points of any other clique

unless that other clique is a neighbor.

Figure 1 is a schematic diagram of a 6-clique ring in which a
clique is indicated by a circle(0), and neighboring cliques are connected

by a line.

Figure 2 shows some examples of 6-clique rings. In Figure 2

we identify the cliques by surrounding them by dotted lines,

Fig. 1: Schematic representation of a six—clique ring
Fig. 2: Some ex~

amples of six=-
clique rings




It turns out that the complements of 6-clique rings have
interesting colorability properties. In the following section we
shall prove some results about the complements of 6-clique rings

which will be useful in later sections.

3. SOME USEFUL LEMMAS ABOUT COMPLEMENTS OF SIX~CLIQUE RINGS

Lemma 3.1: If G is a six-clique ring, then x(G')>3.

Proof: G' must clearly contain a triangle (K3) as a subgraph.,

X(K3)=3, thus ¥(G')>3.

We have established three as a lower bound on the colorability
of complements of 6-clique rings. We now set three as an upper:bound

also and study the structure of graphs having this property.

Lemma 3.2: Let G be a six~-clique ring, and x(G')=3. Let ¢ be
any 3-coloring of G'. Then for each C;» a clique of G, ¢ must map

all points of C4 onto the same color.

Proof: The proof is by contradiction. Suppose Pij and pj, are

both points of C;, 0<i<5. Suppose ¢ is a coloring of G' for which

(py V#d(p1 )
olpy JF¢ Pi,
Let pjgci+2(mod 6) and pkéci—Z(mod 6) Clearly Pijs Pjis and py
are the vertices of a triangle on G'. Hence pil,pj, and Py must have
different colors. But Piz’Pj’ and py must also be the vertices of a triangle.
Thus piz,p., and py have different colors. But ¢(pi )#$(pi ) by hypothesis.
1 2

J

Thus pil’piz’Pj’ and P all must have different colors. Hence ¢ cannot be

a 3-coloring of G'.

We now see that when dealing with six-clique rings whose comple-
ments have chromatic number three it is reasonable to talk about the color
of a clique. If C is a clique of G, a six clique ring, then we shall refer
to the color onto which all points of C are mapped by ¢, a 3-coloring of G',

and the "color of C," and denote it by ¢(C).



Lemma 3.3: Let G be a 6-clique ring for which y(G')=3. If

two cliques of G have the same color, they must be adjacent cliques.

Proof: Cliques having the same color must be disjoint in G'.
But non-adjacent cliques must be disjoint in G (by the definition
of a six-clique ring), hence cannot be disjoint in G'. Hence non-

adjacent cliques cannot have the same color in @G'.

From Lemma 3.3 we can conclude that no color can color more than
two beads of a six-clique ring whose complement is 3-colorable. But if no
color can color more than two beads, we easily see that every color must
color more than one bead. Thus we see that every color must color exactly
two beads. By Lemma 3.3, moreover, we know that these beads must be adja-
cent. Since each clique has only two neighbors, we see there are exactly

two possible colorations of G'. We have thus proved:

Lemma 3.4: Let G be a six~clique ring such that x{G')=3. If
CysCysee+,Cg are the six cliques of G, and ¢ is a 3~colowing of G',

then either
(3.4.1) ¢(Cpl=¢(C1)#9LC,)=0¢(C3)#¢ (C,)=p(C5)#9(Cy) or
(3.4.2) 9(C)=9(Cy)#¢ (C3)=0(C,)#p(C5)=(Co)#6(Cy)

It is easily seen that all 3-colorings, ¢, satisfying (3.4.1)
must be equivalent. Suppose ¢,, ¢, are three-colorings satisfying (3.4.1),
then J 1, a 3-permutation, for which T(¢£F¢2, since ¢, and ¢p can differ

only in the colors onto which they map.
Similarly all ¢ satisfying (3.4.2) must be equivalent.

Hence we see that if G is a six-clique ring whose complement is
three-colorable, then G' admits at most two non-equivalent three~colorings.
If the two 3-colorings are not equivalent, then we shall say that G' is

bi-three-colorable. If the two colorings are equivalent, then G' is

uniquely three colorable,



We summarize the results of this section with

Theorem 3.5: If G is a six-clique ring such that ¥(G')=3, then

G'is either bi~three-colorable or uniquely three-colorable.
4, SOME CLASSES OF UNIQUELY THREE-COLORABLE GRAPHS OBTAINABLE FROM
COMPLEMENTS OF SIX~-CLIQUE RINGS

We now attempt to determine the conditions under which the
three-colorings of the complement of a six-clique ring are equivalent.

Towards this end, the following concept is useful.

Definition 4.1: A complete six-clique ring on the clique

CO’Cl’“'°’C5’ is the maximal six-clique ring on cliques €;,C;,Cy,...,C5.

We easily see that given six cliques, Cy,C;,Cr,...,C5, the
corresponding complete six—clique ring is the graph containing all six
‘¢liques, and all the complete bipartite graphs between neighboring

cliques., Note that Figure 2.b is a complete six clique ring.

If G is a six-clique ring whose cliques are Cp,Cy,...,Cs5,
we shall find it convenient to refer to G, the complete six clique ring

whose cliques are Cp,...,Cg5, as the completion of G.

Figure 3 shows the completion of the six-clique ring pictured

in Figure 2.a

Definition 4.2: Let G be a six clique ring. A thread, or non-

clique line of G is a line of G whose endpoints lie in different cliques.

An i-thread is a thread whose endpoints lie in Ci and Ci+l(mod 6)



Definition 4.3: A odd wad of a six-clique ring, G, is a collection
of threads of G such that every thread is an i~thread where i is either

1 or 3 or 5.

An even wad of a six-clique ring, G, is a collection of threads of

G such that every thredd is an i-thread where i is either O or 2 or 4.

Theorem 4.4 Let H be a complete six-clique ring with cliques
CysCiseeesC5. If G is a six clique ring formed by the removal from
H of any non-void odd wad, or any non-void even wad, then G' is uni-

quely three-colorable.

Proof: Let us examine G', the complement of a graph formed by
deleting a non-void odd wad from H. Clearly Ci is disjoint in G'

from C for i=0,2,"'and 4. There exists an i, however,

i+1(mod 6)
i=1,3, or 5, for which Ci is not disjoint in G from Ci+l(mod 6)°

Hence G' is three-colorable by a coloring, ¢, satisfying
(3.4.1), and G' is not three-colorable by a coloring ¢, satisfying
(3.4.2). Hence there is only one possible equivalence class of

colorings of G'. Thus G' is uniquely three-colorable.

Exactly analogous methods suffice to prove that the removal
of a non-void even wad from H produces a graph whose complement is uni-

quely three~colorable,

Corollary 4.5: Let H be a complete six-clique ring with cliques
CO,Cl,...,CS. If G is a six clique ring formed by the deletion of a

non-void odd wad and a non-void even wad from H, then yx(G')>3.

Proof: Reasoning as in the proof of Theorem 4.4 we find that
neither of the two possible equivalence classes of three-colorings

specified in Lemma 3.4 can supply a three-coloring of G'.

We now turn our attention to the complements of complete six-
clique rings. We wish to identify those classes of complete six—clique

rings whose complements are uniquely three-colorable., The condition



for unique colorability is stated in terms of the relative cardinalities

of the various cliques. Hence we adopt the following notation:

We denote by lCi[ the number of points in Ci (the cardinality
of Ci)'

Theorem 4.6: Let G be a complete six-clique ring with cliques

CosesesCs. G' is uniquely three-colorable if and only if either:

(4.6.1) |c | =lcsl, lcl=1c,l, and [C)| =]Cg| or

(4.6.2) |c and | C,

i-1(mod 6) = Cit1(mod 6)! -2 (mod 6)) = | €42 (mod 6)

for some i, 0<i<5

Proof: We prove the sufficiency first. Since G is a 6-clique ring,
we can apply Lemma 3.4 and see that there are two (possibly equivalent)
classes of three-colorings for G'. The sufficiency will be proved if we

can show that these are equivalent.

Hence let us assume ¢ is a three-coloring of G' satisfying (3.4.1)
and ¢ is a three-coloring of G' satisfying (3.4.2). Without loss of generality,

let us assume
9(Cy)=¢(C )=1;5 ¢(Cy)=¢(C,)=2; ¢(C,)=¢(C,)=3  and

P(C))=0(C,)=13 (€)=Y (Cy)=2; V(C,)=p(Cy)=3

By our definition of equivalence of colorings, we must now produce
T, an automorphism of G', and v a three-permutation such that ¢ (t(v))=v{@(v))

for all veG',

Let us first assume that the cliques of G satisfy (4.6.1). We take
T to be any automorphism which interchanges the points of Cy with the points
of C3, the points of C; with the points of C, and the points of Cyp with the

points of Cs. We take v to be (321). Equivalence is now easily verified.

If the cliques of G satisfy (4.6.2), we take T to be any automorphism

- fixing the points of Ci and C but interchanging the points of

i+3(mod 6)°

Ci+l(mod 6) with the points of Ciml(mod 6) and the points of Ci+2(mod 6) with

the points of Ci—Z(mod 6)" We take v to be (3)(12). Again equivalence is

easily verified.



In both cases, it is important to note that the automorphism T

can be found only if the cardinalities of the cliuges are related as hypothesized.

We now prove the necessity. We assume that ¢ and ¥ are three-

colorings of G' satisfying:

$(Ce)=¢ (C1)#¢(Co)=¢(C3)#d (CL)=0(C5)#d(Cy) and
Y(Cy)=0(Co)#V(C3)=v (Cy)#Y(C5)=y(Cq)#Y(Cy)

Our hypothesis that G' is uniquely three-colorable means that
¢ and Y are equivalent. Hence E}T, an automorphism of G', and v, a three-

permutation, such that ¢(t(v)) = V(w(V)),\IVEG'.

Lemma 3.2 tells us that all points of a given clique of G must
be mapped onto the same color by any three-coloring of G'. Hence we can

state the following:

6 (£(C.)) = v(y(C.,)) 1=0,1,...,5
i i

. . . -1 . .
Since v is a three-permutation, v exists and is also a three-~

permutation, thus

(4.6.3) v'1(¢(T<ci)>) = w(c,) i=0,1,...,5

We saw that ¢ must map all the points of C; and C, onto the same
color. Hence (4.6.3) says that V_10¢0T must also map all points of C; and

Cy, onto the same color.

But ¢ maps C; and C, onto different colors. It is true, however,
that ¢ maps the points of Cy and C; onto the same color, the points of
C; and C3 onto the same color, and the points of C, and Cs onto the same
color. Hence T must be an automorphism of G' which maps all the points
of any given clique onto all the points of some (possibly different) clique.
It is this condition that imposes the relations between cardinalities of
cliques stated in (4.6.1) and (4.6.2). We develop these relations by exam-

ination of cases.

CASE I. The clique pair Cy,C, is mapped by 1T onto the clique pair
1,C2 PP
Co,C1. There are two subcases here; 1(Cy)=Cy, 1(Cy)=Cy and 7(Cy)=Cqy, 1(Cy)=Cy.

Suppose T(C1)=Cl, +(Cy)=Cy. We are now interested in (C3).



C3 and Cy are disjoint in G', hence 7(Cy) and T(C3) must also be disjoint
in G'. But 1(Cy)=Cp and Cy is disjoint in G' only from C; and Cs. Since
T(Cy)=C; and T is an automorphism, we must have 7(C3)=Cs. Since T is an

. Hence (4.6.2) is

automorphism it is clear that [C2{=ICOI and [Cg!?ICS

satisfied for i=1.

Suppose 1(C1)=Cg, T(Cp)=C;. As before, 1(C3) would have to be
disjoint in G' from t1(Cy) which is Cj; by hypothesis. 1(C3) could not be
Cp, thus 1(C3)=C,. By similar reasoning, we would get 1(C,)=C3z, T(C5)=Cy,
1(Cg)=Cs. Hence we would conclude |Cy|=|Cy|=|C3|=|Cy|=|C5]=|Cq|, clearly
satisfying both (4.6.1) and (4.6.2).

CASE II. The clique pair C;,Co is mapped by T onto the clique pair
Cp,C3.

It is easy to verify that this case is equivalent to case I.

CASE III. The clique pair C;,Cy is mapped by T onto the clique pair
Cy,C5. There are two subcases here tooj; t(Cy)=Cy, 1(Cy)=Cg and T(Cl)=C5,
7(Cs)=Cy. |

Suppose T(C1)=Cy, 1(Cp)=Cs. 1(C3) must be disjoint in G' from
1(Cp), which is Cs. Hence 1(C3) must be Cy (since t(C;)=C, and T is an
automorphism). Thus we must have |Ci|=|Cy|, |Ca|=|Cs|, and | C3|=|Col,
satisfying (4.6.1).

Suppose T(C1)=Cs, T(C2)=Cy. Then |Ci|=|Cs| and |Cy|=|Cy|, which
satisfied (4.6.2) for i=3.

Hence the necessity is proven.

5., SOME EXTENSIONS.

Until now we have identified certain classes of uniquely three-
colorable graphs as being complements of certain six-clique rings. We
now observe that there are other '"clique structured" graphs whose comple-
ments have colorability properties very similar to the colorability pro-

perties of complements of six clique rings.
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We use the schematic notation of Figure 1 to introduce three

new families of graphs. As in Figure 1, a circle will be used to repre-

sent a clique. In these figures, however, circles which are joined by

a line will denote cliques joined by the complete bipartite graph. Circles

not joined by a line will denote disjoint cliques. We shall call these
families of graphs the CG;,CGg, and CGg families,

Fig., 4: Schematic representation of the CG_ family of graphs

—

Fig. 5: Schematic representation of the CG8 family of graphs

&

Fig. 6: Schematic representation of the CG9 family of graphs
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We assert that the methods of sections 3 and 4 are applicable,
with minor modifications, toc these three families of graphs. Hence
families of uniquely three colorable graphs can be generated in similar
ways. For example the following theorem can be proven by extending our

six-clique ring results.

Theorem 5.1: Let G be a graph obtained by deleting a thread from
a graph which is a member of CGi’ i=7, 8, or 9. Then G' is uniquely

three-colorable.

Analogues to Theorem 4.4 can easily be generated for CGi graphs

(i=7,8,9) once the analogues to odd and even wads have been determined.

The analogues to Theorem 4.6 for CGi graphs (i=7,8,9) promise
to be harder to state and prove, but conceptually similar to what we

have seen.

Finally, we observe that the techniques developed and used here
seem applicable to the study of unique n~colorability for n>3. TFor example,
we can prove by analogous methods that the complement of an 8-clique ring
is either uniquely four colorable or bi-four-colorable, and that the removal
of a non-void odd or even wad from an eight-clique ring will render its
complement uniquely four colorable. It seems most likely that analogues
to Figures 4, 5, and 6 must exist for the four colorable case, and that

corresponding theorems must be provable by corresponding techniques.
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