Analysis \& Results for the 2020 Statewide Seat Belt Usage Study

Prepared for the

Colorado Department of Transportation

September 10, 2020

TABLE OF CONTENTS

List of Tables 3
List of Appendices 4
Preface 5
Executive Summary 6
Survey Design and Methodology 8
Results 9
Conclusions 15
Appendices 17

LIST OF TABLES

Table Page
1.0 Statewide Seat-belt Usage by Vehicle Type 7
2.0 Historical Statewide Usage Rate (\%) 9
3.0 Increases in Seat Belt Usage in Past Eight Years (\%) 9
4.0 Statewide Seat-belt Usage by Vehicle Speed 10
5.0 Statewide Seat-belt Usage by Road class 11
6.0 Statewide Seat-belt Usage by County 12
7.0 County Comparisons by Population Size 13
8.0 Non-Observable Rate Year to Year. 14
Appendix Page
1 Colorado Average Motor Crash-Related Fatalities by 17 County 2010-2014
2 Codes by Road Segment File 19
3 Statewide Seat Belt Usage by County in Alphabetical 20 Order
4 Number of Segments Selected (n) by County and MTFCC 21
5 Weights for the Colorado State Seat-belt Usage 23 Observational Survey
6 Weights for the Colorado State Seat-belt Usage 25
Observational Survey by Survey Site
7 Training Syllabus 53

PREFACE

This report is the result of a statewide seat-belt usage study conducted for the Colorado Department of Transportation (CDOT), Office of Transportation Safety (OTS). The objective was to provide an estimate of the seat-belt usage rate for the State of Colorado in 2020.

To accomplish this objective, researchers conducted a comprehensive statewide seat-belt usage survey at selected observation sites throughout the state. A team of observers was trained and certified in the process of direct observations of traffic, and to properly collect and record data during a two-week period (July $26^{\text {th }}$ to August $8^{\text {th }}, 2020$). This process determined seat-belt usage among Colorado drivers and outboard front seat passengers. CDOT and the Office of Transportation Safety can use this data gathered from this study to make accurate decisions on future transportation safety programs.

Atelior is pleased to work with the Office of Transportation Safety in completing this 2020 Colorado Statewide Seat-belt Study. The design takes into consideration population movements and trends within the State of Colorado and therefore provides a realistic picture of seat-belt usage in the state. By submitting this report, the project objectives have been completed within the time parameters and budget agreed to by both CDOT and Atelior. I am fully confident that the data and the analysis submitted to CDOT/OTS are accurate and complete.

D. Todd Donavan

Principle Investigator, Atelior

EXECUTIVE SUMMARY

Atelior, LLC conducted a comprehensive seat-belt usage study in the State of Colorado from July $26^{\text {th }}$ to August $8^{\text {th }}, 2020$. Trained observers collected data at 770 sites in 31 counties. A total of 119,842 vehicles were observed, including cars, vans, sports utility vehicles (SUVs), pickup trucks, and select commercial vehicles (10,000 pounds and under). Drivers and front seat outboard passengers of the eligible vehicles were observed for seat-belt usage at predetermined observation sites throughout the state.

Dr. D. Todd Donavan, served as Principle Investigator, Jon Schroth as Project Coordinator, Tom Petersen Administration/Oversight, Richard Motzkus Field Administration, and Todd Tuell served as lead statistician for the data analysis.

To further enhance the validity and reliability of the study, two additional enhancements were added to this year's data collection. As usual, field observers and supervisors were trained by the Atelior team in observation and recording methods in order to properly conduct the field survey and collect data. We added a certification process by which each observers had to meet rigorous standards of data collection. The need for consistency and accuracy in the process of data collection was emphasized in the training and pre-survey phase of the study. The second enhancement added this year was the use of IPads for data collection rather than using collection sheets. This added technology improves the accuracy of data collection.

As in previous seat-belt usage surveys, retired Colorado State Highway Patrol Officers were used as observers whenever possible. Because of their familiarity with interstate and state highways, as well as local and county roads and safety procedures, many potential location and safety problems were minimized. The retired patrol officers have proven to be very conscientious and reliable. Their experience helps strengthen the validity of the results. This staffing arrangement worked very well, and the continued use of the patrol officers is planned for future studies. By using independent contractors, Atelior has taken measures to ensure the integrity of the survey and analysis while involving people in the study who have the most relevant skills.

The data collected through the observations were recorded, summarized, and entered into appropriate categories for analysis. Analysis of the data yielded the following seat-belt usage results among the various vehicle types:

Table 1.0: 2020 Statewide Seat Belt Usage by Vehicle Type

	\# of Sites	Estimate \%	Std Error	CV \%	Lower 95\% Limit	Upper 95\% Limit
SUV	770	90.9	0.4	0.46	90.1	91.7
Van	770	90.2	0.9	1.04	88.3	92.0
Car	770	86.1	0.7	0.78	84.7	87.4
Truck	770	78.3	0.8	1.07	76.7	80.0
Commercial	770	74.8	1.3	1.74	72.3	77.4
Overall	770	86.3	0.5	0.54	85.4	87.2

The 2020 Statewide seat belt results gave the following estimates in order from highest percentage to lowest percentage: SUVs 90.9% (95% Confidence interval 90.1% to 91.7%), VANs 90.2% (C.I. 88.3% to 92.0\%), CARS 86.1\% (C.I. 84.7% to 87.4%), TRUCKS 78.3% (C.I. 76.7% to 80.0%), and COMMERICAL VEHICLES 74.8% (C.I. 72.3% to 77.4%). We discovered an overall rate of 86.3% with a 95% confidence interval range of 85.4% to 87.2%. The 86.3% matches the Premob calculation of 86.3%. However, despite the numbers remaining the same, there were some slight changes among the vehicle categories in the Statewide data collection versus the Premob data collection. Cars changed slightly from 86.3% Premob to 86.1% Statewide. Vans dropped slightly from 91.1% Premob to 90.2% Statewide. SUVs were similar between the two data collections at 90.1% Premob and 90.9% Statewide. Trucks had the largest change with 84.2% Premob and 78.3% Statewide, and Commercial vehicles actually increased from 71.4\% Premob to 74.8% in Statewide data collection.

As shown in the data, Trucks and Commercial Vehicles lag behind the other three categories. There may be a number of reason for this difference, such as drivers making frequent stops and thereafter forgetting to re-attach the seat belt between stops.

Survey Design and Methodology

Sampling Methodology

There were 770 statewide sites chosen from 31 counties for the seat belt survey with all 767 original sites and 3 alternate sites providing survey data for this study. In selecting the sample, stratification by county was employed as well as an unequal weighting by road class. Each county had either 11 or 44 sites chosen for observations.

Analysis Methodology

Driver and passenger observation data was combined with site characteristic data to create the input data file. Sampling weights were derived and utilized in the analysis.

The R Survey package was utilized to analyze the observation data. The overall usage estimate (percentage) and usage estimates by vehicle type were calculated using the svyratio function. For the usage estimates by the various domains (vehicle speed, road class, and county) the svyby function was used. Both the svyratio and svyby functions consider the design used in selecting the sample. The cv and coef functions were employed to calculate the coefficients of variation and 95% confidence interval limits for the estimates.

Sample Characteristics

o 770 of 770 sites surveyed.
o 119,842 vehicles surveyed.
o 150,070 occupants (both drivers and front seat passengers) surveyed.
o 4,335 occupants were surveyed as "unable to be observed".
o 3,848 of these were drivers
o This represents 2.9% of all individuals surveyed (observable + non-observable)
o Non-observable rates by vehicle type

Vehicle Type	$\mathbf{2 0 2 0}$
Car	2.8%
Van	1.1%
SUV	2.3%
Truck	4.9%
Commercial	2.0%
Overall	2.9%

RESULTS

Statewide Survey Results

The 2020 Statewide seat belt usage rate study suggests a consistent and stable overall usage rate compared to recent data collections. The 2020 overall rate stood at 86.3%, which fell from 88.3% in 2019, but matches the rate found in 2018. Table 2.0 below illustrates the historical usage rates from 2012 to 2020. In the last nine years, only three years demonstrated a rate at or above 86%, and those years are our last three years of data collection. In the last eight years, from 2012 to 2020, the overall rate increased from 80.7% to 86.3% which calculates out to a 6.9% increase ((86.3-80.7)/80.7).

Table 2.0: Historical Statewide Usage Rates (\%)

	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	$\mathbf{2 0 2 0}$
Car	82.3	82.6	83.1	85.2	83.9	83.7	86.0	88.3	86.1
Van	85.2	86.9	87.3	89.2	89.5	87.2	88.0	90.1	90.2
SUV	84.6	86.7	87.1	89.9	89.2	88.5	90.8	92.0	90.9
Truck	71.7	73.0	72.4	77.6	76.1	76.5	80.1	82.6	78.3
Commercial	65.1	65.5	67.5	73.9	68.2	70.8	74.7	75.8	74.8
Overall	80.7	82.1	82.4	85.2	84.0	83.8	86.3	88.3	86.3

Table 3.0 captures the absolute increases in each vehicle category as well as the percentage increase. All five vehicle categories increased since 2012. The highest increases came in the Trucks (9.2% increase) and Commercial vehicle categories (14.9% increase) over the last eight years. Consequently, while Trucks and Commercial Vehicles continue to lag behind the top three categories, they are narrowing the gap with a significantly higher increase over this time period.

Table 3.0: Increases in Seat Belt Usage in Past Eight Years (\%)

Vehicle Type	Absolute Increase	Percentage Increase (2012 to 2020)
Car	3.8	4.6%
Van	5.0	5.9%
SUV	6.3	7.4%
Truck	6.6	9.2%
Commercial	9.7	14.9%
Overall	5.6	6.9%

Seat-belt Usage and Speed

Seat belt usage rates vary based on the speed of vehicles. As demonstrated in Table 4.0 below, usage rates increase with the rate of vehicle speed. In lower speed limit areas, such as 0-30 miles per hour limits, occupants are least likely to wear a seat belt (84.1%, C.I. 82.4% to 85.9%), compared to roads with higher speed limits. On roadways with speed limits of 31-50 the seat belt usage rate increases to 87% (C.I. 85.7 to 88.3) and in the top speed category, "Greater than 50 miles an hour," the seat belt usage rate increases to 88.2% (C.I. 85.9% to 90.5%).

Table 4.0: Statewide Seat Belt Usage by Vehicle Speed

	\# of Sites	Estimate $\%$	Std Error	CV \%	Lower 95% Limit	Upper 95\% Limit
$0-30$ miles per hour	157	84.1	0.9	1.06	82.4	85.9
31-50 miles per hour	307	87.0	0.7	0.75	85.7	88.3
Greater than 50 miles per hour	306	88.2	1.2	1.34	85.9	90.5

Seat-belt Usage and Road Class

Table 5.0 below presents the seat belt usage rate based on Road Class. As shown, seat belt usage rates are highest on primary roads followed by secondary and local roads. This difference may be due to the classification scheme of the road classes. Local roads are classified as neighborhood areas typical of short trips and slower speeds. Primary roads typically have more lanes and are associated with higher speeds.

Table 5.0: Statewide Seat Belt Usage by Road Class

	\# of Sites	Estimate \%	Std Error	CV \%	Lower 95\% Limit	Upper 95\% Limit
Primary	101	92.6	0.6	0.62	91.5	93.7
Secondary	437	86.6	0.3	0.37	86.0	87.2
Local	232	85.7	0.6	0.71	84.5	86.9

Seat Belt Usage by County

Table 6.0 illustrates the seat belt estimates by Colorado Counties. This table is organized from highest to lowest percentage. (Note: Appendix 3 presents this same table with the counties in alphabetical order). Of particular interest, six counties demonstrated a usage rate of at least 90%, with another twenty-one counties in the 80% to 90% range. Only four counties fell below 80% in the seat belt usage rate.

Table 6.0: Statewide Seat Belt Usage by County

	\# of Sites	Estimate \%	Std Error	CV \%	Lower 95\% Limit	$\begin{gathered} \hline \text { Upper } \\ 95 \% \\ \text { Limit } \\ \hline \end{gathered}$
Denver	44	92.6	1.2	1.25	90.3	94.9
Arapahoe	44	92.5	0.9	1.01	90.6	94.3
Morgan	11	91.2	2.5	2.69	86.4	96
Douglas	44	90.7	0.9	0.94	89.1	92.4
Boulder	44	90.6	1.6	1.74	87.5	93.6
Park	44	90.1	1.3	1.45	87.5	92.6
Summit	11	88.6	1.5	1.75	85.6	91.6
Gunnison	11	88.1	1.6	1.84	84.9	91.3
Garfield	11	88	2.5	2.82	83.2	92.9
El Paso	44	87	1.1	1.31	84.7	89.2
Alamosa	11	86.6	1.1	1.23	84.5	88.7
Adams	44	86.5	1.7	1.98	83.1	89.8
Fremont	11	86.4	1.8	2.07	82.8	89.9
La Plata	11	86.2	1.6	1.83	83.1	89.3
Montrose	11	85.9	1.5	1.78	82.9	88.9
Montezuma	11	85.4	1.1	1.28	83.2	87.5
Jefferson	44	84.3	1	1.21	82.3	86.3
Eagle	11	84.2	1.8	2.15	80.7	87.8
Clear Creek	44	83.5	2.4	2.84	78.9	88.2
Moffat	11	83.2	2.3	2.71	78.8	87.7
Las Animas	11	82.7	3.9	4.7	75.1	90.3
Delta	11	82.6	1.1	1.28	80.5	84.6
Otero	11	82.3	1.7	2.12	78.9	85.7
Mesa	44	82	1.2	1.45	79.6	84.3
Larimer	44	81.7	1.1	1.3	79.7	83.8
Lincoln	11	81.7	2.1	2.55	77.6	85.7
Kit Carson	11	80.1	8.7	10.88	63	97.1
Chaffee	11	79.3	1.4	1.73	76.6	82
Weld	44	76	2.9	3.79	70.4	81.7
Pueblo	44	74.2	1.4	1.89	71.5	77
Cheyenne	11	68.5	9.4	13.71	50.1	86.9

The four counties rated the lowest in seat belt compliance, Chaffee, Weld, Pueblo and Cheyenne, all recorded lower rates in 2020 than in 2019. Chaffee dropped from 85.9% in 2019 to 79.3% in 2020. Weld dropped from 81.3% in 2019 to 76% in 2020. Pueblo scored an 80.2% in 2019 and a 74.2% this current year and Cheyenne scored a 74.4% in 2019 and dropped to 68.5% in 2020.

Table 7.0 below was developed to further evaluate the usage rate by counties. The table lists the top ten and bottom ten counties by seat belt usage, as well as the county population and population per square mile. The higher compliance counties tend to be the more densely populated counties. While there are a few counties in the top ten with lower population bases, (i.e., Park County at 7.3 population per square mile and Gunnison County at 4.8 population per square mile), the overall average of population in the top ten stands at 600.91 versus 36.2 for the bottom ten compliance counties. Further, the bottom ten only has one county (i.e., Larimer at 118.2) with a population base above 100 people per square mile.

Table 7.0: County Comparisons by Population Size

Ranking	County	Usage Rate	Population	Population per Square Mile		
Highest Rated Counties by Seat Belt Usage						
1	Denver	92.6	633,777	$4,098 / \mathrm{sq} . \mathrm{mi}$		
2	Arapahoe	92.5	596,684	740.8		
3	Morgan	91.2	29,068	21.9		
4	Douglas	90.7	299,794	355.7		
5	Boulder	90.6	305,166	412.2		
6	Park	90.1	16,174	7.3		
7	Summit	88.6	28,482	46.0		
8	Gunnison	88.1	15,503	4.8		
9	Garfield	88	56,684	19.2		
10	El Paso	87	645,707	303.2		
Lowest Rated Counties by Seat Belt Usage						
22	Delta	82.6	30,378	26.4		
23	Otero	82.3	18,712	14.7		
24	Mesa	82	147,509	44.1		
25	Larimer	81.7	311,435	118.2		
26	Lincoln	81.7	5,462	2.1		
27	Kit Carson	79.1	7,097	3.8		
28	Chaffee	79.3	18,121	17.9		
29	Weld	72.5	324,492	66.0		
30	Pueblo	78	168,424	67.0		
31	Cheyenne	68.5	2,153	1.5		

Non-Observable Rate

The Non-Observable rate of 2.9% across the five vehicle types compares nicely with previous studies. The overall rate for non-observables stood at 3.2% in 2019 . This current rate of 2.9% is within the 10% limit established by NHTSA. There are a number of reasons for a failure to identify if the passengers are wearing a seat-belt or not, such as tinted windows, sun reflection, color of clothing/seat-belts are all valid reasons.

Table 8.0: Non-Observable Rate Year-to-Year

Vehicle Type	$\mathbf{2 0 1 9}$	$\mathbf{2 0 2 0}$
Car	3.1%	2.8%
Van	1.9%	1.1%
SUV	2.5%	2.3%
Truck	5.0%	4.9%
Commercial	3.6%	2.0%
Overall	3.2%	2.9%

CONCLUSIONS

The 2020 Colorado Statewide seat belt usage rate study was conducted between July $26^{\text {th }}$ and August $8^{\text {th }}, 2020$. Over this time period 770 sites were surveyed with a total of 119,842 vehicles viewed. A total of 150,070 occupants, both drivers and front seat passengers, were observed and their seat belt usage was recorded. The Statewide rate for 2020 stands at 86.3% across the five vehicle categories of cars, vans, SUVs, trucks and commercial vehicles. This rate is a slight drop from our previous year's calculation of 88.3% observed in 2019. However, this rate matches the rate observed two-years ago in 2018.

The breakdown of each vehicle category is as follows. Passengers in Cars wore seat belts at a rate of 86.1% in 2020. This rate is a drop from its 88.3% rate in 2019 and equates a 2.49% decrease. Vans slightly increased from 90.1% in 2019 to 90.2% in 2020. SUVs dropped from 92.0% down to 90.9% this current year, which equals a percentage drop of 1.2%. Trucks dropped from 82.6% in 2019 to 78.3% in 2020, equally a 5.2% decrease. Finally, Commercial Vehicles dropped in 2020 from 75.8% in the previous year to 74.8% in 2020, a decrease of 1.3%.

Since 2012, the overall rate has increased from 80.7% to the current rate of 86.3%. This amount to an absolute increase of 5.6% and a percentage increase of 6.9% over an eight year period. Across this time period, all five vehicle categories have improved significantly. Cars improved from 82.3% in 2012 to 86.1% in 2020 for a percentage increase of 4.6%. Vans increased from 85.2% to 90.2% in this same time period which equates to a percentage increase of 5.9%. SUVs improved from 84.6% to 90.9% for an increase of 7.4%. Trucks and Commercial vehicles had the largest percentage increase, over this time period, but these two categories were quite a bit below the other categories starting in 2012. Trucks increased from 71.7% in 2012 to 78.3% in 2020 for an increase of 9.2%. Commercial vehicles stood at 65.1% in 2012 and recorded a rate of 74.8% in 2020. This improvement equals a 14.9% increase. Overall, the two vehicle categories with the lowest seat belt usage in 2012 are still the two lowest rated categories. However, dramatic improvements have been witnessed in both Trucks and Commercial Vehicles over the past eight years.

We further investigated the seat belt usage rate based on vehicle speed. The speed categories used were 0-30 miles per hour, 31-50 mph, and greater than 50 . The speed category "above 50 mph " captured the highest compliance to seat belt use at a rate of 88.2% (95% C.I. between 85.9% to $90.5 \%)$. The 31-50 category demonstrated the second highest rate of 87.0% (C.I. between 85.7% to 88.3%). Finally, the $0-30$ mph category earned an 84.1% rate (C.I. between 82.4% to $85.9 \%)$. As can be seen, as individuals drive at a higher rate, they are more likely to comply with the seat belt mandate. While we encourage drivers to always wear their seat belt, it appears that on shorter trips and in lower speed areas, individuals are less likely to wear a seat belt.

Seat belt usage based on Road Class appears to emulate the vehicle speed results as road classification closely follows road design and capacity. The three road classes are Primary, Secondary and Local. Local roads are classified as neighborhood areas typical of short trips and
slower speeds. Primary roads typically have more lanes and are associated with higher speeds. The results show Local roads had a seat belt compliance rate of 85.7\% (C.I. 84.5\% to 86.9\%), followed by Secondary roads with a rate of 86.6% (C.I. 86.0% to 87.2%) and the top rate was found in Primary Roads at 92.6\% (C.I. 91.5\% to 93.7\%).

Across the thirty-one counties surveyed in this year's study, we find a dramatic difference in seat belt use between urban versus more rural counties. While there are examples of less densely counties rating high in seat belt compliance, for instance Park County has a population per square mile of 7.3 and Gunnison County has a population per square mile of 4.8 , five of the top ten compliance counties have in excess of 303.2 people per square mile.

The lowest rated counties tend to have lower population bases throughout the bottom ten. Only one county, Larimer County has more than 100 individuals per square mile at 118.2. All other counties in the bottom ten, based on compliance, are below 68 people per square mile, with the lowest rated seat belt usage found in Cheyenne County with a compliance rate of 68.5% and a population per square mile of 1.5 people.

In summary, the 2020 Statewide seat belt compliance study demonstrates the overall rate has remained relatively consistent over the past three years. In an eight year period, all five vehicle categories have made substantial improvements in seat belt usage. Trucks and Commercial vehicles still lag behind the other three categories, but these two categories have made significant percentage increases in the past eight years.

APPENDIX 1

Colorado Average Motor Vehicle Crash-Related Fatalities by County 2010-2014

FARS (2010-2014) State=Colorado				
State	County	Average fatality counts for 5 years	Fatality percentage within the state	Cumulative fatality percentage
Colorado	EL PASO	48.6	10	10
Colorado	WELD	41.2	8.5	18.5
Colorado	DENVER	38.2	7.9	26.4
Colorado	JEFFERSON	36.8	7.6	34
Colorado	ADAMS	30	6.2	40.2
Colorado	ARAPAHOE	25.2	5.2	45.4
Colorado	LARIMER	21	4.3	49.7
Colorado	PUEBLO	20.6	4.2	54
Colorado	BOULDER	18.2	3.8	57.7
Colorado	MESA	15.6	3.2	60.9
Colorado	DOUGLAS	13.8	2.8	63.8
Colorado	LA PLATA	10.2	2.1	65.9
Colorado	GARFIELD	8.4	1.7	67.6
Colorado	FREMONT	7.2	1.5	69.1
Colorado	DELTA	6.4	1.3	70.4
Colorado	MORGAN	6.2	1.3	71.7
Colorado	EAGLE	6	1.2	72.9
Colorado	MONTEZUMA	5.8	1.2	74.1
Colorado	LAS ANIMAS	5.2	1.1	75.2
Colorado	LINCOLN	5	1	76.3
Colorado	KIT CARSON	4.8	1	77.2
Colorado	PARK	4.6	0.9	78.2
Colorado	OTERO	4.2	0.9	79.1
Colorado	CHEYENNE	4	0.8	79.9
Colorado	SUMMIT	4	0.8	80.7
Colorado	ALAMOSA	3.8	0.8	81.5
Colorado	MONTROSE	3.8	0.8	82.3
Colorado	MOFFAT	3.8	0.8	83
Colorado	CHAFFEE	3.6	0.7	83.8
Colorado	GUNNISON	3.6	0.7	84.5
Colorado	CLEAR CREEK	3.5	0.7	85.3
Colorado	ELBERT	3.4	0.7	86
Colorado	WASHINGTON	3.4	0.7	86.7
Colorado	LOGAN	3.2	0.7	87.3
Colorado	BACA	3	0.6	87.9
Colorado	ROUTT	3	0.6	88.6
Colorado	HUERFANO	2.8	0.6	89.1
Colorado	PROWERS	2.8	0.6	89.7
Colorado	YUMA	2.8	0.6	90.3
Colorado	COSTILLA	2.5	0.5	90.8
Colorado	DOLORES	2.5	0.5	91.3
Colorado	SAGUACHE	2.5	0.5	91.8
Colorado	SAN MIGUEL	2.5	0.5	92.4
Colorado	BLOOMFIELD	2.4	0.5	92.8
Colorado	RIO GRANDE	2.4	0.5	93.3
Colorado	CONEJOS	2.3	0.5	93.8
Colorado	ARCHULETA	2.2	0.5	94.3
Colorado	GRAND	2.2	0.5	94.7
Colorado	TELLER	2.2	0.5	95.2
Colorado	LAKE	2	0.4	95.6
Colorado	PHILLIPS	2	0.4	96
Colorado	PITKIN	2	0.4	96.4
Colorado	RIO BLANCO	2	0.4	96.8

Colorado	SAN JUAN	2	0.4	97.2
Colorado	SEDGWICK	2	0.4	97.6
Colorado	CUSTER	1.8	0.4	98
Colorado	BENT	1.7	0.3	98.3
Colorado	KIOWA	1.5	0.3	98.7
Colorado	OURAY	1.5	0.3	99
Colorado	CROWLEY	1	0.2	99.2
Colorado	GILPIN	1	0.2	99.4
Colorado	HINSDALE	1	0.2	99.6
Colorado	JACKSON	1	0.2	99.8
Colorado	MINERAL	1	0.2	100

Appendix 2

Codes for Road Segment File

S1100	Primary Road	Primary roads are generally divided, limited-access highways within the interstate highway system or under state management, and are distinguished by the presence of interchanges. These highways are accessible by ramps and may include some toll highways.
S1200	Secondary Road	Secondary roads are main arteries, usually in the U.S. Highway, State Highway or County Highway system. These roads have one or more lanes of traffic in each direction, may or may not be divided, and usually have at-grade intersections with many other roads and driveways. They often have both a local name and a route number.
S1400	Local Neighborhood Road, Rural Road, City Street	These are generally paved non-arterial streets, roads, or byways that usually have a single lane of traffic in each direction. Roads in this feature class may be privately or publicly maintained. Scenic park roads would be included in this feature class, as would (depending on the region of the country) some unpaved roads.

Appendix 3

Statewide Seat Belt Usage by County in Alphabetical Order

	\# of Sites	Estimate \%	Std Error	CV \%	Lower 95\% Limit	Upper 95\% Limit
Adams	44	86.5	1.7	1.98	83.1	89.8
Alamosa	11	86.6	1.1	1.23	84.5	88.7
Arapahoe	44	92.5	0.9	1.01	90.6	94.3
Boulder	44	90.6	1.6	1.74	87.5	93.6
Chaffee	11	79.3	1.4	1.73	76.6	82
Cheyenne	11	68.5	9.4	13.71	50.1	86.9
Clear Creek	44	83.5	2.4	2.84	78.9	88.2
Delta	11	82.6	1.1	1.28	80.5	84.6
Denver	44	92.6	1.2	1.25	90.3	94.9
Douglas	44	90.7	0.9	0.94	89.1	92.4
Eagle	11	84.2	1.8	2.15	80.7	87.8
El Paso	44	87	1.1	1.31	84.7	89.2
Fremont	11	86.4	1.8	2.07	82.8	89.9
Garfield	11	88	2.5	2.82	83.2	92.9
Gunnison	11	88.1	1.6	1.84	84.9	91.3
Jefferson	44	84.3	1	1.21	82.3	86.3
Kit Carson	11	80.1	8.7	10.88	63	97.1
La Plata	11	86.2	1.6	1.83	83.1	89.3
Larimer	44	81.7	1.1	1.3	79.7	83.8
Las Animas	11	82.7	3.9	4.7	75.1	90.3
Lincoln	11	81.7	2.1	2.55	77.6	85.7
Mesa	44	82	1.2	1.45	79.6	84.3
Moffat	11	83.2	2.3	2.71	78.8	87.7
Montezuma	11	85.4	1.1	1.28	83.2	87.5
Montrose	11	85.9	1.5	1.78	82.9	88.9
Morgan	11	91.2	2.5	2.69	86.4	96
Otero	11	82.3	1.7	2.12	78.9	85.7
Park	44	90.1	1.3	1.45	87.5	92.6
Pueblo	44	74.2	1.4	1.89	71.5	77
Summit	11	88.6	1.5	1.75	85.6	91.6
Weld	44	76	2.9	3.79	70.4	81.7

Appendix 4

Number of Segments Selected (n) by County and MTFCC

County	MTFCC Code			Total
	Primary: S1100	Secondary: S1200	Local: S1400	
Adams	10	17	17	44
Alamosa	0	11	0	11
Arapahoe	5	16	23	44
Boulder	0	26	18	44
Chaffee	0	11	0	11
Cheyenne	0	11	0	11
Clear Creek	18	20	6	44
Delta	0	11	0	11
Denver	8	18	18	44
Douglas	6	15	23	44
Eagle	6	5	0	11
El Paso	5	14	25	44
Fremont	0	11	0	11
Garfield	4	7	0	11
Gunnison	0	11	0	11
Jefferson	3	23	18	44
Kit Carson	3	8	0	11
La Plata	0	11	0	11
Larimer	1	24	19	44
Las Animas	3	8	0	11
Lincoln	3	8	0	11
Mesa	9	22	13	44
Moffat	0	11	0	11
Montezuma	0	11	0	11

Montrose	0	11	0	11
Morgan	3	8	0	11
Otero	0	11	0	11
Park	0	23	21	44
Pueblo	7	21	16	44
Summit	3	8	0	11
Weld	4	25	15	44
Adams	10	17	17	44

Appendix 5

Weights for the Colorado State Seat Belt Usage Observational Survey

County	MTFCC	Sampling Weight	Selection Probability
Adams	S1100/S1200	76.51	0.0131
Adams	S1400	1377.12	0.0007
Alamosa	S1100/S1200	24.54	0.0408
Arapahoe	S1100/S1200	56.25	0.0178
Arapahoe	S1400	1012.44	0.0010
Boulder	S1100/S1200	60.11	0.0166
Boulder	S1400	1081.96	0.0009
Chaffee	S1100/S1200	40.00	0.0250
Cheyenne	S1100/S1200	20.54	0.0487
Clear Creek	S1100/S1200	13.78	0.0726
Clear Creek	S1400	248.00	0.0040
Delta	S1100/S1200	56.46	0.0177
Denver	S1100/S1200	62.72	0.0159
Denver	S1400	1129.04	0.0009
Douglas	S1100/S1200	37.98	0.0263
Douglas	S1400	683.56	0.0015
Eagle	S1100/S1200	77.85	0.0128
El Paso	S1100/S1200	93.21	0.0107
El Paso	S1400	1677.77	0.0006
Fremont	S1100/S1200	62.31	0.0160
Garfield	S1100/S1200	99.15	0.0101
Gunnison	S1100/S1200	53.54	0.0187
Jefferson	S1100/S1200	81.60	0.0123
Jefferson	S1400	1468.83	0.0007

Kit Carson	S1100/S1200	33.15	0.0302
La Plata	S1100/S1200	77.38	0.0129
Larimer	S1100/S1200	74.40	0.0134
Larimer	S1400	1339.29	0.0007
Las Animas	S1100/S1200	65.38	0.0153
Lincoln	S1100/S1200	40.62	0.0246
Mesa	S1100/S1200	48.65	0.0206
Mesa	S1400	875.63	0.0011
Moffatt	S1100/S1200	72.77	0.0137
Montezuma	S1100/S1200	87.77	0.0114
Montrose	S1100/S1200	72.08	0.0139
Morgan	S1100/S1200	58.92	0.0170
Otero	S1100/S1200	97.77	0.0102
Park	S1100/S1200	24.02	0.0416
Park	S1400	432.35	0.0023
Pueblo	S1100/S1200	54.87	0.0182
Pueblo	S1400	987.65	0.0010
Summit	S1100/S1200	46.54	0.0215
Weld	S1100/S1200	70.65	0.0142
Weld	S1400	1271.65	0.0008

Appendix 6

Weights for the Colorado State Seat Belt Usage Observational Survey by Survey Site (NOTE: There are 3 Alternate Sites used for Survey. Site IDs greater than 770 reference those Alternate Sites from Reserve Pool)

Site	County	MTFCC	SamplingWeight	SelectionProb
ADAMS				
1	Adams	Primary	76.50641	0.0130708
2	Adams	Primary	76.50641	0.0130708
3	Adams	Primary	76.50641	0.0130708
4	Adams	Primary	76.50641	0.0130708
5	Adams	Primary	76.50641	0.0130708
6	Adams	Primary	76.50641	0.0130708
7	Adams	Primary	76.50641	0.0130708
8	Adams	Primary	76.50641	0.0130708
9	Adams	Primary	76.50641	0.0130708
10	Adams	Primary	76.50641	0.0130708
11	Adams	Secondary	76.50641	0.0130708
12	Adams	Secondary	76.50641	0.0130708
13	Adams	Secondary	76.50641	0.0130708
14	Adams	Secondary	76.50641	0.0130708
15	Adams	Secondary	76.50641	0.0130708
16	Adams	Secondary	76.50641	0.0130708
17	Adams	Secondary	76.50641	0.0130708
18	Adams	Secondary	76.50641	0.0130708
19	Adams	Secondary	76.50641	0.0130708
20	Adams	Secondary	76.50641	0.0130708
21	Adams	Secondary	76.50641	0.0130708
22	Adams	Secondary	76.50641	0.0130708
23	Adams	Secondary	76.50641	0.0130708
24	Adams	Secondary	76.50641	0.0130708

25	Adams	Secondary	76.50641	0.0130708
26	Adams	Secondary	76.50641	0.0130708
27	Adams	Secondary	76.50641	0.0130708
28	Adams	Local	1377.11538	0.00072616
29	Adams	Local	1377.11538	0.00072616
30	Adams	Local	1377.11538	0.00072616
31	Adams	Local	1377.11538	0.00072616
32	Adams	Local	1377.11538	0.00072616
33	Adams	Local	1377.11538	0.00072616
34	Adams	Local	1377.11538	0.00072616
35	Adams	Local	1377.11538	0.00072616
36	Adams	Local	1377.11538	0.00072616
37	Adams	Local	1377.11538	0.00072616
38	Adams	Local	1377.11538	0.00072616
39	Adams	Local	1377.11538	0.00072616
40	Adams	Local	1377.11538	0.00072616
41	Adams	Local	1377.11538	0.00072616
42	Adams	Local	1377.11538	0.00072616
43	Adams	Local	1377.11538	0.00072616
44	Adams	Local	1377.11538	0.00072616
ALAMOSA				
45	Alamosa	Secondary	24.53846	0.04075235
46	Alamosa	Secondary	24.53846	0.04075235
47	Alamosa	Secondary	24.53846	0.04075235
48	Alamosa	Secondary	24.53846	0.04075235
49	Alamosa	Secondary	24.53846	0.04075235
50	Alamosa	Secondary	24.53846	0.04075235
51	Alamosa	Secondary	24.53846	0.04075235
52	Alamosa	Secondary	24.53846	0.04075235

53	Alamosa	Secondary	24.53846	0.04075235
54	Alamosa	Secondary	24.53846	0.04075235
55	Alamosa	Secondary	24.53846	0.04075235
ARAPAHOE				
56	Arapahoe	Primary	56.24679	0.01777879
57	Arapahoe	Primary	56.24679	0.01777879
58	Arapahoe	Primary	56.24679	0.01777879
59	Arapahoe	Primary	56.24679	0.01777879
60	Arapahoe	Primary	56.24679	0.01777879
61	Arapahoe	Secondary	56.24679	0.01777879
62	Arapahoe	Secondary	56.24679	0.01777879
63	Arapahoe	Secondary	56.24679	0.01777879
64	Arapahoe	Secondary	56.24679	0.01777879
65	Arapahoe	Secondary	56.24679	0.01777879
66	Arapahoe	Secondary	56.24679	0.01777879
67	Arapahoe	Secondary	56.24679	0.01777879
68	Arapahoe	Secondary	56.24679	0.01777879
69	Arapahoe	Secondary	56.24679	0.01777879
70	Arapahoe	Secondary	56.24679	0.01777879
71	Arapahoe	Secondary	56.24679	0.01777879
72	Arapahoe	Secondary	56.24679	0.01777879
73	Arapahoe	Secondary	56.24679	0.01777879
74	Arapahoe	Secondary	56.24679	0.01777879
75	Arapahoe	Secondary	56.24679	0.01777879
76	Arapahoe	Secondary	56.24679	0.01777879
77	Arapahoe	Local	1012.44231	0.00098771
78	Arapahoe	Local	1012.44231	0.00098771
79	Arapahoe	Local	1012.44231	0.00098771
80	Arapahoe	Local	1012.44231	0.00098771

81	Arapahoe	Local	1012.44231	0.00098771
82	Arapahoe	Local	1012.44231	0.00098771
83	Arapahoe	Local	1012.44231	0.00098771
84	Arapahoe	Local	1012.44231	0.00098771
85	Arapahoe	Local	1012.44231	0.00098771
86	Arapahoe	Local	1012.44231	0.00098771
87	Arapahoe	Local	1012.44231	0.00098771
88	Arapahoe	Local	1012.44231	0.00098771
89	Arapahoe	Local	1012.44231	0.00098771
90	Arapahoe	Local	1012.44231	0.00098771
91	Arapahoe	Local	1012.44231	0.00098771
92	Arapahoe	Local	1012.44231	0.00098771
93	Arapahoe	Local	1012.44231	0.00098771
94	Arapahoe	Local	1012.44231	0.00098771
95	Arapahoe	Local	1012.44231	0.00098771
96	Arapahoe	Local	1012.44231	0.00098771
97	Arapahoe	Local	1012.44231	0.00098771
98	Arapahoe	Local	1012.44231	0.00098771
99	Arapahoe	Local	1012.44231	0.00098771
BOULDER				
100	Boulder	Secondary	60.10897	0.01663645
101	Boulder	Secondary	60.10897	0.01663645
102	Boulder	Secondary	60.10897	0.01663645
103	Boulder	Secondary	60.10897	0.01663645
104	Boulder	Secondary	60.10897	0.01663645
105	Boulder	Secondary	60.10897	0.01663645
106	Boulder	Secondary	60.10897	0.01663645
107	Boulder	Secondary	60.10897	0.01663645
108	Boulder	Secondary	60.10897	0.01663645

109	Boulder	Secondary	60.10897	0.01663645
110	Boulder	Secondary	60.10897	0.01663645
111	Boulder	Secondary	60.10897	0.01663645
112	Boulder	Secondary	60.10897	0.01663645
113	Boulder	Secondary	60.10897	0.01663645
114	Boulder	Secondary	60.10897	0.01663645
115	Boulder	Secondary	60.10897	0.01663645
116	Boulder	Secondary	60.10897	0.01663645
117	Boulder	Secondary	60.10897	0.01663645
118	Boulder	Secondary	60.10897	0.01663645
119	Boulder	Secondary	60.10897	0.01663645
120	Boulder	Secondary	60.10897	0.01663645
121	Boulder	Secondary	60.10897	0.01663645
122	Boulder	Secondary	60.10897	0.01663645
123	Boulder	Secondary	60.10897	0.01663645
124	Boulder	Secondary	60.10897	0.01663645
125	Boulder	Secondary	60.10897	0.01663645
126	Boulder	Local	1081.96154	0.00092425
127	Boulder	Local	1081.96154	0.00092425
128	Boulder	Local	1081.96154	0.00092425
129	Boulder	Local	1081.96154	0.00092425
130	Boulder	Local	1081.96154	0.00092425
131	Boulder	Local	1081.96154	0.00092425
132	Boulder	Local	1081.96154	0.00092425
133	Boulder	Local	1081.96154	0.00092425
134	Boulder	Local	1081.96154	0.00092425
135	Boulder	Local	1081.96154	0.00092425
136	Boulder	Local	1081.96154	0.00092425
137	Boulder	Local	1081.96154	0.00092425

165	Cheyenne	Secondary	20.53846	0.04868914
CLEAR CREEK				
166	Clear Creek	Primary	13.77778	0.07258065
167	Clear Creek	Primary	13.77778	0.07258065
168	Clear Creek	Primary	13.77778	0.07258065
169	Clear Creek	Primary	13.77778	0.07258065
170	Clear Creek	Primary	13.77778	0.07258065
171	Clear Creek	Primary	13.77778	0.07258065
172	Clear Creek	Primary	13.77778	0.07258065
173	Clear Creek	Primary	13.77778	0.07258065
174	Clear Creek	Primary	13.77778	0.07258065
175	Clear Creek	Primary	13.77778	0.07258065
176	Clear Creek	Primary	13.77778	0.07258065
177	Clear Creek	Primary	13.77778	0.07258065
178	Clear Creek	Primary	13.77778	0.07258065
179	Clear Creek	Primary	13.77778	0.07258065
180	Clear Creek	Primary	13.77778	0.07258065
181	Clear Creek	Primary	13.77778	0.07258065
182	Clear Creek	Primary	13.77778	0.07258065
183	Clear Creek	Secondary	13.77778	0.07258065
184	Clear Creek	Secondary	13.77778	0.07258065
185	Clear Creek	Secondary	13.77778	0.07258065
186	Clear Creek	Secondary	13.77778	0.07258065
187	Clear Creek	Secondary	13.77778	0.07258065
188	Clear Creek	Secondary	13.77778	0.07258065
189	Clear Creek	Secondary	13.77778	0.07258065
190	Clear Creek	Secondary	13.77778	0.07258065
191	Clear Creek	Secondary	13.77778	0.07258065
192	Clear Creek	Secondary	13.77778	0.07258065

193	Clear Creek	Secondary	13.77778	0.07258065
194	Clear Creek	Secondary	13.77778	0.07258065
195	Clear Creek	Secondary	13.77778	0.07258065
196	Clear Creek	Secondary	13.77778	0.07258065
197	Clear Creek	Secondary	13.77778	0.07258065
198	Clear Creek	Secondary	13.77778	0.07258065
199	Clear Creek	Secondary	13.77778	0.07258065
200	Clear Creek	Secondary	13.77778	0.07258065
201	Clear Creek	Secondary	13.77778	0.07258065
204	Clear Creek	Local	248	0.00403226
205	Clear Creek	Local	248	0.00403226
206	Clear Creek	Local	248	0.00403226
207	Clear Creek	Local	248	0.00403226
208	Clear Creek	Local	248	0.00403226
804	Clear Creek	Primary	13.77778	0.07258065
805	Clear Creek	Secondary	13.77778	0.07258065
808	Clear Creek	Local	248	0.00403226
DELTA				
210	Delta	Secondary	56.46154	0.01771117
211	Delta	Secondary	56.46154	0.01771117
212	Delta	Secondary	56.46154	0.01771117
213	Delta	Secondary	56.46154	0.01771117
214	Delta	Secondary	56.46154	0.01771117
215	Delta	Secondary	56.46154	0.01771117
216	Delta	Secondary	56.46154	0.01771117
217	Delta	Secondary	56.46154	0.01771117
218	Delta	Secondary	56.46154	0.01771117
219	Delta	Secondary	56.46154	0.01771117
220	Delta	Secondary	56.46154	0.01771117

DENVER				
221	Denver	Primary	62.72436	0.01594277
222	Denver	Primary	62.72436	0.01594277
223	Denver	Primary	62.72436	0.01594277
224	Denver	Primary	62.72436	0.01594277
225	Denver	Primary	62.72436	0.01594277
226	Denver	Primary	62.72436	0.01594277
227	Denver	Primary	62.72436	0.01594277
228	Denver	Primary	62.72436	0.01594277
229	Denver	Secondary	62.72436	0.01594277
230	Denver	Secondary	62.72436	0.01594277
231	Denver	Secondary	62.72436	0.01594277
232	Denver	Secondary	62.72436	0.01594277
233	Denver	Secondary	62.72436	0.01594277
234	Denver	Secondary	62.72436	0.01594277
235	Denver	Secondary	62.72436	0.01594277
236	Denver	Secondary	62.72436	0.01594277
237	Denver	Secondary	62.72436	0.01594277
238	Denver	Secondary	62.72436	0.01594277
239	Denver	Secondary	62.72436	0.01594277
240	Denver	Secondary	62.72436	0.01594277
241	Denver	Secondary	62.72436	0.01594277
242	Denver	Secondary	62.72436	0.01594277
243	Denver	Secondary	62.72436	0.01594277
244	Denver	Secondary	62.72436	0.01594277
245	Denver	Secondary	62.72436	0.01594277
246	Denver	Secondary	62.72436	0.01594277
247	Denver	Local	1129.03846	0.00088571
248	Denver	Local	1129.03846	0.00088571

249	Denver	Local	1129.03846	0.00088571
250	Denver	Local	1129.03846	0.00088571
251	Denver	Local	1129.03846	0.00088571
252	Denver	Local	1129.03846	0.00088571
253	Denver	Local	1129.03846	0.00088571
254	Denver	Local	1129.03846	0.00088571
255	Denver	Local	1129.03846	0.00088571
256	Denver	Local	1129.03846	0.00088571
257	Denver	Local	1129.03846	0.00088571
258	Denver	Local	1129.03846	0.00088571
259	Denver	Local	1129.03846	0.00088571
260	Denver	Local	1129.03846	0.00088571
261	Denver	Local	1129.03846	0.00088571
262	Denver	Local	1129.03846	0.00088571
263	Denver	Local	1129.03846	0.00088571
264	Denver	Local	1129.03846	0.00088571
DOU				
265	Douglas	Primary	37.97543	0.02633282
266	Douglas	Primary	37.97543	0.02633282
267	Douglas	Primary	37.97543	0.02633282
268	Douglas	Primary	37.97543	0.02633282
269	Douglas	Primary	37.97543	0.02633282
270	Douglas	Primary	37.97543	0.02633282
271	Douglas	Secondary	37.97543	0.02633282
272	Douglas	Secondary	37.97543	0.02633282
273	Douglas	Secondary	37.97543	0.02633282
274	Douglas	Secondary	37.97543	0.02633282
275	Douglas	Secondary	37.97543	0.02633282
276	Douglas	Secondary	37.97543	0.02633282

277	Douglas	Secondary	37.97543	0.02633282
278	Douglas	Secondary	37.97543	0.02633282
279	Douglas	Secondary	37.97543	0.02633282
280	Douglas	Secondary	37.97543	0.02633282
281	Douglas	Secondary	37.97543	0.02633282
282	Douglas	Secondary	37.97543	0.02633282
283	Douglas	Secondary	37.97543	0.02633282
284	Douglas	Secondary	37.97543	0.02633282
285	Douglas	Secondary	37.97543	0.02633282
286	Douglas	Local	683.55769	0.00146293
287	Douglas	Local	683.55769	0.00146293
288	Douglas	Local	683.55769	0.00146293
289	Douglas	Local	683.55769	0.00146293
290	Douglas	Local	683.55769	0.00146293
291	Douglas	Local	683.55769	0.00146293
292	Douglas	Local	683.55769	0.00146293
293	Douglas	Local	683.55769	0.00146293
294	Douglas	Local	683.55769	0.00146293
295	Douglas	Local	683.55769	0.00146293
296	Douglas	Local	683.55769	0.00146293
297	Douglas	Local	683.55769	0.00146293
298	Douglas	Local	683.55769	0.00146293
299	Douglas	Local	683.55769	0.00146293
300	Douglas	Local	683.55769	0.00146293
301	Douglas	Local	683.55769	0.00146293
302	Douglas	Local	683.55769	0.00146293
303	Douglas	Local	683.55769	0.00146293
304	Douglas	Local	683.55769	0.00146293
305	Douglas	Local	683.55769	0.00146293

306	Douglas	Local	683.55769	0.00146293
307	Douglas	Local	683.55769	0.00146293
308	Douglas	Local	683.55769	0.00146293
EAGLE				
309	Eagle	Primary	77.84615	0.01284585
310	Eagle	Primary	77.84615	0.01284585
311	Eagle	Primary	77.84615	0.01284585
312	Eagle	Primary	77.84615	0.01284585
313	Eagle	Primary	77.84615	0.01284585
314	Eagle	Primary	77.84615	0.01284585
315	Eagle	Secondary	77.84615	0.01284585
316	Eagle	Secondary	77.84615	0.01284585
317	Eagle	Secondary	77.84615	0.01284585
318	Eagle	Secondary	77.84615	0.01284585
319	Eagle	Secondary	77.84615	0.01284585
EL PASO				
320	El Paso	Primary	93.2094	0.01072853
321	El Paso	Primary	93.2094	0.01072853
322	El Paso	Primary	93.2094	0.01072853
323	El Paso	Primary	93.2094	0.01072853
324	El Paso	Primary	93.2094	0.01072853
325	El Paso	Secondary	93.2094	0.01072853
326	El Paso	Secondary	93.2094	0.01072853
327	El Paso	Secondary	93.2094	0.01072853
328	El Paso	Secondary	93.2094	0.01072853
329	El Paso	Secondary	93.2094	0.01072853
330	El Paso	Secondary	93.2094	0.01072853
331	El Paso	Secondary	93.2094	0.01072853
332	El Paso	Secondary	93.2094	0.01072853

333	El Paso	Secondary	93.2094	0.01072853
334	El Paso	Secondary	93.2094	0.01072853
335	El Paso	Secondary	93.2094	0.01072853
336	El Paso	Secondary	93.2094	0.01072853
337	El Paso	Secondary	93.2094	0.01072853
338	El Paso	Secondary	93.2094	0.01072853
339	El Paso	Local	1677.76923	0.00059603
340	El Paso	Local	1677.76923	0.00059603
341	El Paso	Local	1677.76923	0.00059603
342	El Paso	Local	1677.76923	0.00059603
343	El Paso	Local	1677.76923	0.00059603
344	El Paso	Local	1677.76923	0.00059603
345	El Paso	Local	1677.76923	0.00059603
346	El Paso	Local	1677.76923	0.00059603
347	El Paso	Local	1677.76923	0.00059603
348	El Paso	Local	1677.76923	0.00059603
349	El Paso	Local	1677.76923	0.00059603
350	El Paso	Local	1677.76923	0.00059603
351	El Paso	Local	1677.76923	0.00059603
352	El Paso	Local	1677.76923	0.00059603
353	El Paso	Local	1677.76923	0.00059603
354	El Paso	Local	1677.76923	0.00059603
355	El Paso	Local	1677.76923	0.00059603
356	El Paso	Local	1677.76923	0.00059603
357	El Paso	Local	1677.76923	0.00059603
358	El Paso	Local	1677.76923	0.00059603
359	El Paso	Local	1677.76923	0.00059603
360	El Paso	Local	1677.76923	0.00059603
361	El Paso	Local	1677.76923	0.00059603

362	El Paso	Local	1677.76923	0.00059603
363	El Paso	Local	1677.76923	0.00059603
FREMONT				
364	Fremont	Secondary	62.30769	0.01604938
365	Fremont	Secondary	62.30769	0.01604938
366	Fremont	Secondary	62.30769	0.01604938
367	Fremont	Secondary	62.30769	0.01604938
368	Fremont	Secondary	62.30769	0.01604938
369	Fremont	Secondary	62.30769	0.01604938
370	Fremont	Secondary	62.30769	0.01604938
371	Fremont	Secondary	62.30769	0.01604938
372	Fremont	Secondary	62.30769	0.01604938
373	Fremont	Secondary	62.30769	0.01604938
374	Fremont	Secondary	62.30769	0.01604938
GARFIELD				
375	Garfield	Primary	99.15385	0.01008534
376	Garfield	Primary	99.15385	0.01008534
377	Garfield	Primary	99.15385	0.01008534
378	Garfield	Primary	99.15385	0.01008534
379	Garfield	Secondary	99.15385	0.01008534
380	Garfield	Secondary	99.15385	0.01008534
381	Garfield	Secondary	99.15385	0.01008534
382	Garfield	Secondary	99.15385	0.01008534
383	Garfield	Secondary	99.15385	0.01008534
384	Garfield	Secondary	99.15385	0.01008534
385	Garfield	Secondary	99.15385	0.01008534
GUNNISON				
386	Gunnison	Secondary	53.53846	0.01867816
387	Gunnison	Secondary	53.53846	0.01867816

388	Gunnison	Secondary	53.53846	0.01867816
389	Gunnison	Secondary	53.53846	0.01867816
390	Gunnison	Secondary	53.53846	0.01867816
391	Gunnison	Secondary	53.53846	0.01867816
392	Gunnison	Secondary	53.53846	0.01867816
393	Gunnison	Secondary	53.53846	0.01867816
394	Gunnison	Secondary	53.53846	0.01867816
395	Gunnison	Secondary	53.53846	0.01867816
396	Gunnison	Secondary	53.53846	0.01867816
JEFFERSON				
397	Jefferson	Primary	81.6015	0.01225468
398	Jefferson	Primary	81.6015	0.01225468
399	Jefferson	Primary	81.6015	0.01225468
400	Jefferson	Secondary	81.6015	0.01225468
401	Jefferson	Secondary	81.6015	0.01225468
402	Jefferson	Secondary	81.6015	0.01225468
403	Jefferson	Secondary	81.6015	0.01225468
404	Jefferson	Secondary	81.6015	0.01225468
405	Jefferson	Secondary	81.6015	0.01225468
406	Jefferson	Secondary	81.6015	0.01225468
407	Jefferson	Secondary	81.6015	0.01225468
408	Jefferson	Secondary	81.6015	0.01225468
409	Jefferson	Secondary	81.6015	0.01225468
410	Jefferson	Secondary	81.6015	0.01225468
411	Jefferson	Secondary	81.6015	0.01225468
412	Jefferson	Secondary	81.6015	0.01225468
413	Jefferson	Secondary	81.6015	0.01225468
414	Jefferson	Secondary	81.6015	0.01225468
415	Jefferson	Secondary	81.6015	0.01225468

416	Jefferson	Secondary	81.6015	0.01225468
417	Jefferson	Secondary	81.6015	0.01225468
418	Jefferson	Secondary	81.6015	0.01225468
419	Jefferson	Secondary	81.6015	0.01225468
420	Jefferson	Secondary	81.6015	0.01225468
421	Jefferson	Secondary	81.6015	0.01225468
422	Jefferson	Secondary	81.6015	0.01225468
423	Jefferson	Local	1468.82692	0.00068082
424	Jefferson	Local	1468.82692	0.00068082
425	Jefferson	Local	1468.82692	0.00068082
426	Jefferson	Local	1468.82692	0.00068082
427	Jefferson	Local	1468.82692	0.00068082
428	Jefferson	Local	1468.82692	0.00068082
429	Jefferson	Local	1468.82692	0.00068082
430	Jefferson	Local	1468.82692	0.00068082
431	Jefferson	Local	1468.82692	0.00068082
432	Jefferson	Local	1468.82692	0.00068082
433	Jefferson	Local	1468.82692	0.00068082
434	Jefferson	Local	1468.82692	0.00068082
435	Jefferson	Local	1468.82692	0.00068082
436	Jefferson	Local	1468.82692	0.00068082
437	Jefferson	Local	1468.82692	0.00068082
438	Jefferson	Local	1468.82692	0.00068082
439	Jefferson	Local	1468.82692	0.00068082
440	Jefferson	Local	1468.82692	0.00068082
KIT CARSON				
441	Kit Carson	Primary	33.15385	0.03016241
442	Kit Carson	Primary	33.15385	0.03016241
443	Kit Carson	Primary	33.15385	0.03016241

444	Kit Carson	Secondary	33.15385	0.03016241
445	Kit Carson	Secondary	33.15385	0.03016241
446	Kit Carson	Secondary	33.15385	0.03016241
447	Kit Carson	Secondary	33.15385	0.03016241
448	Kit Carson	Secondary	33.15385	0.03016241
449	Kit Carson	Secondary	33.15385	0.03016241
450	Kit Carson	Secondary	33.15385	0.03016241
451	Kit Carson	Secondary	33.15385	0.03016241
LA PLATA				
452	La Plata	Secondary	77.38462	0.01292247
453	La Plata	Secondary	77.38462	0.01292247
454	La Plata	Secondary	77.38462	0.01292247
455	La Plata	Secondary	77.38462	0.01292247
456	La Plata	Secondary	77.38462	0.01292247
457	La Plata	Secondary	77.38462	0.01292247
458	La Plata	Secondary	77.38462	0.01292247
459	La Plata	Secondary	77.38462	0.01292247
460	La Plata	Secondary	77.38462	0.01292247
461	La Plata	Secondary	77.38462	0.01292247
462	La Plata	Secondary	77.38462	0.01292247
LARIMER				
463	Larimer	Primary	74.40491	0.01343997
464	Larimer	Secondary	74.40491	0.01343997
465	Larimer	Secondary	74.40491	0.01343997
466	Larimer	Secondary	74.40491	0.01343997
467	Larimer	Secondary	74.40491	0.01343997
468	Larimer	Secondary	74.40491	0.01343997
469	Larimer	Secondary	74.40491	0.01343997
470	Larimer	Secondary	74.40491	0.01343997

471	Larimer	Secondary	74.40491	0.01343997
472	Larimer	Secondary	74.40491	0.01343997
473	Larimer	Secondary	74.40491	0.01343997
474	Larimer	Secondary	74.40491	0.01343997
475	Larimer	Secondary	74.40491	0.01343997
476	Larimer	Secondary	74.40491	0.01343997
477	Larimer	Secondary	74.40491	0.01343997
478	Larimer	Secondary	74.40491	0.01343997
479	Larimer	Secondary	74.40491	0.01343997
480	Larimer	Secondary	74.40491	0.01343997
481	Larimer	Secondary	74.40491	0.01343997
482	Larimer	Secondary	74.40491	0.01343997
483	Larimer	Secondary	74.40491	0.01343997
484	Larimer	Secondary	74.40491	0.01343997
485	Larimer	Secondary	74.40491	0.01343997
486	Larimer	Secondary	74.40491	0.01343997
487	Larimer	Secondary	74.40491	0.01343997
488	Larimer	Local	1339.28846	0.00074667
489	Larimer	Local	1339.28846	0.00074667
490	Larimer	Local	1339.28846	0.00074667
491	Larimer	Local	1339.28846	0.00074667
492	Larimer	Local	1339.28846	0.00074667
493	Larimer	Local	1339.28846	0.00074667
494	Larimer	Local	1339.28846	0.00074667
495	Larimer	Local	1339.28846	0.00074667
496	Larimer	Local	1339.28846	0.00074667
497	Larimer	Local	1339.28846	0.00074667
498	Larimer	Local	1339.28846	0.00074667
499	Larimer	Local	1339.28846	0.00074667

500	Larimer	Local	1339.28846	0.00074667
501	Larimer	Local	1339.28846	0.00074667
502	Larimer	Local	1339.28846	0.00074667
503	Larimer	Local	1339.28846	0.00074667
504	Larimer	Local	1339.28846	0.00074667
505	Larimer	Local	1339.28846	0.00074667
506	Larimer	Local	1339.28846	0.00074667
LAS ANIMAS				
507	Las Animas	Primary	65.38462	0.01529412
508	Las Animas	Primary	65.38462	0.01529412
509	Las Animas	Primary	65.38462	0.01529412
510	Las Animas	Secondary	65.38462	0.01529412
511	Las Animas	Secondary	65.38462	0.01529412
512	Las Animas	Secondary	65.38462	0.01529412
513	Las Animas	Secondary	65.38462	0.01529412
514	Las Animas	Secondary	65.38462	0.01529412
515	Las Animas	Secondary	65.38462	0.01529412
516	Las Animas	Secondary	65.38462	0.01529412
517	Las Animas	Secondary	65.38462	0.01529412
LINCOLN				
518	Lincoln	Primary	40.61538	0.02462121
519	Lincoln	Primary	40.61538	0.02462121
521	Lincoln	Secondary	40.61538	0.02462121
522	Lincoln	Secondary	40.61538	0.02462121
523	Lincoln	Secondary	40.61538	0.02462121
524	Lincoln	Secondary	40.61538	0.02462121
525	Lincoln	Secondary	40.61538	0.02462121
526	Lincoln	Secondary	40.61538	0.02462121
527	Lincoln	Secondary	40.61538	0.02462121

528	Lincoln	Secondary	40.61538	0.02462121
865	Lincoln	Primary	40.61538	0.02462121
MESA				
529	Mesa	Primary	48.64637	0.02055652
530	Mesa	Primary	48.64637	0.02055652
531	Mesa	Primary	48.64637	0.02055652
532	Mesa	Primary	48.64637	0.02055652
533	Mesa	Primary	48.64637	0.02055652
534	Mesa	Primary	48.64637	0.02055652
535	Mesa	Primary	48.64637	0.02055652
536	Mesa	Primary	48.64637	0.02055652
537	Mesa	Primary	48.64637	0.02055652
538	Mesa	Secondary	48.64637	0.02055652
539	Mesa	Secondary	48.64637	0.02055652
540	Mesa	Secondary	48.64637	0.02055652
541	Mesa	Secondary	48.64637	0.02055652
542	Mesa	Secondary	48.64637	0.02055652
543	Mesa	Secondary	48.64637	0.02055652
544	Mesa	Secondary	48.64637	0.02055652
545	Mesa	Secondary	48.64637	0.02055652
546	Mesa	Secondary	48.64637	0.02055652
547	Mesa	Secondary	48.64637	0.02055652
548	Mesa	Secondary	48.64637	0.02055652
549	Mesa	Secondary	48.64637	0.02055652
550	Mesa	Secondary	48.64637	0.02055652
551	Mesa	Secondary	48.64637	0.02055652
552	Mesa	Secondary	48.64637	0.02055652
553	Mesa	Secondary	48.64637	0.02055652
554	Mesa	Secondary	48.64637	0.02055652

555	Mesa	Secondary	48.64637	0.02055652
556	Mesa	Secondary	48.64637	0.02055652
557	Mesa	Secondary	48.64637	0.02055652
558	Mesa	Secondary	48.64637	0.02055652
559	Mesa	Secondary	48.64637	0.02055652
560	Mesa	Local	875.63462	0.00114203
561	Mesa	Local	875.63462	0.00114203
562	Mesa	Local	875.63462	0.00114203
563	Mesa	Local	875.63462	0.00114203
564	Mesa	Local	875.63462	0.00114203
565	Mesa	Local	875.63462	0.00114203
566	Mesa	Local	875.63462	0.00114203
567	Mesa	Local	875.63462	0.00114203
568	Mesa	Local	875.63462	0.00114203
569	Mesa	Local	875.63462	0.00114203
570	Mesa	Local	875.63462	0.00114203
571	Mesa	Local	875.63462	0.00114203
572	Mesa	Local	875.63462	0.00114203
MOFFAT				
573	Moffat	Secondary	72.76923	0.01374207
574	Moffat	Secondary	72.76923	0.01374207
575	Moffat	Secondary	72.76923	0.01374207
576	Moffat	Secondary	72.76923	0.01374207
577	Moffat	Secondary	72.76923	0.01374207
578	Moffat	Secondary	72.76923	0.01374207
579	Moffat	Secondary	72.76923	0.01374207
580	Moffat	Secondary	72.76923	0.01374207
581	Moffat	Secondary	72.76923	0.01374207
582	Moffat	Secondary	72.76923	0.01374207

583	Moffat	Secondary	72.76923	0.01374207
MONTEZUMA				
584	Montezuma	Secondary	87.76923	0.01139351
585	Montezuma	Secondary	87.76923	0.01139351
586	Montezuma	Secondary	87.76923	0.01139351
587	Montezuma	Secondary	87.76923	0.01139351
588	Montezuma	Secondary	87.76923	0.01139351
589	Montezuma	Secondary	87.76923	0.01139351
590	Montezuma	Secondary	87.76923	0.01139351
591	Montezuma	Secondary	87.76923	0.01139351
592	Montezuma	Secondary	87.76923	0.01139351
593	Montezuma	Secondary	87.76923	0.01139351
594	Montezuma	Secondary	87.76923	0.01139351
MONTROSE				
595	Montrose	Secondary	72.07692	0.01387407
596	Montrose	Secondary	72.07692	0.01387407
597	Montrose	Secondary	72.07692	0.01387407
598	Montrose	Secondary	72.07692	0.01387407
599	Montrose	Secondary	72.07692	0.01387407
600	Montrose	Secondary	72.07692	0.01387407
601	Montrose	Secondary	72.07692	0.01387407
602	Montrose	Secondary	72.07692	0.01387407
603	Montrose	Secondary	72.07692	0.01387407
604	Montrose	Secondary	72.07692	0.01387407
605	Montrose	Secondary	72.07692	0.01387407
MORGAN				
606	Morgan	Primary	58.92308	0.01697128
607	Morgan	Primary	58.92308	0.01697128
608	Morgan	Primary	58.92308	0.01697128

609	Morgan	Secondary	58.92308	0.01697128
610	Morgan	Secondary	58.92308	0.01697128
611	Morgan	Secondary	58.92308	0.01697128
612	Morgan	Secondary	58.92308	0.01697128
613	Morgan	Secondary	58.92308	0.01697128
614	Morgan	Secondary	58.92308	0.01697128
615	Morgan	Secondary	58.92308	0.01697128
616	Morgan	Secondary	58.92308	0.01697128
OTERO				
617	Otero	Secondary	97.76923	0.01022817
618	Otero	Secondary	97.76923	0.01022817
619	Otero	Secondary	97.76923	0.01022817
620	Otero	Secondary	97.76923	0.01022817
621	Otero	Secondary	97.76923	0.01022817
622	Otero	Secondary	97.76923	0.01022817
623	Otero	Secondary	97.76923	0.01022817
624	Otero	Secondary	97.76923	0.01022817
625	Otero	Secondary	97.76923	0.01022817
626	Otero	Secondary	97.76923	0.01022817
627	Otero	Secondary	97.76923	0.01022817
PARK				
628	Park	Secondary	24.01923	0.04163331
629	Park	Secondary	24.01923	0.04163331
630	Park	Secondary	24.01923	0.04163331
631	Park	Secondary	24.01923	0.04163331
632	Park	Secondary	24.01923	0.04163331
633	Park	Secondary	24.01923	0.04163331
634	Park	Secondary	24.01923	0.04163331
635	Park	Secondary	24.01923	0.04163331

636	Park	Secondary	24.01923	0.04163331
637	Park	Secondary	24.01923	0.04163331
638	Park	Secondary	24.01923	0.04163331
639	Park	Secondary	24.01923	0.04163331
640	Park	Secondary	24.01923	0.04163331
641	Park	Secondary	24.01923	0.04163331
642	Park	Secondary	24.01923	0.04163331
643	Park	Secondary	24.01923	0.04163331
644	Park	Secondary	24.01923	0.04163331
645	Park	Secondary	24.01923	0.04163331
646	Park	Secondary	24.01923	0.04163331
647	Park	Secondary	24.01923	0.04163331
648	Park	Secondary	24.01923	0.04163331
649	Park	Secondary	24.01923	0.04163331
650	Park	Secondary	24.01923	0.04163331
651	Park	Local	432.34615	0.00231296
652	Park	Local	432.34615	0.00231296
653	Park	Local	432.34615	0.00231296
654	Park	Local	432.34615	0.00231296
655	Park	Local	432.34615	0.00231296
656	Park	Local	432.34615	0.00231296
657	Park	Local	432.34615	0.00231296
658	Park	Local	432.34615	0.00231296
659	Park	Local	432.34615	0.00231296
660	Park	Local	432.34615	0.00231296
661	Park	Local	432.34615	0.00231296
662	Park	Local	432.34615	0.00231296
663	Park	Local	432.34615	0.00231296
664	Park	Local	432.34615	0.00231296

665	Park	Local	432.34615	0.00231296
666	Park	Local	432.34615	0.00231296
667	Park	Local	432.34615	0.00231296
668	Park	Local	432.34615	0.00231296
669	Park	Local	432.34615	0.00231296
670	Park	Local	432.34615	0.00231296
671	Park	Local	432.34615	0.00231296
PUEBLO				
672	Pueblo	Primary	54.86966	0.01822501
673	Pueblo	Primary	54.86966	0.01822501
674	Pueblo	Primary	54.86966	0.01822501
675	Pueblo	Primary	54.86966	0.01822501
676	Pueblo	Primary	54.86966	0.01822501
677	Pueblo	Primary	54.86966	0.01822501
678	Pueblo	Primary	54.86966	0.01822501
679	Pueblo	Secondary	54.86966	0.01822501
680	Pueblo	Secondary	54.86966	0.01822501
681	Pueblo	Secondary	54.86966	0.01822501
682	Pueblo	Secondary	54.86966	0.01822501
683	Pueblo	Secondary	54.86966	0.01822501
684	Pueblo	Secondary	54.86966	0.01822501
685	Pueblo	Secondary	54.86966	0.01822501
686	Pueblo	Secondary	54.86966	0.01822501
687	Pueblo	Secondary	54.86966	0.01822501
688	Pueblo	Secondary	54.86966	0.01822501
689	Pueblo	Secondary	54.86966	0.01822501
690	Pueblo	Secondary	54.86966	0.01822501
691	Pueblo	Secondary	54.86966	0.01822501
692	Pueblo	Secondary	54.86966	0.01822501

693	Pueblo	Secondary	54.86966	0.01822501
694	Pueblo	Secondary	54.86966	0.01822501
695	Pueblo	Secondary	54.86966	0.01822501
696	Pueblo	Secondary	54.86966	0.01822501
697	Pueblo	Secondary	54.86966	0.01822501
698	Pueblo	Secondary	54.86966	0.01822501
699	Pueblo	Secondary	54.86966	0.01822501
700	Pueblo	Local	987.65385	0.0010125
701	Pueblo	Local	987.65385	0.0010125
702	Pueblo	Local	987.65385	0.0010125
703	Pueblo	Local	987.65385	0.0010125
704	Pueblo	Local	987.65385	0.0010125
705	Pueblo	Local	987.65385	0.0010125
706	Pueblo	Local	987.65385	0.0010125
707	Pueblo	Local	987.65385	0.0010125
708	Pueblo	Local	987.65385	0.0010125
709	Pueblo	Local	987.65385	0.0010125
710	Pueblo	Local	987.65385	0.0010125
711	Pueblo	Local	987.65385	0.0010125
712	Pueblo	Local	987.65385	0.0010125
713	Pueblo	Local	987.65385	0.0010125
714	Pueblo	Local	987.65385	0.0010125
715	Pueblo	Local	987.65385	0.0010125
SUMMIT				
716	Summit	Primary	46.53846	0.0214876
717	Summit	Primary	46.53846	0.0214876
718	Summit	Primary	46.53846	0.0214876
719	Summit	Secondary	46.53846	0.0214876
720	Summit	Secondary	46.53846	0.0214876

721	Summit	Secondary	46.53846	0.0214876
722	Summit	Secondary	46.53846	0.0214876
723	Summit	Secondary	46.53846	0.0214876
724	Summit	Secondary	46.53846	0.0214876
725	Summit	Secondary	46.53846	0.0214876
726	Summit	Secondary	46.53846	0.0214876
WELD				
727	Weld	Primary	70.64744	0.0141548
728	Weld	Primary	70.64744	0.0141548
729	Weld	Primary	70.64744	0.0141548
730	Weld	Primary	70.64744	0.0141548
731	Weld	Secondary	70.64744	0.0141548
732	Weld	Secondary	70.64744	0.0141548
733	Weld	Secondary	70.64744	0.0141548
734	Weld	Secondary	70.64744	0.0141548
735	Weld	Secondary	70.64744	0.0141548
736	Weld	Secondary	70.64744	0.0141548
737	Weld	Secondary	70.64744	0.0141548
738	Weld	Secondary	70.64744	0.0141548
739	Weld	Secondary	70.64744	0.0141548
740	Weld	Secondary	70.64744	0.0141548
741	Weld	Secondary	70.64744	0.0141548
742	Weld	Secondary	70.64744	0.0141548
743	Weld	Secondary	70.64744	0.0141548
744	Weld	Secondary	70.64744	0.0141548
745	Weld	Secondary	70.64744	0.0141548
746	Weld	Secondary	70.64744	0.0141548
747	Weld	Secondary	70.64744	0.0141548
748	Weld	Secondary	70.64744	0.0141548

749	Weld	Secondary	70.64744	0.0141548
750	Weld	Secondary	70.64744	0.0141548
751	Weld	Secondary	70.64744	0.0141548
752	Weld	Secondary	70.64744	0.0141548
753	Weld	Secondary	70.64744	0.0141548
754	Weld	Secondary	70.64744	0.0141548
755	Weld	Secondary	70.64744	0.0141548
756	Weld	Local	1271.65385	0.00078638
757	Weld	Local	1271.65385	0.00078638
758	Weld	Local	1271.65385	0.00078638
759	Weld	Local	1271.65385	0.00078638
760	Weld	Local	1271.65385	0.00078638
761	Weld	Local	1271.65385	0.00078638
762	Weld	Local	1271.65385	0.00078638
763	Weld	Local	1271.65385	0.00078638
764	Weld	Local	1271.65385	0.00078638
765	Weld	Local	1271.65385	0.00078638
766	Weld	Local	1271.65385	0.00078638
767	Weld	Local	1271.65385	0.00078638
768	Weld	Local	1271.65385	0.00078638
769	Weld	Local	1271.65385	0.00078638
770	Weld	Local	1271.65385	0.00078638

APPENDIX 7

Training Syllabus

Welcome and distribution of equipment

Survey overview

Data collection techniques
Definitions of belt/booster seat use, passenger vehicles
Observation protocol
Weekday/weekend/rush hour/non-rush hour
Weather conditions
Duration at each site

Scheduling and rescheduling
Site Assignment Sheet
Daylight
Temporary impediments such as weather
Permanent impediments at data collection sites
Site locations
Locating assigned sites
Interstate ramps and surface streets
Direction of travel/number of observed lanes
Non-intersection requirement
Alternate site selection

Data collection forms
Cover sheet
Recording observations
Recording alternate site information

Assembling forms for shipment
Safety and security

Timesheet and expense reports
Field practice at ramps and surface streets

