Colorado Division of Water Resources

2006

Annual Report
Water Division VI
Yampa, White \& N. Platte River Basins
Erin C. H. Light
Division Engineer

TABLE OF CONTENTS

Water Year 2006

Introduction 1
Basin Hydrology 1
Water Administration 5
Compacts and Inter-State Agreements 7
Dam Safety 8
Hydrographic Program 10
Ground Water and Well Permitting 12
Water Records and Information 12
Water Court Activities 13
Involvement in Water User Community 14
Issues and Achievements 15
Workload 18
Personnel 19
Training 21
Water Year 2007
Key Objectives 21
Water Administration Data Summaries
Reservoir Storage Summaries Appendix A
Water Diversion Summaries
Water Diversions to Various Uses
Transmountain Diversions
River Calls Appendix B
Organizational Chart Appendix C
Office Administration and Workload Measures Appendix D

Introduction

This report summarizes the activities of the Division 6 office of the Colorado Division of Water Resources. It presents an overview of the administration activities that took place during both the calendar and irrigation year 2006 and statistical data for both the water and irrigation year 2006. Please direct any questions regarding the information in this report to the Division 6 office in Steamboat Springs.

Water Year 2006

Basin Hydrology

Snowpack

Water year 2006 started out with plentiful rain and snowfall, but by May the snowpack had dropped significantly as shown in Table 1. The high snowpack in December through March caused concern for many that spring runoff could be significant and potentially cause damage. As a result, monthly flood information updates starting in March and continuing until June were provided to the Denver office. These updates provided an overview of the basin-wide snowpack, a listing of specific gage/SNOTEL sites of interest or concern, preparation activities and meetings, high water and flooding observations, and any other information pertinent to present and predicted flood concerns. Though runoff flows were high in limited areas, very little damage occurred. The more significant flooding was near the City of Craig as seen in the pictures.

TABLE 1
Snow Water Equivalent as Percent of Average
Water Year 2006

Drainage	Dec	Jan	Feb	Mar	Apr	May
North Platte River	131	120	115	113	89	38
White River	132	118	106	105	84	58
Yampa River	132	126	118	117	77	38

Table 2 shows the monthly runoff forecasts developed by the Natural Resources Conservation Service (NRCS) for selected sites and the actual runoff as measured at the USGS gauging stations.

TABLE 2
2006 Total Runoff Forecast for April through July in 1000's of Acre-Feet

Station Name	1-Jan		1-Mar		1-May		Actual	
	Runoff	\% Avg						
North Platte nr Northgate	350	130	360	133	190	83	211	81
White River nr Meeker	350	121	350	121	300	103	310	110
Little Snake River nr Lily	455	125	470	129	355	97	228	66
Yampa River nr Maybell	1340	135	1350	135	1100	111	974	103

Precipitation

Precipitation amounts varied widely across the Division in 2006 as shown in Table 3. The water year started out with above average precipitation in all three basins (North Platte, White and Yampa Rivers). In the North Platte River Basin, precipitation dropped to well below average in the months of January and February, March rose to near average, and April, May and June were well below average. In July precipitation returned with above average values. In the White River Basin, precipitation dropped to well below average from April through July and then rose above average for the remainder of the water year. In the Yampa River Basin, precipitation dropped below average in February and April, but was above average for the remainder of the water year. Table 4 shows the basin-wide percentages for precipitation measured at the various SNOTEL sites in the Division.

Table 3
Monthly Precipitation Data for Selected Sites Water Year 2006

Site	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Walden													
(in)	0.83	1.64	0.60	0.25	0.05	0.8	0.39	0.76	0.51	1.60	1.47	1.68	10.58
\% avg	93	198	102	40	8	98	36	50	48	125	140	139	96
Meeker													
(in)	2.17	1.39	$*$	1.42	0.86	2.37	0.67	0.54	0.04	1.18	2.57	3.50	16.71
\% avg	132	126		177	115	176	48	36	4	91	206	292	126
Steamboat (in)	3.64	2.90	4.59	2.78	1.39	2.35	1.65	2.73	1.67	2.85	2.11	4.02	32.68
\% avg	190	123	194	108	65	115	71	118	117	195	145	234	136

* - Data Unavailable

Monthly Precipitation Data for Selected Sites Calendar Year 2006

Site	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Walden													
(in)	0.25	0.05	0.80	0.39	0.76	0.51	1.60	1.47	1.68	1.86	0.65	0.66	10.68
$\%$ avg	40	8	98	36	50	48	125	140	139	209	78	112	92
Meeker													
(in)	1.42	0.86	2.37	0.67	0.54	0.04	1.18	2.57	3.50	4.02	1.16	0.83	19.16
$\%$ avg	177	115	176	48	36	4	91	206	292	244	105	92	135
Steamboat													
(in)	2.78	1.39	2.35	1.65	2.73	1.67	2.85	2.11	4.02	4.59	2.03	1.94	30.11
$\%$ avg	108	65	115	71	118	117	195	145	234	239	86	82	125

Table 4

Basin-Wide Precipitation Data from NRCS SNOTEL Sites
Water Year 2006
(Percent of Average)

| Oct | Nov | $\underline{D e c}$ | $\underline{J a n}$ | Feb | Mar | Apr | Mav | $\underline{\text { Jun }}$ | $\underline{\text { Jul }}$ | Aug | Sep | \% of Avg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 118 | 138 | 151 | 104 | 76 | 96 | 71 | 58 | 28 | 128 | 108 | 200 | 105 |

Streamflows

The streamflows at North Platte River near Northgate were below average in October and November, near average in December, above average from January through April and below average for the remainder of the water year. The total runoff for the water year at this site was 84% of average and the peak occurred on May 25, 2006 at a discharge of 2,030 cfs as shown in Table 5.

Historically, the peak has occurred on May 26 with an average peak discharge of $3,094 \mathrm{cfs}$. Streamflows on the White River below Boise Creek ran just below average from October through March before rising above average in April and May. The flow dropped back to below average and remained there for the remainder of the water year. The total runoff for the water year was 92% of average. As shown in Table 5, the peak at this gage station occurred on May 24, 2006 at a value of 3,210 cfs. Historically, the peak has occurred on May 28 with an average peak discharge of 3,285 cfs. The Little Snake River near Lily ran near the mean from October through January before dropping below average from February through August and was above average in September. The total runoff for the water year was 67% of average. As shown in Table 5, the peak occurred at this gage station on May 24, 2006 at a value of 4,640 cfs. Historically, the peak discharge has occurred on May 18 with an average peak discharge of 5,295 cfs. Streamflows on the Yampa River near Maybell ran very close to average in the months of October through January, were below average in February and March and above average in April and May. Streamflow was again below average from June through August. A significant increase in precipitation in September resulted in above average streamflows for this month. The total runoff for the water year was 101% of average. As shown in Table 5, the peak occurred at this station on May 24, 2006 at a discharge of $11,800 \mathrm{cfs}$. Historically, the peak has occurred on May 25 with an average peak discharge of 10,355 cfs.

Table 5

Total Runoff for Water Year 2006

Station Name	Total Flow $(1000 \mathrm{AF})$	Average $(1000 \mathrm{AF})$	$\%$ of Average
North Platte River near Northgate	258,800	308,200	84
White River below Boise Creek	489,500	532,200	92
Little Snake River at Lily	272,600	407,700	67
Yampa River near Maybell	$1,129,000$	$1,122,000$	101

Peak Flow Rate and Date of Occurrence

Station Name	Peak Flow (cfs)	Date
North Platte River near Northgate	2,030	May 25, 2006
White River below Boise Creek	3,210	May 24, 2006
Little Snake River at Lily	4,640	May 24, 2006
Yampa River near Maybell	11,800	May 24, 2006

Water Administration

Water administration in Division 6 was slightly above average throughout irrigation year 2006. Appendix B lists the calls that occurred in the various water districts.

Yampa and Green River Drainages

The Yampa River drainage encompasses Water Districts 44, 54, 55, 57 and 58 and the Green River drainage encompasses Water District 56. In irrigation year 2006, water administration occurred within the Upper Yampa River Basin (Water District 58) on Bear River, Hunt Creek, Martin Creek and Oak Creek. Also in this portion of the basin, a minimum in-stream flow call was placed by the Colorado Water Conservation Board (CWCB) on Fish Creek of the Yampa River. In the middle portion of the Yampa River Basin (Water Districts 44 and 57), water administration occurred on West Fish Creek of Trout Creek as well as on Trout Creek in its upper reaches, Fortification Creek, Little Bear Creek of Fortification Creek, Morapas Creek and Milk Creek. A call was placed by a Wyoming water user on the Little Snake River in Wyoming, however this office did not honor the call as it was for a double appropriation. In District 56, a call was placed and water administration occurred on Beaver Creek of the Green River.

As a result of low flows at the Yampa River near Craig gage station in late August and into September, Tri-State Generation was required to make reservoir releases under an agreement with the U.S. Fish and Wildlife Service to supplement flows in the critical habitat area on the Yampa River below Craig. Releases were made from Stagecoach Reservoir starting on August 25 at a rate of 20 cfs. On September 7, the release was reduced to 10 cfs and ceased altogether September 12, due to above average precipitation as indicated earlier in Table 3.

Rather than place a call this summer for their minimum in-stream flow on Willow Creek of the Elk River of the Yampa River, the CWCB worked with Colorado State Parks concerning releases from Steamboat Lake. Colorado State Parks agreed to voluntarily release all inflow into Steamboat Lake up to the decreed minimum in-stream flow of 5.0 cfs.

White River Drainage

Administration in Water District 43 was confined to the Piceance Creek drainage, running from midApril through mid-August. This basin experienced a very dry year and with so much oil and gas activity occurring within the basin, many difficulties were encountered with administering the call. The biggest problem encountered was water tank trucks simply stopping and pumping water from Piceance Creek or one of its tributaries at any time of the day and at no specific location. Energy exploration continues to grow in the Piceance Creek and Yellow Creek basins at an ever-increasing
pace. Many ranchers have sold their land and water rights to energy companies and these water rights have been changed to include industrial and augmentation uses, among others. The lands are then leased back to the ranchers whereby they can continue ranching operations and irrigation practices until such time that the energy companies need the water for other uses.

Sufficient water on the mainstem of the White River and on the major tributaries upstream of Meeker satisfied the needs of the water users throughout the year.

North Platte Drainage

The North Platte drainage returned to what has become normal administration in 2006 with the Michigan and Illinois Rivers and many tributaries of the North Platte River under administration. The Michigan River ran very poorly for most of the season and was under administration from May 15 through July 12, with the exception of a five day period at the end of May. By late August, the rivers were very low, with
 only 2.5 cfs at the Michigan River at Walden gage station and 3.5 cfs at the Michigan River near Meadow Creek Reservoir gage station. By the first week of September, ditches running stock water had turned down to the minimum needed in an attempt to avoid a call on the river. By September 10, rains had brought the river back up, but on October 2, the Old SC Ditch, which takes water from the Michigan to the Illinois River and then into Walden Reservoir, placed a call.

The Illinois River was down to less than 30 cfs by May 7 and less than 20 cfs by May 12. The Illinois River or one of its tributaries was on call from May 15 through October 23. From May 30 through June 14, the Illinois River was included in the Michigan River call. On June 15 a call went on the Illinois separate from the Michigan. After July 23, the only call was on Spring Creek, a small tributary of the Illinois River. As with the Michigan, the Illinois was very low and on August 24 there was only 2.5 cfs at the Illinois River near Rand gage station. The flows on September 6 were comparable to those on the same date in 2002. The Illinois River had stopped running at Walden by July 23 and did not begin again until mid-October.

Compacts and Inter-State Agreements

Following is a brief description of the interstate compacts and agreements administered by Division 6.

Upper Colorado River Compact

Under Article XIII (a), the State of Colorado will not cause the flow of the Yampa River at the Maybell gage to be depleted below an aggregate amount of 5,000,000 acre-feet for any period of ten consecutive years. For the period 1997 to 2006, the aggregate flow at the Maybell gage was 10,011,483 acre-feet.

The Little Snake River is administered jointly with the State of Wyoming during times of shortage pursuant to Article XI of the Upper Colorado River Compact. There were no calls honored by the State of Colorado on the Little Snake River in 2006.

Our office continues to work with the State of Wyoming on updating the combined administration list for the Little Snake River. This effort seems to be stalled at this time and is in the hands of Wyoming for their final approval of the revised list. The administrative schedule developed many years ago has proved to be sufficient for use in recent administration and will continue to be used until such time that the revised one can be finalized and approved.

North Platte River (Nebraska v. Wyoming, U.S. Supreme Court Decree)

Under the North Platte River decree, Colorado is limited to a total of 145,000 acres of irrigation, no more than 17,000 acre-feet per year of storage for irrigation purposes and no more than 60,000 acre-feet of transmountain diversions in any period of ten consecutive years in the North Platte drainage of Colorado. In water year 2006, a total of 101,393 acres were irrigated and 7,951 acrefeet were stored for irrigation use. The amount of irrigated acreage was down from 2005 by approximately 14,000 acres, reflecting the return to below normal water availability in the North Platte system. Transmountain diversions out of the basin totaled 2,734 acre-feet - down significantly from the previous year. The ten-year total of transmountain diversions out of the basin was 42,855 acre-feet. None of the limitations of the Supreme Court Decree were exceeded in 2006.

Division representatives attended both of the scheduled meetings of the North Platte Decree Committee held in April and October 2006.

Pot Creek

Pot Creek is a small tributary to the Green River; the headwaters of which are in Utah and entering the Green River in Colorado. Pot Creek water is apportioned among the users of Utah and Colorado under a Memorandum of Understanding (MOU) last updated and signed by the State Engineers of Utah and Colorado on March 1, 2005. For years, little if any water was available for Colorado users, however for the past two years the winter snowpack has been enough to provide water to the Colorado users. In 2006 all of the major reservoirs in Utah filled and spilled. At the annual water users meeting, the Pot Creek Commissioner reported that during the winter storage
 season, the entire Pot Creek system gained 1,407 acre-feet of storage and Offield Reservoir in Colorado had filled prior to May 1. No release was made this year from the Utah reservoirs to satisfy the Colorado users. Pot Creek at the state line gage began to flow on March 29 and continued to flow until May 16. The flow at this site peaked on April 10 at a discharge of 87.1 cfs . The annual total flow past the gage for water year 2006 was 1,204 acre-feet.

The provisions of the MOU dated March 1, 2005 concerning the installation of headgates and/or measuring devices were waived for the 2005 irrigation season and again in 2006 to allow for further engineering and development of cost estimates of measuring devices to be installed on Pot Creek below Matt Warner Reservoir and above Calder Reservoir, as required by the MOU.

Dam Safety

The Dam Safety Branch of the Division of Water Resources is responsible for the safety of dams in Colorado while working to protect the loss of property or life and the loss of water supplies due to the failure of a dam. The two primary functions of the Dam Safety Branch are the review of designs for the construction, modification, or repair of a dam with subsequent construction inspections and periodic safety inspections of existing dams to insure their integrity. A full summer of inspections was completed in 2006, including dams in the upper reaches of Division 5.

In the design review and construction area, Division 6 was busy during 2006. Designs were reviewed and approved for repairs of rodent damage at two dams in the White River drainage, and for seepage and spillway repairs at one dam in the Yampa River drainage. Construction inspections were performed as these repairs were completed. The dam safety engineer performed an
inspection of a small low hazard dam in the northwest corner of the state while the owner was lowering the dam to non-jurisdictional size. The cleanup of the rockslide in the emergency spillway channel at Lake Catamount Dam also required a final inspection. With the enlargement of the Elkhead Creek Dam near Craig in full swing, inspections were completed with Mark Haynes from the Denver office as the earthwork progressed up the old dam and the outlet and spillway were completed. This project will add approximately 12,000 acre-feet of storage to the Yampa River drainage downstream of Craig, Colorado. After reaching substantial completion in December 2006, the reservoir was able to begin filling. The Upper Yampa Water Conservancy District continues planning to determine the feasibility of raising the spillway crest of Stagecoach Dam by four feet to increase storage on the upper reach of the Yampa River, with construction now planned for late 2007 and 2008. Finally, a new boom in energy development in the Piceance Creek Basin has resulted in the construction of a new dam and the design for a second dam. The design review engineer from the Grand Junction office is overseeing these projects.

During 2006, the Division 6 Dam Safety Engineer inspected ten high hazard dams, six significant hazard dams, and 15 low hazard dams in the Division in accordance with a long range inspection schedule. In addition, the Federal Energy Regulatory Commission (FERC) completed inspections on two of the remaining high hazard, power generating dams in Division 6. The remaining high hazard dam, Elkhead Creek, received numerous construction inspections of the enlargement project.

The Dam Safety Engineer also inspected four high hazard dams, six significant hazard dams, and six low hazard dams in Division 5. The Bureau of Reclamation is responsible for inspecting three high hazard dams that they own in Division 5.

There were several significant problems found at some of the low hazard dams in Division 6 during inspections in 2006. The State Engineer prepared a breach order for one low hazard dam due to an escalating hazard and a lack of action by the owner. A recommendation was made to breach a second low hazard dam, but the owner
 committed to repair the dam. Of the 15 low hazard dams inspected, four were rated unsatisfactory mainly due to significant seepage and repair issues, ten were rated conditionally satisfactory mainly due to a general lack of maintenance and repair, and only one was rated satisfactory. A similar breakdown in the rating was noted during the last three inspection years. Three owners started repairs in 2006 to bring their dams up to a satisfactory rating, one owner was finishing the final approval process for repairs completed in an earlier year, and one owner lowered his dam to a nonjurisdictional size. Most of the owners seem to lack the necessary resources to hire an engineer and begin the repair process.

There were no erosion control dams and only one livestock water tank constructed in Division 6 during 2006, but applications for nine non-jurisdictional dams were processed; the smallest number in the last few years. So far, the construction of numerous non-jurisdictional dams has not caused any significant water administration issues, but some areas around the Division are experiencing a proliferation of these small dams that could result in future problems. Any of these small dams that are on-channel are required to have adequate outlet pipes capable of passing inflow to help relieve any future issues. Administration of all these structures could be a time consuming process. With the upper section of the Yampa River basin now designated as over-appropriated, the large number of non-jurisdictional dams in this basin could become a substantial administrative workload.

Hydrographic Program

There are currently 36 active stream gage sites in the Yampa, White, and North Platte River basins. Of these, the USGS operates 24 and Division 6 operates 12. Of the twelve operated by the Division, ten are equipped with satellite monitoring. Of these, two transmit reservoir water surface elevations,
six transmit stream flow gage heights, and two transmit both parameters. The remaining two gages are equipped with a chart recorder and/or a data collection platform (DCP) to record gage heights.

In 2001, the USGS operated 33 stations in the Yampa, White, and North Platte basins, as compared with the 24 stations they are currently operating. Many of the gage stations were discontinued due to lack of available funding for the USGS stream flow program. Reduced funding has resulted in cooperators either paying more for the operation of the gages or discontinuing their cooperation all together.

In addition to operating and maintaining the gage sites, the Division 6 hydrographer, in coordination with the Water Commissioners, conducts flow measurements on ditches, reservoir releases, and streams. There were seventy-nine measurements taken at the gage sites in water year 2006 and approximately 10 to 15 measurements on ditches, reservoir releases, and other streams. Hydrographic records for water year 2006 will be published for seven of the twelve sites: Walton Creek near Steamboat Springs, Yampa River above Lake Catamount, Michigan River near Meadow Creek Reservoir, Michigan River at Walden, Illinois River near Rand, Williams Fork at Mouth near Hamilton, and Pot Creek at Stateline.

Division 6 currently has five gage stations equipped with high data rate (HDR) equipment. One HDR Sutron SatLink2 data logger was installed in 2006 at the Michigan River near Meadow Creek Reservoir. In addition, the Illinois River near Rand site is scheduled for upgrade to HDR in 2007.

During 2006, Division 6 conducted inspection, maintenance, and refurbishment activities at several sites. In August 2006, the Accubar bubbler at the Williams Fork gage station was realigned to prevent further clogging due to a significant amount of sediment build-up over the orifice. A muffler will be installed in 2007 to protect against future build-up of sediment. In October 2006, a photovoltaic battery regulator was installed at the Pearl Lake site and a new solar panel was installed at the Steamboat Lake site. A new solar panel, high data rate DCP and upgraded encoder were installed in October 2006 at the Michigan River near Meadow Creek Reservoir site. Plans to upgrade the Illinois River near Rand site were deferred until 2007.

Replacement of the existing 12-inch stilling well on Willow Creek below Steamboat Lake was initiated in late October 2006. The existing well is hydraulically connected to the stream channel via a pea gravel layer extending from the well to the channel. The new well is larger in size to better accommodate equipment (shaft encoder) and has an intake pipe extending from the well to the channel. Some damage to the new well and pipe occurred during backfill. This station is scheduled for inspection, completion and/or potential re-construction in 2007.

Division 6 acquired survey equipment in 2006, which will be used to run levels at the gage stations and establish benchmarks. In addition, a laptop computer, GPS, and IPAQ Pocket PC, as well as miscellaneous back-up equipment (batteries, staff gages, levels, etc.) were obtained for ongoing operation and maintenance of the gage stations and the hydrographic program.

No new gage installations are planned for the Division 6 hydrographic program in 2007. Ongoing and planned gage station projects include installation of a muffler on the Williams Fork; continued upgrading to high data rate DCPs; completion of construction activities at Willow Creek below Steamboat Lake; evaluation of solar panels/satellite telemetry at Bear River below Bear Lake and Walton Creek near Steamboat Springs; and miscellaneous minor station upgrades and refurbishments.

Groundwater and Well Permitting

The Division continues to assist the public with questions and concerns relating to the drilling of wells and completing well permit applications. The Division issued two hundred nine exempt well permits in 2006 versus two hundred sixty permitted the previous year. A considerable amount of time is spent educating realtors and water users about the statutes concerning the use of groundwater in Colorado.

This year the Yampa River upstream of the Steamboat Springs RICD structures was designated as over-appropriated, thus changing the well permitting requirements. All future non-exempt well permits will now require a Court approved plan of augmentation and exempt wells permitted on less than 35 acres are limited to in-house use only within one single family dwelling.

Water Records and Information

Summaries of diversion records for irrigation year 2006 are shown in Appendix A. These numbers show that total diversions for all uses were down by 12,224 acre-feet from 2005 and up 122,523 acre-feet from 2004. Districts 47, 54, 55,56, and 57 experienced decreases in total diversions while Districts 43, 44, and 58 experienced increases from the previous year, with the most significant increase in District 43 of 173,371 acre-feet. In District 43, the increase was primarily in power generation use. Both diversions for irrigation and the number of acres irrigated were down from the previous year with diversions down by 103,216 acre-feet. The number of visits to structures by the Water Commissioners was down by approximately 17 percent. As water administration and other demands on the Water Commissioners increases, the reliance of user-supplied data increases.

The water rights database and diversion records are maintained in Hydrobase. Ownership, decreed water rights, structure information, and structure comments are updated on a regular basis and distributed to all of the Water Commissioners semi-annually. Well data is updated in Well Tools and dam information is kept up-to-date in the DAM_app program. Access to information through Hydrobase and Well View are used significantly when responding to inquiries from the public. Effort is being made to conform to the Hydrobase coding for plans of augmentation and exchange. The Division's goal is to have these properly entered into Hydrobase by the end of the 2008 calendar year.

With the exception of the northern portion of District 47, GPS points have been obtained for all active structures with diversion records. In the winter of 2005/2006, Division 6 took on a daunting project of tabulating locations of all decreed structures for which there are no GPS locations. These locations, which included distances from section lines, were entered into an Excel worksheet that was provided to the Denver office for incorporation into the structures database in Hydrobase. This project resumed where it left off at the end of calendar year 2006. By spring 2007, nearly 100% of the decreed structures in Division 6 are predicted to have a decreed location, GPS location, or a digitized location from a USGS Quad map on which the structure location had been previously plotted, incorporated into the structures database. The purpose of this project is to be able to reproduce our aging USGS Quad maps used by office staff and Water Commissioners. This project will also make it easy for those with access to Hydrobase, to view any structure they want in any mapping program, such as TOPO!

This office has maintained a lysimeter site on the Colorado Yampa Coal Company property since 1993 and a site on the North Park Wildlife Refuge since 2000. Consumptive use data is calculated using data collected at the two lysimeter sites for the various drainage basins. This data is sometimes used when reviewing water court applications for changes of water rights, as well as for many other purposes.

Water Court Activities

Water Court activity increased slightly in Division 6 Water Court in 2006, however, the number of 2006 water rights filed was down about 12 percent from the pervious year. The number of 2006 cases filed in Division 5 Water Court for water rights in the White River drainage was up by approximately 31 percent from the previous year. There were 86 new and amended cases filed in Division 6 in 2006 as compared to 81 in 2005, and 26 cases in Division 5 Water Court as compared to 19. The Division Engineer prepared 97 Recommendations of the Division Engineer/ Summaries of Consultation: 72 for the Division 6 Water Court and 25 for the Division 5 Water Court.

In July 2006, Judge Michael O'Hara of the Division 6 Water Court made it mandatory to electronically file all Water Court proceedings through Lexis Nexis. Though the Division 5 Water Court does not yet require electronic filing, for ease and consistency, this office is electronically filing all Recommendations of the Division Engineer/Summary of Consultations and other correspondence in both Water Courts.

This office continues to have a good working relationship with both the Division 5 and 6 Water Courts. Meetings are held once a year between this office and the Division 6 Water Judge, Clerks and Referee to discuss how things are operating between the Court and the Division of Water Resources and whether anything needs to be changed or improved upon. We continue to review new Water Court applications prior to publication in the resume to assure that applicants have provided all the required information. This activity helps save republication costs for the applicants. We also review the rulings of the Referee for accuracy before they are finalized to help reduce the number of rulings that need to be amended because of clerical errors and to assure that the rulings have incorporated or taken into account the concerns raised in the Recommendation of the Engineer/Summary of Consultation. We continue to confer with the Water Referee in Division 5 on a monthly basis via telephone conferencing. This procedure works very well and allows the comments of the Referee to be included in our Recommendations of the Division Engineer/Summary of Consultations.

Involvement in the Water User Community

The Division staff continues to assist the public in preparing Water Court and well permit applications, provide water right and diversion information, assist water users with the proper selection and installation of water measuring devices, and provide assistance to dam owners with completing Notices of Intent to Construct Non-Jurisdictional Dams and Emergency Action Plans. Our field office in Craig continues to be a vital aspect of our public relations. The Craig office probably handles as many walk-ins as the Steamboat office.

Following is a list of meetings attended by Division staff in 2006.

- Annual meeting of the Pot Creek Distribution System
- All meetings held by the Upper Yampa Water Conservancy District
- Spring and fall meetings of the North Platte Decree Committee
- Bear River Irrigators annual meeting
- Stillwater Ditch Company annual meeting
- Various meetings of the Colorado River Water Conservation District
- Meeting held by this office with water users on Elkhead Creek below Elkhead Creek Reservoir and the Yampa River from its confluence with Elkhead Creek to the Green River
- All HB1177 Roundtable meetings for both the Yampa/White and North Platte

In addition, our staff hosted the annual Colorado Water Officials Association (CWOA) meeting from September 27 through 29, 2006.

Appendix D summarizes other activities of the office staff and Water Commissioners of the Division.

Issues and Achievements

The construction of the enlargement of Elkhead Creek Reservoir has come to substantial completion and the reservoir is beginning to fill. The total enlargement pool is approximately 12,000 acre-feet. Five thousand acre-feet of this enlargement is designated for flow augmentation in the critical habitat reach of the Yampa River (Yampa River in Craig to the Green River at Echo Park) for the four endangered fish species. An additional 2,000 acre-feet of water will also be available for the fish through a 20-year lease with the Colorado River Water Conservation District (River District). Water not dedicated to the Fish Recovery Program is available for contract through the River District. Provided the enlargement pool fills in the spring of 2007, water could be delivered to and through the critical habitat reach in the summer of 2007. In August, letters requesting the installation of operable headgates and measuring devices were sent to more than sixty water users on Elkhead Creek below Elkhead Creek Reservoir and on the Yampa River from its confluence with Elkhead Creek to the Green River. Administrative procedures will be developed in 2007 to deliver water released from Elkhead Creek Reservoir past numerous structures and through the critical habitat reach. One major problem associated with this delivery is determining the level of transportation loss that will be assessed to the reservoir releases. There has been discussions of potential releases of stored water in the summer of 2007 and 2008 for the purpose of determining losses as well as allow this office the opportunity to develop a workable plan for the delivery and protection of the waters.

Energy development in the Piceance Creek basin of the White River still is and will continue to be an issue for years to come. Piceance Creek is heavily over-appropriated and water short. The major energy companies have purchased many of the senior water rights and have obtained decrees for changes of use, plans of augmentation, and exchanges. Many of these decrees are complicated and the fact that there are more being applied for in court that can be intertwined with one another, complicates matters even further. Understanding how these decrees interrelate and the proper administration of them during periods of shortage, is a task that will have to be undertaken in the
near future. Because the energy company's contract with other companies based outside of Colorado, this office has had to spend a considerable amount of time educating these contractors as to what they can and cannot do when it comes to water usage. A common occurrence in the summer of 2006 that caused problems with water administration was pumping companies dropping a pump into Piceance Creek while under administration to pump whatever water they wanted whenever they wanted, including throughout the night.

As reported for the last several years, the Upper Yampa Water Conservancy District (UYWCD) continues to pursue the Hayden Project on the mainstem of the Yampa River near Hayden. The intent of the project is to combine two very senior ditches into a common headgate. The present holdup is an agreement between the water users on the ditches and UYWCD. The agreement contains a clause whereby the water users are required to not place the first call on the Yampa River (no call agreement). The water users refuse to sign such an agreement and UYWCD refuses to sign an agreement without such language. As a result, it is very possible that the project will never come to fruition.

Completed in 2004, the High Savory Reservoir, located on Savory Creek tributary to the Little Snake River in Wyoming, filled the last two years. The dam was constructed, and is currently owned and operated by the Wyoming Water Development Commission. The State of Wyoming has conducted test releases the last two years to determine transit losses from the dam site to the Little Snake River and part way down the Little Snake River itself. Water released during the tests was available to users on the river at no cost. Contracted reservoir water will be available to water users in both Wyoming and Colorado starting in 2007.

In the spring of 2006, the Yampa River upstream of the City of Steamboat Springs recreational-in-channel-diversion (RICD) structures was designated as over-appropriated. This designation significantly changes well permitting in this area. As a result of this designation, the UYWCD filed an "umbrella" plan of augmentation and exchange. The plan is to establish a framework whereby water users can be included directly into a decreed plan of augmentation that uses UYWCD water rights decreed for augmentation use to replace out-of-priority depletions. The plan is designed to provide augmentation water downstream beyond the RICD structures to the confluence of Elkhead Creek and the Yampa River.

The Water Court decreed the City of Steamboat Springs RICD in December 2005 and amended it in March 2006. Though there was no call for this water right in 2006, flows in the Yampa River did occasionally drop below the decreed RICD flow amounts. Figure 1 shows the average daily flows on the Yampa River at Steamboat Springs, these daily flows plus an additional 20% which was
assumed as being those flows contributing from Soda Creek between the gage and the RICD structures, and the decreed flows. Before the City of Steamboat Springs can place a call for their water right, they must first install an additional gage station on the Yampa River, or on two tributaries that enter the Yampa River between the Yampa River at Steamboat Springs gage and the RICD structures. A representative of the City of Steamboat Springs contacted this office several times during the summer of 2006 inquiring about the type of measuring device required and who could operate and maintain the device(s).

Figure 1
Actual Flows vs. RICD Flows

The UYWCD is proposing to amend their existing Federal Energy Regulatory Commission (FERC) license to raise the storage level of Stagecoach Reservoir by 4-feet which would increase its capacity by 3,185 acre-feet. The present storage capacity of the reservoir is 33,275 acre-feet. The 4 -foot raise would only be in the spillway and not the dam itself. The justification for this additional storage is water supply, recreation use, threatened and endangered fisheries, increased power generation, and compliance with the Colorado Water Supply for the $21^{\text {st }}$ Century Act. In December 2006, the UYWCD submitted an application for Non-Capacity Related Amendment of Minor Hydropower Project License to FERC.

Some of the accomplishments of the past year for Division 6 include:

- Operated within our budget for 2006.
- Issuance of requests for the installation of operable headgates and measuring devices on Elkhead Creek below Elkhead Creek Reservoir and from the confluence of Elkhead Creek and the Yampa River downstream to the Green River.
- Completion of a full schedule of dam inspections.
- Met all final deadlines for the submittal of diversion and hydrographic records.
- Completed our water right and structure databases to conform to the Hydrobase structure.
- Tabulated all appropriative Federal Reserve water rights.
- Began project to enter all decreed structure locations into Hydrobase.
- Tabulated all newly decreed water rights (no backlog).

Workload

As demands for more water and the number of new users increase, the workload for the field staff is becoming over-whelming. The time demand on the Water Commissioner has gone beyond just water administration to include more field inspections, public relations and contacts to assist in educating the public about water administration. As for the office staff, the scenario is the same. The hydrographic branch continues to add more gages and be involved with statewide hydrographic issues and activities. The dam safety branch has an increasing amount of design review, plus follow-up inspections of aging dams. The Division Engineer continues to review all proposed rulings and decrees prior to them being signed; provide assistance to the Water Court when needed; review all applications for errors and provide the Water Court with requests for additional information when needed before the application is published; and review all engineering reports and provide comments to Denver or applicant's attorney. While a tremendous amount of effort is put into the review of proposed rulings and decrees and engineering reports it is believed that this effort pays off by obtaining decrees that are accurate, assure no injury to other water users, and are consistent with the agency's policies.

As the workload continues to increase, additional staff will soon be necessary. In 2006 this office submitted a decision item to increase the hours for the Water Commissioner covering Districts 54, 55, and 56. If this decision item passes, the position will also assist in water administration in District 44, particularly when releases from Elkhead Creek Reservoir are being made and need to be protected downstream to the Green River. The decision item is to increase the position from six to nine months. On the Yampa River, growth in the Steamboat Springs area, possible administration of the Steamboat RICD, and the potential reservoir releases from Elkhead Creek Reservoir for the endangered species will increase the workload of the office and field staff. In the White River drainage, energy development on Piceance Creek and Yellow Creek will require an ever-increasing
presence in the area. The Water Commissioner for this area is currently part-time, a situation that will most likely have to change.

Aside from the tabulation of many plans of augmentation and exchanges, the work of standardizing the coding for water rights and diversion records in Hydrobase is complete. Office staff is in the process of tabulating the Federal Reserved water rights, which should be complete by spring 2007.

Although the Water Rights Tabulation Committee did not meet in 2006, efforts continue to be made by the IT branch to incorporate the recommended coding changes. The Committee's goal is to have the IT branch complete the Hydrobase modifications for both the structures and water rights databases by the end of 2007. The Committee also intends to develop a list of diversion record modifications that can hopefully be incorporated into Hydrobase by fall 2008.

Personnel

Division Engineer Robert Plaska retired on June 30, 2006. Mr. Plaska worked for the Division of Water Resources for over 21 years. After spending two years in the Denver office, he was appointed Assistant Division Engineer for Division 3 in Alamosa. He held that position for 11 years before being appointed the Division Engineer for Water Division 6 in Steamboat Springs.

The Water Commissioner for District 44, Walter Bohrer, retired on August 31, 2006. Mr. Bohrer began working for Division 6 as a well inspector. After the well inspection program was discontinued, Mr. Bohrer became the Water Commissioner for Water District 44 in 1991. Prior to joining the Division of Water Resources team, Mr. Bohrer was an independent well driller.

Top Row L-R Bob Plaska (retired), Lynne Peters, Elvis Iacovetto, Kincaid Waldron, Erin Light, Walt Bohrer, Wes Signs (retired), Kent Holt (retired) Middle row -John Blair, Kathy Bower, Andy Schaffner, Bill Dunham, Rebecca Elder, Jean Ray ~ Bottom row - Sue Petersmann

At the end of July 2006, Hal Simpson appointed Erin Light, former Assistant Division Engineer and Hydrographer, as the Division Engineer. Jean Ray was then hired to take over the hydrographic and other water resource engineering duties. Prior to becoming a member of the Division of Water Resource team, Ms. Ray worked two years as an independent consultant through her company, Environmental Engineering and Evaluation, LLC; thirteen years for MWH in Steamboat Springs as

Senior Engineer, Project Engineer, Environmental/Water Group Manager, and Principal Engineer. She has also worked for Civil Design Consultants and the Denver Water Department.

Kathy Bower, former Water Commissioner for Districts 54, 55, and 56 was appointed the Water Commissioner for District 44 in October. The position for Districts 54, 55, and 56 remains open, but should be filled by the beginning of May 2007.

The Division 6 Water Commissioner of the Year for 2006 was Rebecca Elder. Ms. Elder is responsible for administration on the lower White River including the Piceance Creek watershed. Ms. Elder's personal strength to deal with the water users and ever changing water administration on Piceance Creek demonstrated her capabilities of being a top notch Water Commissioner and deserving of recognition. Mr. Jim Baller, a water user on the Michigan River, was recognized as the Division 6 Water User of the Year.

Appendix C shows the organization chart of Division 6.

Jack Byers, Dick Wolfe, Steve Witte, Mike Sullivan, Frank Kugel, Alan Martellero, Bob Plaska, Hal Simpson, Ken Knox, Bruce Whitehead

Training

Listed below are specific training opportunities attended by the staff of Division 6.

- Erin Light shadowed under Alan Martellaro (Division Engineer for Division 5) for one week.
- Erin Light participated in a mentoring program with Chief Deputy State Engineer, Ken Knox.
- Lynne Peters attended the Program Assistants training meeting in Ouray.
- The Division 6 office hosted and participated in the annual CWOA meeting.
- Jean Ray obtained hydrographic field training from George Wear and Erin Light.
- Jean Ray attended the NCWCD West to East Slope Tour (Colorado Big Thompson Project).
- Erin Light and Jean Ray attended the CRWCD 2006 Colorado River District Water Seminar.
- Jean Ray attended the annual Hydrographic Branch training.
- Jean Ray obtained CDOT Flagger training.
- Jean Ray obtained DCP/electronics training from David Hutchens.
- Jean Ray obtained hydrographic training (flow measurement and hydrographic records) from Chief Hydrographer, Tom Ley.
- John Blair attended HEC-HMS training in Maryland.
- John Blair and Erin Light attended the Community Ag Alliance 2006 Water Summit in Hayden.

In addition to these specific training sessions, time is set aside at both the spring and fall Division meetings to provide training to all staff on various areas, such an computer programs and water administration issues.

Water Year 2007

Key Objectives for 2007

Listed below are some of the key objectives for 2007.

- Fill the vacant Water Commissioner position for Districts 54, 55, and 56.
- Complete tabulation of Federal Reserved Water Rights.
- Substantially complete structure location database entry project.
- Continue working with State of Wyoming to finalize the revised combined administration list for the Little Snake River and submit it to the Upper Colorado River Compact Commission.
- Continue to work on tabulating plans of augmentation and exchanges.
- Evaluate the need for additional staffing and develop necessary background information to support a decision item for future budget consideration.
- Cooperate with Wyoming on identifying and implementing strategies for the delivery of reservoir water from High Savory Dam to users on the Little Snake River.
- Insure compliance with the provisions of the U.S. Supreme Court decision in Nebraska v. Wyoming.
- Complete all scheduled dam inspections.
- Submit all diversion and hydrographic records on time.
- Operate within our allocated budget.
- Provide resources, training and support to allow our office and field staff to perform their required duties in an efficient and professional manner.
- Provide technical assistance to the Yampa/White and North Platte Basin roundtables.
- Work with the water users on the lower Yampa River in understanding the administrative procedures associated with the delivery of reservoir releases for the endangered fish species.
Appendix A
RESERVOIR STORAGE SUMMARY BY DISTRICT
WATER YEAR 2006

WD	ID	RESERVOIR	SOURCE STREAM	AMOUNT IN STORAGE (AF)				
				Minimum		Maximum		End of Year
				Date	AF	Date	AF	
43	3500	WINDY BILL SPRING POND	EAST BEAVER CK	11/1/2005	6.5	7/17/2006	6.5	6.5
43	3501	LAKE GLORIA	PAPOOSECK	11/1/2005	4	6/16/2006	5	5
43	3529	LARSON RES NO 2	TRIBUTARIES-PICEANCE CK	8/7/2006	2	5/3/2006	6	3
43	3630	BAILEY LAKE RETAIN POND	SWEDE CK	11/1/2005	22.8	6/8/2006	22.8	22.8
43	3631	BARBOUR POND	MARVINE CK	11/1/2005	15	5/31/2006	15	15
43	3632	BEAVER LAKE RESERVOIR	VAUGHN CK	11/1/2005	66.45	5/31/2006	66.45	66.45
43	3633	BIG BEAVER CK RESERVOIR	BIG BEAVER CK	8/21/2006	7545	10/31/2006	7658	7658
43	3634	BLACK GULCH RES	BLACKS GULCH	11/1/2005	40.75	8/23/2006	40.75	40.75
43	3636	CABIN LAKE RESERVOIR	VAUGHN CK	11/1/2005	16.06	5/31/2006	16.06	16.06
43	3638	GOOSMAN RESERVOIR	ELK CK	11/1/2005	5.6	5/15/2006	5.6	5.6
43	3639	GREGOR RESERVOIR	VAUGHN CK	11/1/2005	47	5/31/2006	47	47
43	3642	JOHNNIE JOHNSON RESERVOIR	WHITE RIVER	10/31/2006	747	6/19/2006	1036	747
43	3643	KEYSTONE RES 2	PRICE CK	11/1/2005	0	3/12/2006	0	0
43	3644	KEYSTONE BEN PRICE RES	PRICE CK	7/26/2006	0	4/26/2006	100	0

43	3645	KEYSTONE RES 3	DEEP CHANNEL CK	7/26/2006	0	4/26/2006	31.2	18
43	3646	LADY LAKE	VAUGHN CK	11/1/2005	4.41	5/31/2006	4.41	4.41
43	3647	LARSON RES	TRIBUTARIES-PICEANCE CK	10/31/2006	1	11/1/2005	6	1
43	3649	LUNNEY RESERVOIR	NINE MILE DRAW	6/22/2006	49	11/1/2005	82.12	82.12
43	3651	MCGINNIS MEADOW RES	SOUTH SKINNY FISH CK	11/1/2005	87	6/2/2006	87	87
43	3652	MCHATTEN RESERVOIR	COAL CK	11/1/2005	0	5/16/2006	64.2	0
43	3656	PROCTER RESERVOIR	CURTIS CK	11/1/2005	0	4/13/2006	6.66	0
43	3657	SEVENTH LAKE RESERVOIR	VAUGHN CK	11/1/2005	31.62	5/31/2006	31.62	31.62
43	3658	SHADOW LAKE RESERVOIR	VAUGHN CK	11/1/2005	2.6	5/31/2006	2.6	2.6
43	3659	SKINNY FISH RESERVOIR	SKINNY FISH CK	11/1/2005	300.7	6/2/2006	300.7	300.7
43	3660	STUMP LAKE RESERVOIR	VAUGHN CK	11/1/2005	10.23	5/31/2006	10.23	10.23
43	3662	TRAPPERS LAKE RETAIN PD	NORTH FORK	11/1/2005	0.69	6/2/2006	0.69	0.69
43	3668	WATKIN RESERVOIR	COAL CK	11/1/2005	8	9/16/2006	8	8
43	3669	WEST MILLER RESERVOIR	WEST MILLER CK	11/1/2005	70	5/15/2006	77.8	77
43	3671	WILSON RES	EAST FLAG CK	9/14/2006	50	4/20/2006	103	52
43	3716	JOY JOY \& WATSON RES	FAWN CK	11/1/2005	5.88	8/4/2006	5.88	5.88
43	3718	PARSONS POND NO. 1	TRIBUTARIES-PICEANCE CK	11/1/2005	1.3	5/22/2006	1.3	1.3
43	3719	PARSONS POND NO. 2	TRIBUTARIES-PICEANCE CK	11/1/2005	1.3	5/22/2006	1.3	1.3
43	3722	JESSUP RESERVOIR	PICEANCE CK	4/3/2006	50000	9/5/2006	50000	50000
43	3723	JONES RESERVOIR	PICEANCE CK	4/3/2006	21000	9/5/2006	21000	21000
43	3731	STRAWBERRY L\&C POND 2	STRAWBERRY CK	11/1/2005	0.07	5/5/2006	0.07	0.07

$\begin{aligned} & \text { O} \\ & \hline \mathbf{O} \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 8 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { O-p } \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\llcorner }{\sim}$	$\begin{aligned} & \stackrel{\bullet}{\Gamma} \\ & \stackrel{1}{2} \end{aligned}$	10	$\stackrel{\square}{\square}$	$\begin{aligned} & \text { O} \\ & \hline \mathbf{N} \end{aligned}$	$\begin{gathered} \bar{i} \\ \dot{o} \end{gathered}$	$\begin{aligned} & \hat{e} \\ & \dot{e} \end{aligned}$	－	$\stackrel{6}{6}$	$\mathscr{+}$	の	－	$\stackrel{\sim}{\sim}$	10	$\begin{aligned} & \mathbf{O} \\ & 0 \\ & \end{aligned}$	$\begin{aligned} & \text { O-O } \\ & \text { N } \end{aligned}$	$\stackrel{\text { N }}{\text { N }}$
$\begin{aligned} & \text { O-O} \\ & \hline ্ ల \end{aligned}$	\circ 8 6	\circ 8	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{10}{\sim}$	$\begin{aligned} & \stackrel{\oplus}{\Gamma} \\ & \hline \end{aligned}$	10	$\stackrel{\square}{\square}$	$\begin{aligned} & \text { O} \\ & \hline \mathbf{N} \end{aligned}$	$\begin{aligned} & \bar{i} \\ & \dot{o} \end{aligned}$	$\begin{aligned} & \hat{e} \\ & \dot{e} \end{aligned}$	\checkmark	\bigcirc	io	$\stackrel{\square}{\square}$	－	\sim	\bigcirc	\circ 8 $\stackrel{0}{2}$	－	$\stackrel{\text { N }}{\text { N }}$
	8 \mathbf{O} N N	\circ - N N N 0	$\begin{aligned} & 8 \\ & \mathbf{O} \\ & \stackrel{N}{N} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & N \\ & \frac{1}{6} \end{aligned}$	\circ - N N N	\circ 8 \mathbf{N} 0 O． N	$\begin{aligned} & 8 \\ & 0 \\ & \stackrel{0}{N} \\ & \underset{\vdots}{\top} \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{O}{N} \\ & \stackrel{N}{\top} \end{aligned}$	$\begin{aligned} & 8 \\ & \mathbf{O} \\ & N \\ & N \\ & N \end{aligned}$	\circ $\stackrel{\circ}{2}$ $\stackrel{1}{\sigma}$ $\stackrel{3}{\sigma}$	$\begin{aligned} & 0 \\ & 0 \\ & N \\ & \frac{1}{5} \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{8}{N} \\ & \stackrel{i}{i} \end{aligned}$	0 N O N N	$\begin{aligned} & 0 \\ & \hline \mathbf{N} \\ & \text { N } \\ & \stackrel{N}{N} \end{aligned}$	$$	$\begin{aligned} & 8 \\ & \stackrel{O}{\mathrm{~N}} \\ & \stackrel{N}{5} \end{aligned}$	$\begin{aligned} & 8 \\ & \mathbf{O} \\ & N \\ & N \\ & N \end{aligned}$		\circ 0 N N 1	0 8 N ¢ －
8 $\stackrel{8}{6}$ \sim	$\begin{aligned} & \mathrm{O} \\ & \text { N } \\ & \text { N } \end{aligned}$	O O	$\begin{aligned} & 8 \\ & \hline 0 \\ & \hline 1 \end{aligned}$	$\stackrel{1}{\sim}$	$\stackrel{\bullet}{\dot{\Gamma}}$	${ }^{\circ}$	$\stackrel{\leftrightarrow}{\stackrel{N}{0}}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{N} \end{aligned}$	$\begin{aligned} & \bar{\lambda} \\ & \dot{o} \end{aligned}$	\hat{e}	\checkmark	$\stackrel{\bigcirc}{6}$	ㅇ	の	\ulcorner	\sim	－	$\begin{aligned} & \mathbf{O} \\ & 0 \\ & \text { M } \end{aligned}$	＋	$\stackrel{\text { N }}{\sim}$
0 N I V	$\begin{aligned} & 0 \\ & \mathbf{O} \\ & \text { N } \\ & \underset{i}{N} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & N \\ & N \\ & N \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \bullet \\ & \stackrel{O}{N} \\ & \stackrel{N}{0} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{0}{N} \\ & \underset{i}{7} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N} \\ & \stackrel{N}{7} \\ & i \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { N } \\ & \stackrel{N}{5} \\ & \vdots \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{Q}{N} \\ & \stackrel{i}{\infty} \end{aligned}$	0 - N O． N	$\begin{aligned} & \text { n} \\ & \text { N} \\ & \stackrel{N}{7} \\ & \vdots \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & N \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { N } \\ & \stackrel{N}{7} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { N } \\ & \stackrel{N}{7} \\ & \vdots \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & N \\ & N \\ & \underset{\infty}{N} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{0}{N} \\ & \stackrel{i}{7} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \mathbf{N} \\ & \stackrel{N}{i} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{0}{N} \\ & \underset{i}{7} \end{aligned}$	$\begin{aligned} & \text { n} \\ & \text { N} \\ & \stackrel{N}{7} \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { Q} \\ & \text { N } \\ & \stackrel{N}{i} \\ & i \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{8}{N} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	
		$\begin{aligned} & \frac{y}{0} \\ & 5 \\ & \stackrel{M}{3} \\ & 3 \end{aligned}$	$\begin{aligned} & y \\ & \vdots \\ & 5 \\ & \stackrel{M}{3} \end{aligned}$					$\begin{aligned} & \frac{y}{U} \\ & \leftarrow \\ & \stackrel{\mu}{3} \end{aligned}$	y 0 0 0 0 0			$$	$\begin{aligned} & y \\ & \vdots \\ & \frac{1}{0} \\ & 0 \end{aligned}$		$\begin{aligned} & \underset{0}{y} \\ & \underline{0} \\ & 1 \\ & \underset{y}{c} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { y u } \\ & \text { tr } \\ & \text { ron } \end{aligned}$	$$			
					- 0 2 0 0 0 0 I 0 0 0	N 0 2 1 0 0 0 1 0 1 0 0 0					- 0 2 0 2 0 0 1								10 2 2 0 0 2 0 0 2 1 0	
$\stackrel{N}{N}$	$\underset{\mathrm{N}}{\mathrm{~N}}$	$\begin{aligned} & \text { M } \\ & \mathbf{\infty} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \mathbf{\infty} \end{aligned}$	ষ্ণ	$\begin{gathered} \text { ণ্寸 } \\ \text { N } \end{gathered}$	$$	$\underset{\underset{\sim}{N}}{N}$	$\begin{aligned} & \text { O} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \bar{\sigma} \\ & \underset{\gamma}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathbf{N}} \end{aligned}$	$\stackrel{N}{\mathbf{N}}$	－	$\stackrel{\text { N}}{\text { N}}$	$\stackrel{N}{\text { N}}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{N} \end{aligned}$	$\stackrel{5}{7}$	$\stackrel{M}{\text { \％}}$	\％	$\bar{¢}$
\％	$\stackrel{\Im}{7}$	$\stackrel{\Im}{+}$	¢	¢	\％	$\stackrel{\Im}{7}$	$\underset{\sim}{\sim}$	$\underset{\sim}{\text { O}}$	$\underset{\sim}{*}$	$\stackrel{\Im}{*}$	$\stackrel{\Im}{7}$	$\underset{\sim}{ }$	$\underset{\sim}{\text { ® }}$	$\stackrel{\Im}{7}$	$\underset{\sim}{\sim}$	$\stackrel{m}{+}$	$\underset{\sim}{ }$	$\stackrel{\Im}{7}$	$\stackrel{\text { º }}{ }$	$\stackrel{m}{+}$

43	4463	VANDIVER POND	TRIBUTARIES-NORTH FK	11/1/2005	24.83	10/4/2006	24.83	24.83
43	4497	BLUE MOUNTAIN RES	WOLF CK	4/5/2006	50000	5/11/2006	50000	50000
43	4499	REEVES RES	WOLF CK	4/5/2006	34000	5/11/2006	34000	34000
43	4504	TAYLOR RES	HUNTER CK	4/3/2006	81000	4/3/2006	81000	81000
			TOTAL FOR DISTRICT 43		388,670		429,624	428,861
44	3504	SULLIVAN RES LOWER	CEDAR CK	8/14/2006	37.4	8/14/2006	37.4	37.4
44	3673	WADDLE CKRES	WADDLE CK	5/18/2006	40.7	8/15/2006	40.7	40.7
44	3674	WILSON RESERVOIR	GOOD SPRING CK	6/16/2006	68.3	5/4/2006	69.5	68.3
44	3675	WYMAN RES	LITTLE BEAVER CK	6/19/2006	19.9	8/2/2006	40.3	37.2
44	3677	ANDERSON RES	NORTH FK of ELKHEAD CK	8/17/2006	45.8	5/24/2006	127.8	45.8
44	3681	BUNKER LAKE RES	BUNKER CK	8/10/2006	190.9	8/10/2006	190.9	190.9
44	3682	COVE LAKE RES	MORAPOS CK	5/12/2006	74.7	6/2/2006	74.7	74.7
44	3683	coveres	MORAPOS CK	6/2/2006	95	5/12/2006	115	98
44	3686	DRESCHER RES	BASIN GULCH	7/10/2006	155.9	4/17/2006	242.8	155.9
44	3688	DUNKLEY DEUBEAU RES	WILLOW CK	7/3/2006	36.82	5/17/2006	49.93	42.64
44	3689	DD\&ERES	MILK CK	8/15/2006	249	5/13/2006	1259	249
44	3701	POOSE CK RES	POOSECK	5/17/2006	279.8	7/27/2006	279.8	279.8
44	3702	ROBY RES	MORAPOS CK	8/23/2006	16.5	5/12/2006	25.9	16.5
44	3706	SELLERS CROWELL RES	WILLOW CK	5/17/2006	105.9	7/3/2006	105.9	105.9
44	3721	ELLGEN RESERVOIR	BELL ROCK GULCH	6/23/2006	64	5/8/2006	119.1	64
44	3722	ELLGEN RESERVOIR NO 2	MC LERNON DRAW	5/25/2006	0	5/8/2006	20.5	0

$\stackrel{N}{\dot{N}}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\dot{N}} \end{aligned}$	$\stackrel{\infty}{\oplus}$	$\frac{0}{\dot{F}}$	$\begin{aligned} & \text { Né } \\ & \hline 8 \end{aligned}$	\％	$\begin{aligned} & \text { ti } \\ & \stackrel{\rightharpoonup}{\theta} \end{aligned}$	\bigcirc	$\begin{aligned} & \text { 毋 } \\ & \underset{\sim}{\infty} \end{aligned}$	－	$\stackrel{\sim}{\sim}$	の	\bigcirc	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\sim}$	ค	\checkmark	a	\bigcirc	－
$\stackrel{\text { N}}{ }$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \infty \\ & \underset{\sim}{N} \end{aligned}$	$\stackrel{\infty}{\circ}$	$\stackrel{\Im}{\dot{J}}$	$\stackrel{\circ}{+}$	尔	＋	\bigcirc	$\stackrel{\infty}{\stackrel{\infty}{f}}$	－	$\stackrel{\square}{\square}$	\％	¢	ก	$\bar{\sigma}$	₹	∞	N	∞	\bullet
$\begin{aligned} & \text { B } \\ & \stackrel{0}{N} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{array}{r}\circ \\ \hline 0 \\ \text { 믄 } \\ \hline 1\end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \frac{1}{5} \\ & \frac{1}{5} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { N } \end{aligned}$	O N N －		\circ 0 N N	\circ 0 0 5 5 5	$\begin{aligned} & \circ \\ & 0 \\ & \text { N } \\ & \text { ㅎN } \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \text { D } \\ & \text { 万 } \end{aligned}$		$\begin{aligned} & \text { LO} \\ & \text { N } \\ & \stackrel{N}{\Sigma} \end{aligned}$		8 $\stackrel{0}{\mathrm{~N}}$ N N	\circ \mathbf{N} N	8 0 0 0 5	8 0 0 0 5	\circ 0 0 0 i	$\begin{aligned} & 0 \\ & \stackrel{0}{N} \\ & \stackrel{N}{\mathcal{N}} \end{aligned}$	O N N N
$\stackrel{\grave{N}}{\dot{N}}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\dot{N}} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\stackrel{\Phi}{\dot{J}}$	$\stackrel{\text { N゙ }}{\text { g }}$	$\stackrel{\%}{\circ}$	$\begin{aligned} & \text { t } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	\bigcirc	$\stackrel{\infty}{\infty}$	ก	$\stackrel{\sim}{\mathrm{N}}$	の	\bigcirc	$\stackrel{\square}{\square}$	$\stackrel{ }{\sim}$	N	\bigcirc	\checkmark	\bigcirc	\bigcirc
$\begin{aligned} & \text { B } \\ & \stackrel{\rightharpoonup}{N} \\ & \stackrel{N}{7} \end{aligned}$	8 0 N i 1	$\begin{aligned} & 8 \\ & 0 \\ & \frac{1}{3} \\ & \frac{1}{5} \end{aligned}$		8 0 0 \vdots 5		8 \mathbf{N} N 15	8 0 N in in	$\begin{aligned} & \text { o} \\ & \text { N } \\ & \text { N } \\ & \text { 하 } \end{aligned}$			\circ 0 N 응 －	$\begin{aligned} & \text { B} \\ & \text { N } \\ & \stackrel{1}{N} \\ & \hline- \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{0}{5} \\ & \stackrel{y}{5} \end{aligned}$		\circ 0 N 응 －	$\begin{aligned} & \text { ®O } \\ & \stackrel{-}{N} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \text { ®O } \\ & \text { N } \\ & \underset{\sim}{5} \end{aligned}$		$\begin{aligned} & \text { no } \\ & \stackrel{N}{5} \\ & \underset{N}{7} \end{aligned}$	－
			$\begin{aligned} & \text { 등 } \\ & 3 \\ & 3 \\ & \underset{3}{3} \end{aligned}$	$\begin{aligned} & \text { 드 } \\ & \text { r } \\ & \stackrel{\rightharpoonup}{5} \\ & \text { © } \end{aligned}$			$\begin{aligned} & \text { Y } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \text { y } \\ & \text { z } \\ & 0 \\ & \text { Z } \\ & \text { Z } \\ & \text { D } \end{aligned}$								$\begin{aligned} & \text { 등 } \\ & \stackrel{\mathrm{r}}{\mathrm{~W}} \\ & \stackrel{\mathrm{O}}{\mathrm{O}} \end{aligned}$		
										JODY SPRING AND POND				ㅇ 0 ㄴ y			1 0 0 0 2 0 0 3 3			O 0 0 2 2 0
$\stackrel{\sim}{N}$	$\begin{aligned} & \text { op } \\ & \stackrel{N}{m} \end{aligned}$	$\stackrel{\infty}{ल}$	$\stackrel{\sim}{ల}$	$\underset{\substack{\text { den }}}{ }$	$\underset{\sim}{\underset{\sim}{0}}$	$\stackrel{N}{\underset{\sim}{\sim}}$	N్ల్ల	$\stackrel{N}{\tilde{f}}$		$\stackrel{\underset{\sim}{\sim}}{\stackrel{\infty}{\tau}}$	$\underset{\sim}{N}$	$\stackrel{\sim}{\sim}$	N్ల	O్ల్ల్ల	$\bar{\sim}$	N్ల్ల	M్ల్ల	弌	䎟	－
\％	\％	\％	\＃	\％	\％	\％	\％	F		F	F	\hat{F}	\hat{F}	F	F	＊	＇	F	F	$\hat{\gamma}$

\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	6	m	$\stackrel{\square}{\square}$	\bigcirc	\bigcirc	$\stackrel{\sim}{\mathrm{N}}$	∞	\bigcirc	$\stackrel{0}{0}$	\leftharpoondown	\sim	N	N	$\stackrel{\infty}{\square}$	\bigcirc	\bigcirc
-	の	O	$\stackrel{\infty}{\sim}$	윽	$\begin{aligned} & \infty \\ & \stackrel{\sim}{\mathrm{N}} \end{aligned}$	\bullet	$\stackrel{ \pm}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\Gamma}{\underset{\sim}{\sim}}$	∞	F	10	$\stackrel{10}{1}$	$\stackrel{\sim}{\square}$	안	은	N	$\stackrel{\infty}{\square}$	\bigcirc	은
\circ $\stackrel{N}{N}$ $\stackrel{\infty}{\infty}$		$\begin{aligned} & 8 \\ & \stackrel{8}{N} \\ & \stackrel{i}{N} \end{aligned}$	$\begin{aligned} & 0 \\ & \hline \\ & \\ & \vdots \\ & \end{aligned}$	8 8 N N N	8 \mathbf{O} $\stackrel{1}{6}$ $\frac{1}{5}$	$\begin{aligned} & 0 \\ & \stackrel{0}{N} \\ & \stackrel{N}{ } \\ & \underset{~}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{8}{N} \\ & \frac{1}{6} \end{aligned}$		$\begin{aligned} & 8 \\ & 0 \\ & \vdots \\ & \stackrel{0}{6} \end{aligned}$	8 N N N		\circ \mathbf{N} $\stackrel{1}{6}$ $\frac{1}{1}$	$\begin{aligned} & \circ \\ & \hline \\ & \text { N } \\ & \text { N} \end{aligned}$	8 N N N	$\begin{aligned} & n \\ & 0 \\ & \stackrel{0}{N} \\ & i \\ & i \end{aligned}$	8 N N N N	8 0 $\stackrel{1}{N}$ $\frac{1}{5}$	$\begin{aligned} & 8 \\ & 0 \\ & N \\ & \frac{N}{6} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & i \\ & i \\ & i \end{aligned}$	6 N N N N
0	-	O	\bigcirc	\bigcirc	*	m	\bullet	O	\bigcirc	$\stackrel{1}{\sim}$	N	\bigcirc	0	\checkmark	N	N	N	$\stackrel{\infty}{+}$	\bigcirc	\bigcirc
$\begin{aligned} & \text { B } \\ & \stackrel{0}{N} \\ & \stackrel{N}{7} \end{aligned}$	$\frac{60}{0}$	$\frac{L_{0}^{0}}{\stackrel{N}{i}}$	$\frac{L_{0}^{0}}{\substack{N}}$	$\begin{aligned} & 0 \\ & \hline \\ & N \\ & i \\ & i n \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{O}{N} \\ & \stackrel{1}{N} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{O}{2} \\ & N \\ & \underset{i}{\prime} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{2} \\ & \stackrel{i}{5} \end{aligned}$	$\begin{aligned} & \text { OO} \\ & \stackrel{0}{N} \\ & \stackrel{i}{7} \end{aligned}$		\circ 8 N N -	$\begin{aligned} & \otimes \\ & \stackrel{O}{N} \\ & \stackrel{1}{6} \\ & \frac{6}{i} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { N } \\ & \stackrel{N}{7} \\ & \end{aligned}$	8 8 N -2	$\begin{aligned} & 0 \\ & 0 \\ & N \\ & \text { N} \\ & \text { N } \end{aligned}$		\circ - N - 응	$\begin{aligned} & 0 \\ & 0 \\ & N \\ & \stackrel{N}{7} \\ & i \end{aligned}$	$\frac{\stackrel{6}{0}}{\substack{\mathrm{~N} \\ i}}$	$\frac{00}{0}$	O N N N N
																		$\begin{aligned} & \frac{y}{U} \\ & \underset{\sim}{u} \\ & \stackrel{\rightharpoonup}{E} \\ & 0 \end{aligned}$		
		I 5 0 8 8									CASE RES \#2 ANNEX POND				$\begin{aligned} & 0 \\ & \mathbf{\lambda} \\ & 0 \\ & \mathbf{~} \\ & 0 \\ & 0 \\ & \hline \mathbf{U} \end{aligned}$					
$\underset{N}{N}$	${\underset{N}{0}}_{\infty}^{\infty}$	$\begin{aligned} & \text { O/ } \\ & \stackrel{\sim}{0} \end{aligned}$	$\stackrel{\circ}{\mathbf{O}}$	$\underset{\sim}{\mathbf{5}}$	$\stackrel{\text { N }}{\mathbf{N}}$	$\stackrel{M}{\mathbf{N}}$	$\stackrel{ \pm}{\mathbf{G}}$	$\stackrel{5}{6}$	$$	$\stackrel{\mathbf{N}}{\mathbf{N}}$	$\stackrel{\infty}{\substack{\text { N/ }}}$	$\stackrel{8}{\mathbf{\circ}}$		$\stackrel{5}{5}$	$\begin{aligned} & N \\ & \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \end{aligned}$	N	¢	¢	N00
*	*	-	N	F	§	-	-	*	*	*	F	*	N	§	F	§	§	*	-	*

47	3558	FOX POND	SPRING CK	11/1/2005	0	4/10/2006	108	0
47	3559	GERM POND	TRIBUTARIES-ILLINOIS R	11/5/2005	28	8/17/2006	28	28
47	3560	GOOSE POND	TRIBUTARIES-ILLINOIS R	11/1/2005	34	4/25/2006	49	43
47	3561	GREASEWOOD POND	TRIBUTARIES-ILLINOIS R	4/25/2006	2.8	5/16/2006	5.5	3.5
47	3562	HAMPTON NO 1 POND	TRIBUTARIES-ILLINOIS R	8/17/2006	0	11/2/2005	0.6	0
47	3563	HAMPTON NO 2 POND	TRIBUTARIES-ILLINOIS R	10/31/2006	9	5/8/2006	16	9
47	3564	HAMPTON NO 3 POND	TRIBUTARIES-ILLINOIS R	11/2/2005	17	5/8/2006	22	20
47	3565	HOME POND	TRIBUTARIES-ILLINOIS R	11/1/2005	0	4/10/2006	13	1.5
47	3566	HORSESHOE POND	TRIBUTARIES-ILLINOIS R	8/7/2006	0	10/31/2006	0.3	0.3
47	3567	KITCHEN POND	TRIBUTARIES-ILLINOIS R	11/1/2005	9	5/15/2006	9	9
47	3568	LIVING ROOM POND	TRIBUTARIES-ILLINOIS R	11/1/2005	0.8	5/16/2006	6	4.5
47	3569	MARSH POND	ANTELOPE CK	8/31/2006	0	5/16/2006	15	0
47	3570	MCCAMMON POND NORTH	TRIBUTARIES-ILLINOIS R	8/20/2006	0	4/10/2006	8	0
47	3571	MCCAMMON POND SOUTH	TRIBUTARIES-ILLINOIS R	10/31/2006	9.5	4/10/2006	28	9.5
47	3572	N. TOUR ROUTE POND	TRIBUTARIES-ILLINOIS R	11/1/2005	0	4/25/2006	2	0.15
47	3573	OLD ROAD POND	TRIBUTARIES-ILLINOIS R	10/31/2006	0	11/1/2005	2.5	0
47	3574	ONE TVENTY FIVE POND	TRIBUTARIES-ILLINOIS R	8/17/2006	0	4/25/2006	6.5	0
47	3575	PATTEN POND	TRIBUTARIES-ILLINOIS R	10/31/2006	3.2	4/25/2006	9	3.2
47	3576	POTHOLE POND	TRIBUTARIES-ILLINOIS R	11/1/2005	0	5/30/2006	7	0
47	3577	PRAIRIE DOG POND	ANTELOPE CK	10/31/2006	0.8	4/25/2006	12	0.8
47	3578	RAT DITCH POND	TRIBUTARIES-ILLINOIS R	8/20/2006	3	4/25/2006	7.6	4.4

$\stackrel{\infty}{\stackrel{-}{+}}$	－	－	O	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	N	＊	0	$\stackrel{1}{\sim}$	응	$\stackrel{18}{8}$	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \end{aligned}$	V	$\bar{\infty}$	ल	$\stackrel{\odot}{\sim}$	F
N゙	＊	\bullet	－	－	$\stackrel{\sim}{\stackrel{\circ}{N}}$	$\stackrel{\sim}{\sim}$	－	N	$\begin{aligned} & \text { م } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	の	8	응	¢	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	0	$\stackrel{\text { ¢ }}{\sim}$	∞	¢	$\stackrel{m}{\sim}$
8 N N N	8 N N N	$\begin{aligned} & 8 \\ & \stackrel{O}{N} \\ & \stackrel{N}{N} \\ & \stackrel{N}{V} \end{aligned}$		$\begin{aligned} & 8 \\ & 0 \\ & \stackrel{0}{N} \\ & \frac{15}{7} \end{aligned}$		\circ N N N N	\circ N N N	8 N N 	$\begin{aligned} & 0 \\ & \stackrel{O}{N} \\ & \stackrel{\rightharpoonup}{0} \\ & \frac{1}{7} \end{aligned}$	8 N N 	$\begin{aligned} & 8 \\ & \stackrel{8}{N} \\ & \stackrel{+}{ \pm} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{O}{\mathrm{~N}} \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$	$\begin{aligned} & 0 \\ & \text { O} \\ & \text { N } \\ & \frac{1}{6} \end{aligned}$	8 		$\begin{aligned} & \circ \\ & \stackrel{O}{N} \\ & \stackrel{N}{\top} \\ & \frac{7}{7} \end{aligned}$	8 0 N $\stackrel{0}{-}$	$\begin{aligned} & 8 \\ & \mathbf{0} \\ & \stackrel{y}{6} \\ & \frac{1}{5} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{N} \\ & \stackrel{N}{N} \end{aligned}$	
$\stackrel{\infty}{\sim}$	－	－	－	\bigcirc	0	\bigcirc	－	0	∞	\bigcirc	0	$\stackrel{10}{\sim}$	－	$\stackrel{6}{8}$	$\stackrel{\varphi}{\varrho}$	－	$\bar{\infty}$	\cdots	아	欠ু
	\circ \mathbf{O} N $\stackrel{m}{0}$ ∞	$\begin{aligned} & 0.0 \\ & \text { N} \\ & \text { N} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \text { n} \\ & 0 \\ & N \\ & N \\ & \stackrel{N}{5} \end{aligned}$	$\begin{aligned} & \text { n} \\ & \text { N} \\ & \text { N } \\ & \underset{\sim}{5} \end{aligned}$	$\begin{aligned} & 0 \\ & \hline \mathbf{O} \\ & \stackrel{N}{N} \\ & \stackrel{i}{\infty} \end{aligned}$	$\begin{aligned} & 0.0 \\ & \text { N} \\ & \text { N } \\ & \text { N } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \stackrel{N}{7} \\ & i \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { N } \\ & \stackrel{N}{7} \\ & \vdots \end{aligned}$	$\begin{aligned} & 0 \\ & \text { O} \\ & \text { N } \\ & \stackrel{N}{5} \end{aligned}$	$\begin{aligned} & \text { n} \\ & \text { N } \\ & \stackrel{N}{5} \\ & \underset{i}{2} \end{aligned}$	$\stackrel{\circ}{\circ}$ $\stackrel{N}{N}$ i i	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \stackrel{i}{\circ} \\ & \frac{1}{\sigma} \end{aligned}$	$\begin{aligned} & \text { n} \\ & \text { N } \\ & \stackrel{N}{5} \\ & \underset{i}{2} \end{aligned}$	0 N \vdots -	$\begin{aligned} & 0 \\ & \mathbf{0} \\ & \text { N } \\ & \text { N } \end{aligned}$			$\begin{aligned} & \text { Q} \\ & \text { N } \\ & \text { ì } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { O} \\ & \text { N } \\ & \vdots \\ & -i \end{aligned}$	O N － －
													$\begin{aligned} & \underset{U}{u} \\ & \underset{~}{\underset{~}{4}} \end{aligned}$	$\begin{aligned} & \text { y } \\ & 0 \\ & 0 \\ & \underset{\sim}{4} \\ & \stackrel{\rightharpoonup}{u} \\ & \hline 0 \end{aligned}$				$\begin{aligned} & \frac{y}{U} \\ & \underset{\sim}{u} \\ & \stackrel{\rightharpoonup}{E} \\ & 0 \end{aligned}$		
$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \\ & 0 \\ & \underset{\sim}{O} \\ & \frac{N}{\alpha} \end{aligned}$		I 7 0 1	$\begin{aligned} & \text { Q } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \boxed{n} \end{aligned}$		I 5 0 0 0 0 0 0 1 0 0 0 1						0 3 1 3									
$\begin{aligned} & 9 \\ & \stackrel{9}{9} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { O/ } \end{aligned}$	$\begin{aligned} & \bar{\infty} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \infty \\ & \substack{\infty \\ 0} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 0 \\ & 0 \end{aligned}$	$\begin{gathered} \hat{\infty} \\ \stackrel{\sim}{0} \end{gathered}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \text { 8 } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { J } \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \text { ழ } \\ & \text { N0 } \end{aligned}$	$\begin{aligned} & \text { N/ } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \underset{\sim}{4} \end{aligned}$	$\begin{aligned} & \stackrel{9}{\circ} \\ & \mathbf{0} \end{aligned}$	－	\％	N	\％
\hat{F}	$\hat{*}$	$\hat{*}$	\hat{F}	$\hat{*}$	§	－	$\hat{\sim}$	$\hat{*}$	＊	\hat{j}	$\hat{*}$	N	－	今	$\hat{*}$	$\hat{*}$	N	V	－	§

-	-	-	$\stackrel{\text { N}}{\text { N }}$	$\stackrel{9}{7}$	$\stackrel{\text { \% }}{\sim}$	$\begin{aligned} & 0 \\ & \underset{\sim}{+} \end{aligned}$	ㅇ	「	-	$\stackrel{\infty}{\sim}$	*	∞	\%	๑	$\stackrel{\Gamma}{\top}$	$\stackrel{\sim}{N}$	\bigcirc	$\stackrel{\text { }}{ }$	\cdots	$\stackrel{1}{\sim}$
0	\cdots	-	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{\Gamma}$	-	$\underset{\text { N }}{\substack{\text { N }}}$	ㅇ	$\stackrel{N}{\sim}$	$\stackrel{\sim}{N}$	N	\bullet	$\stackrel{\text { ® }}{\sim}$	\%	¢	$\stackrel{\Gamma}{N}$	¢	∞	$\stackrel{m}{+}$	$\stackrel{3}{9}$	$\stackrel{1}{\sim}$
	$\begin{aligned} & 0 \\ & \mathbf{O} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$		$\begin{aligned} & 8 \\ & 0 \\ & \underset{N}{N} \\ & \underset{\sim}{f} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & N \\ & \frac{1}{5} \end{aligned}$		$\begin{aligned} & 8 \\ & \stackrel{8}{N} \\ & \stackrel{N}{i} \\ & i \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{0}{N} \\ & \stackrel{N}{N} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{O}{N} \\ & N \\ & N \\ & N \end{aligned}$	$\begin{aligned} & 8 \\ & \text { O} \\ & \text { N } \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{N} \\ & \stackrel{i}{f} \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{0}{\mathrm{~N}} \\ & \stackrel{i}{5} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { N } \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { N} \\ & \stackrel{N}{n} \\ & \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \stackrel{N}{n} \\ & \stackrel{n}{n} \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & \stackrel{N}{6} \\ & \frac{6}{7} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{N} \\ & \stackrel{i}{i} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & N \\ & \stackrel{0}{i} \end{aligned}$		$\begin{aligned} & \text { O} \\ & \hline \mathbf{N} \\ & \underset{i n}{i} \end{aligned}$	
-	-	-	$\stackrel{\bigcirc}{N}$	F	$\underset{N}{N}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\ominus}{\sim}$	$\stackrel{\infty}{\sim}$	-	F	m	∞	N	\bigcirc	$\stackrel{N}{\infty}$	$\stackrel{\sim}{N}$	\bigcirc	$\stackrel{\square}{\square}$	\cdots	$\stackrel{1}{\sim}$
$\begin{aligned} & 0 \\ & 0 \\ & \text { N } \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{N} \\ & \underset{i}{7} \end{aligned}$	$\begin{aligned} & \stackrel{6}{0} \\ & \text { N } \\ & \stackrel{N}{5} \\ & \underset{~}{2} \end{aligned}$	\circ 0 N N N	$\begin{aligned} & 8 \\ & \mathbf{O} \\ & \stackrel{N}{N} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & N \\ & \vdots \\ & \text { N } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \text { O} \\ & \text { N } \\ & \text { O} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & \stackrel{0}{N} \\ & \underset{i}{5} \end{aligned}$	$\begin{aligned} & \text { n} \\ & \text { N } \\ & \stackrel{N}{7} \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { N} \\ & \stackrel{N}{ } \\ & \underset{ }{2} \end{aligned}$		$\begin{aligned} & \text { n } \\ & \text { N } \\ & \stackrel{N}{5} \\ & \underset{~}{2} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{0}{N} \\ & \stackrel{N}{7} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{O} \\ & \underset{N}{N} \\ & \underset{\infty}{N} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \mathbf{O} \\ & \stackrel{N}{7} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { y } \\ & \text { 웅 } \end{aligned}$			$\begin{aligned} & \text { Q } \\ & \text { N } \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{N} \\ & \stackrel{N}{7} \end{aligned}$	
	$\begin{aligned} & y \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { y } \\ & 0 \\ & 0 \\ & \underset{\sim}{4} \\ & \underset{\sim}{u} \\ & \stackrel{\rightharpoonup}{u} \end{aligned}$	$\begin{aligned} & \underset{U}{u} \\ & \dot{u} \\ & \frac{0}{1} \\ & \frac{1}{a} \\ & \frac{1}{\alpha} \\ & \frac{\gamma}{4} \end{aligned}$	$\begin{aligned} & \underline{u} \\ & \underset{\sim}{u} \\ & \overline{\bar{x}} \end{aligned}$		$\begin{aligned} & \text { y } \\ & \text { n } \\ & \frac{1}{1} \\ & 0 \\ & e \end{aligned}$		$\begin{aligned} & \underset{U}{y} \\ & z \\ & \underset{u}{U} \\ & \frac{1}{X} \\ & \underset{\Sigma}{\omega} \end{aligned}$				$\begin{aligned} & \text { y } \\ & \text { co } \\ & 0 \\ & 0 \\ & 0 \\ & \text { dy } \end{aligned}$								
$\begin{aligned} & \underset{\sim}{w} \\ & \underset{\sim}{r} \\ & \underset{\sim}{c} \\ & \stackrel{\sim}{c} \end{aligned}$	$\begin{aligned} & \underset{\sim}{u} \\ & \text { ur } \\ & \underset{\sim}{\underset{u}{u}} \\ & \underset{j}{3} \end{aligned}$					MACFARLANE RES											$\begin{aligned} & \infty \\ & \underset{\sim}{u} \\ & \infty \\ & \vdots \\ & \vdots \end{aligned}$			
$\begin{aligned} & \text { İ } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}$	oㅇ	$\stackrel{m}{e}$	$\underset{i}{\stackrel{\rightharpoonup}{6}}$	$\frac{6}{6}$	$\frac{0}{6}$	$\begin{aligned} & \text { O} \\ & \text { N} \end{aligned}$	$\stackrel{\bar{N}}{\stackrel{N}{N}}$	N্ল゙	$\stackrel{\substack{N \\ \mathbf{N} \\ \hline}}{ }$	N00	$\begin{aligned} & \text { O} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \text { Nop } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \hline ్ ల ్ ల ~ \end{aligned}$	N్ల్లి	$\begin{aligned} & \text { O} \\ & \text { Con } \end{aligned}$	-	\%
$\hat{\forall}$	$\hat{\forall}$	$\hat{\sim}$	$\hat{\forall}$	$\hat{*}$	$\hat{*}$	*	$\hat{\forall}$	$\hat{\forall}$	$\hat{*}$	$\hat{*}$	$\hat{*}$	V	§	V	$\hat{\gamma}$	V	$\hat{*}$	N	$\hat{\sim}$	*

8	\bigcirc	\bigcirc	$\stackrel{ \pm}{*}$	$\stackrel{10}{0}$	N	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{m}{\Gamma}$	－	$\stackrel{m}{m}$	\bullet	$\stackrel{\sim}{*}$	$\stackrel{m}{\sim}$	$\stackrel{+}{*}$	\bigcirc	\bigcirc	$\stackrel{\infty}{\dot{+}}$		－	＋
8	$\stackrel{\sim}{\sim}$	\bigcirc	$\stackrel{ \pm}{*}$	$\stackrel{\square}{\square}$	N	N	ค	$\stackrel{10}{\square}$	m	$\stackrel{\odot}{\circ}$	$\stackrel{\sim}{\infty}$	N	N	N	－	$\stackrel{\odot}{\circ}$	$\begin{aligned} & \underset{\sim}{\mathbf{j}} \end{aligned}$	$\begin{gathered} \stackrel{\Im}{\dot{N}} \\ \underset{\sim}{2} \end{gathered}$	$\stackrel{\infty}{\circ}$	$\stackrel{\infty}{\sim}$
8 \mathbf{N} $\stackrel{0}{6}$ $\frac{1}{i}$	$\begin{aligned} & 0 \\ & \stackrel{0}{N} \\ & \underset{i}{7} \end{aligned}$	0 N N N	8 8 N 0 6	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 0 \\ & N \\ & N \\ & \hline 10 \end{aligned}$	$\begin{aligned} & 0 \\ & \hline \mathbf{O} \\ & \stackrel{N}{N} \\ & \hline 15 \end{aligned}$			$\begin{aligned} & 0 \\ & \stackrel{0}{N} \\ & \underset{i}{7} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & N \\ & 0 \\ & i \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & N \\ & \frac{1}{6} \\ & \hline 10 \end{aligned}$	8 \mathbf{O} $\stackrel{0}{6}$ $\frac{1}{i}$	$\begin{aligned} & 0.0 \\ & 0 \\ & \text { N } \\ & 0 \\ & \hline 10 \end{aligned}$	0 N N N N	\circ 0 N N N	0 $\stackrel{0}{2}$ $\stackrel{N}{7}$ $\underset{i}{7}$	8 0 N in	$\begin{aligned} & 8 \\ & \hline \mathbf{O} \\ & \text { N } \\ & \text { N } \end{aligned}$	8 0 N 0 0	8 N 0 0 0
8	\bigcirc	0	$\stackrel{ \pm}{\square}$	10	N	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	O	$\stackrel{m}{\infty}$	\bullet	$\stackrel{\sim}{*}$	－	10	\bigcirc	－	$\stackrel{\infty}{\dot{+}}$	$\stackrel{\stackrel{N}{\mathrm{O}}}{\underset{\Gamma}{\prime}}$	∞ ∞	$\stackrel{\infty}{\circ}$
$\begin{aligned} & \text { n } \\ & \text { O} \\ & \stackrel{N}{5} \\ & i \end{aligned}$	\circ - N N N O	$\begin{aligned} & \text { n O} \\ & \text { N } \\ & \underset{i}{7} \end{aligned}$	$\begin{aligned} & \text { n O} \\ & \stackrel{0}{N} \\ & \stackrel{i}{7} \end{aligned}$		$\begin{aligned} & 0 \\ & \text { O} \\ & \stackrel{N}{5} \\ & \underset{F}{7} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{0}{N} \\ & \underset{i}{7} \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{\circ}{N} \\ & \stackrel{N}{5} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \hline \mathbf{N} \\ & \stackrel{N}{N} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { N} \\ & \vdots \\ & \text { N } \end{aligned}$		$\begin{aligned} & \text { n } \\ & \text { O} \\ & \text { N } \\ & \vdots \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{O}{N} \\ & \stackrel{N}{m} \\ & \infty \end{aligned}$	\circ $\stackrel{\circ}{O}$ $\stackrel{N}{N}$ $\underset{\infty}{-}$	$\begin{aligned} & 0 \\ & \stackrel{O}{2} \\ & N \\ & \underset{i}{N} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{N} \\ & \stackrel{N}{N} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{N} \\ & \stackrel{N}{N} \end{aligned}$	0 \mathbf{O} N ì 6	$\begin{aligned} & 0.0 \\ & \text { N} \\ & \text { N} \\ & \text { N} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{O}{N} \\ & \stackrel{N}{N} \end{aligned}$	－
			$\begin{aligned} & \frac{y}{0} \\ & 3 \\ & 0 \\ & \vdots \\ & \vdots \\ & \frac{0}{0} \end{aligned}$		$\begin{gathered} \text { y } \\ \text { 足 } \\ \text { 山̈ه } \end{gathered}$										$\begin{aligned} & \stackrel{\gamma}{\mu} \\ & \underset{\sim}{\mu} \\ & \underline{\alpha} \\ & \underline{O} \\ & \underline{Z} \\ & \vdots \end{aligned}$					
				9 0 0 0 0 0 2		$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & \omega \\ & \underset{\Sigma}{\Sigma} \end{aligned}$														
앙	$$	$\begin{aligned} & \text { M్ల } \\ & \text { COM } \end{aligned}$	$\begin{aligned} & \text { H } \\ & \hline 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{8} \\ & \stackrel{0}{9} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{0}{e} \end{aligned}$	$\stackrel{\Gamma}{\hat{e}}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{M}{2} \end{aligned}$	$\stackrel{n}{0}$	$\begin{aligned} & \stackrel{N}{\grave{0}} \\ & \hline \mathbf{N} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{e}}$	$\begin{aligned} & \stackrel{9}{2} \\ & \stackrel{e}{0} \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { + } \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\otimes}{0} \\ & \text { en } \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \text { O} \end{aligned}$	O	\％
§	N	才	$\hat{*}$	$\hat{\sim}$	$\hat{\sim}$	V	F	$\hat{\forall}$	$\hat{*}$	＊	$\hat{*}$	$\hat{*}$	N	V	$\hat{\sim}$	$\hat{\sim}$	$\hat{\forall}$	$\hat{\forall}$	V	＊

47	3692	HOFMANN POND \#5	NO NAME CK	11/1/2005	0.6	5/30/2006	1.12	1.12
47	3693	HOFMANN POND \#6	NO NAME CK	11/1/2005	2.2	9/26/2006	4.26	4.26
47	3694	EAST TROWNSELL POND	ARAPAHOE CK	11/1/2005	1.9	7/26/2006	2.4	2.4
47	3695	LOWER TROWNSELL POND	ARAPAHOE CK	7/26/2006	1.3	11/1/2005	2	1.3
47	3696	MCQUERY POND	BIG GRIZZLY CK	11/1/2005	4.5	7/26/2006	4.5	4.5
47	3697	SCHROEDER POND	SOAP CK	8/17/2006	0.1	5/30/2006	0.7	0.7
47	3698	DEER CREEK STOCK POND	DEER CK	6/30/2006	0	4/10/2006	0.05	0
47	3699	LAKE JOHN ANNEX	LAKE CK	7/1/2006	450	11/1/2005	900	900
47	3700	HOFMANN POND \#6A	NO NAME CK	11/1/2005	0.15	5/15/2006	1.16	1.11
47	3725	ADDISON RESERVOIR	BUFFALO CK	7/12/2006	14	11/1/2005	41.5	41.5
47	3726	AQUA FRIA RES	BEAVER CK of ROARING FK	11/10/2005	846	6/20/2006	846	846
47	3742	LAUNE RESERVOIR	TRIBUTARIES	7/10/2006	1637	9/14/2006	2501	2501
47	3743	SEYMOUR RES	BIG GRIZZLY CK	7/12/2006	83	4/20/2006	525	525
47	3744	COYTE RESERVOIR	ARAPAHOE CK	11/1/2005	24	4/24/2006	38.5	38.5
47	3746	POLE MOUNTAIN RES	MIDDLE FK of MEXICAN CK	11/1/2005	958	6/1/2006	1754	1545
47	3750	LAKE JOHN	LAKE CK	7/15/2006	6750	11/1/2005	7092	7092
47	3753	NORTH MICHIGAN CK RES	NORTH FK of MICHIGAN R	11/1/2005	1283	5/2/2006	1324	1285
47	3756	HOUSE RES	LOST CK	11/1/2005	45	4/11/2006	45	45
47	3757	RIDINGS RES	BUFFALO CK	11/1/2005	0	4/20/2006	46	0
47	3766	ROCK RESERVOIR	NEWCOMB CK	11/1/2005	0	6/15/2006	18	0
47	3777	NINEGAR RESERVOIR	NINEGAR CK	6/22/2006	0	4/20/2006	24	24

47	3778	FISCHER LAKE	MICHIGAN RIVER	4/27/2006	49.8	5/20/2006	58.4	58.4
47	4335	MEADOW CREEK RES	MEADOW CK	9/2/2006	1584	5/5/2006	5015	2525
47	4354	LATHAM RES	NEWCOMB CK	11/1/2005	21	6/15/2006	21	21
47	4356	MUDDY PASS RES	BIG GRIZZLY CK	11/1/2005	54	4/13/2006	58	58
47	4358	WADE LAKE	NINEGAR CK	11/1/2005	51	4/20/2006	51	51
47	4432	SPRING CK RES	SPRING CK	9/5/2006	33	4/26/2006	50	50
47	4433	MUSKRAT POND	POTTER CK	10/31/2006	3.6	5/10/2006	378	3.6
			TOTAL FOR DISTRICT 47		21,819		37,622	27,667
54	3589	ELK LAKE RES	WILLOW CK	8/15/2006	0	7/1/2006	100	0
54	3780	MARTIN CULL RESERVOIR	FOUR MILE CK	8/15/2006	34.84	8/15/2006	34.84	34.84
54	3946	MCCARGER RES	INDEPENDENCE CK	6/6/2006	64	6/6/2006	64	64
			TOTAL FOR DISTRICT 54		99		199	99
56	3506	DOUGLAS RESERVOIR	COTTONWOOD CK	6/24/2006	1	6/10/2006	3	1
56	3710	BASSETT RESERVOIR NO 1	MATT SPRING CK	7/21/2006	10.9	7/21/2006	10.9	10.9
56	3712	DRY LAKE RESERVOIR	DRY CK of POT CK	4/17/2006	10	4/17/2006	10	10
56	3713	HAUNTED SPG RES	HAUNTED SPG GULCH	3/8/2006	0	3/7/2006	4	0
56	3715	OFFIELD RESERVOIR	POTCK	4/17/2006	300	4/17/2006	300	300
56	3740	BASSETT RESERVOIR NO 2	BULL CANYON	7/21/2006	0	7/21/2006	0	0
56	3901	MATT WERNER RESERVOIR	POT CK	10/31/2006	2800	4/17/2006	3945	2800
56	3903	CALDER RESERVOIR NO. 2	POT CK	10/31/2006	1250	4/17/2006	16000	1250
56	3904	CROUSE RESERVOIR	POTCK	10/31/2006	645	4/17/2006	1160	645
56	4452	HOUSE RESERVOIR	ANTONE CANYON	5/16/2006	15	5/16/2006	15	15
56	4453	IRISH LAKE	IRISH LAKE BASIN	5/16/2006	100	5/16/2006	100	100
			TOTAL FOR DISTRICT 56		5132		21548	5132

57	3500	SENECA MINE POND 006	HUBBERSON GULCH	9/7/2006	13.05	5/4/2006	14.23	14.23
57	3501	SEDIMENTATION POND A	FOIDEL CK	11/1/2005	210	10/31/2006	210	210
57	3516	WOLF MOUNTAIN RES	WOLF CK	11/1/2005	80	4/25/2006	82	81
57	3523	PEABODY POND Y-1	SAGE CK	11/1/2005	14.23	10/31/2006	14.23	14.23
57	3537	MINE 3 NORTH POND	MIDDLE CK	11/1/2005	11	10/31/2006	11	11
57	3538	MINE 3 SOUTH POND	MIDDLE CK	11/1/2005	41	10/31/2006	41	41
57	3541	HUNTER NO 1 RES	MIDDLE CK	11/1/2005	3	5/1/2006	10	3
57	3543	CAMPSITE RESERVOIR	SMUIN GULCH	11/1/2005	2	10/31/2006	2	2
57	3549	APPLE RES	DRY FORK	11/1/2005	0	5/9/2006	11	2
57	3551	BROCK RESERVOIR	BROCK GULCH	11/1/2005	1	5/1/2006	6	4
57	3555	ECKMAN PARK RES 1	FOIDEL CK	11/1/2005	2	5/1/2006	4	3
57	3560	EMRICH RES	TEMPLE GULCH	11/1/2005	0	4/8/2006	175	0
57	3564	GREASEWOOD FLAT RES	DILL GULCH	11/1/2005	1	4/8/2006	8	1
57	3571	JAMES MARION YOAST RES	YOAST GULCH	11/1/2005	19	5/25/2006	201	40
57	3572	J C TEMPLE RES 1	TEMPLE GULCH	10/24/2006	250	4/8/2006	454	250
57	3574	MORGAN CREEK RES 1	MORGAN CK	11/1/2005	0	4/17/2006	100	0
57	3575	NOFSTGER RES	SCOTCHMANS GULCH	10/13/2006	33	4/17/2006	95	33
57	3576	NOFSTGER ZEIGLER RES	SCOTCHMANS GULCH	10/31/2006	50	4/5/2006	67	50
57	3577	SAGE CREEK RES	SAGE CK	11/1/2005	0	10/31/2006	0	0
57	3582	SEATON RES	MIDDLE FISH CK	11/1/2005	0	10/31/2006	0	0

\%	$\stackrel{\sim}{\sim}$	-	N	-	\sim	$\stackrel{0}{0}$	$\stackrel{\underset{F}{*}}{\square}$	の	$\stackrel{\infty}{0}$	*	\bigcirc	-	เ	$\stackrel{10}{6}$	ㅇ	∞	∞	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\infty}$
N	N	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & \bullet \\ & \stackrel{m}{r} \end{aligned}$	\sim	$\stackrel{\square}{*}$	$\stackrel{10}{\circ}$	$\stackrel{t}{\underset{\sim}{r}}$	a)	$\stackrel{\infty}{\circ}$	*	10	ㅇ	10	$\stackrel{10}{6}$	ㅇ	ம	∞	m	앙	$\stackrel{\infty}{\infty}$
0 \mathbf{O} $\stackrel{y}{3}$ $\stackrel{3}{6}$			\circ N N 	8 8 $\frac{1}{5}$ $\frac{5}{7}$	$\begin{aligned} & 0 \\ & \text { O} \\ & \text { N } \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{0}{N} \\ & \stackrel{i}{5} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & N \\ & \vdots \\ & i \end{aligned}$	8 8 N 10	8 8 N 0 0 6	\circ - N N 응 -	$\begin{aligned} & 0 \\ & \hline \mathbf{O} \\ & N \\ & \underset{N}{\infty} \end{aligned}$				\circ - N - -	$\begin{aligned} & 0.0 \\ & \text { N } \\ & \frac{5}{6} \end{aligned}$	\circ O N ले -	8 0 N $\frac{1}{7}$	$$	O N N $\stackrel{1}{2}$
$\underset{\infty}{ \pm}$	*	-	N	\checkmark	F	$\stackrel{1}{6}$	$\underset{\underset{\sim}{*}}{\underset{\sim}{2}}$	の	$\stackrel{\infty}{\circ}$	*	*	-	10	$\stackrel{1}{6}$	앙	\llcorner	∞	$\stackrel{\sim}{\sim}$	ம	$\stackrel{\infty}{\infty}$
\circ - N \vdots \vdots -	$\begin{aligned} & \text { n } \\ & \text { N } \\ & \stackrel{N}{5} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & N \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$			\circ $\stackrel{0}{2}$ $\stackrel{N}{7}$ $\stackrel{1}{2}$	$\begin{aligned} & 0 \\ & 0 \\ & N \\ & \vdots \\ & i \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { N } \\ & \stackrel{N}{i} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N} \\ & \stackrel{N}{7} \\ & 7 \end{aligned}$			$\begin{aligned} & 0 \\ & \hline \\ & N \\ & N \\ & N \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & \text { O} \\ & \text { N } \\ & \text { M } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { N} \\ & \stackrel{N}{5} \end{aligned}$	O $\stackrel{\circ}{\mathrm{N}}$ $\stackrel{y}{2}$ i	\circ $\stackrel{O}{2}$ i i	$\begin{aligned} & 0 \\ & \mathbf{0} \\ & \stackrel{N}{5} \\ & \stackrel{i}{7} \end{aligned}$		8 0 N 0 0 -	$\begin{aligned} & \text { n} \\ & \stackrel{0}{N} \\ & \underset{i}{5} \end{aligned}$	
$\begin{aligned} & \underset{U}{y} \\ & \vdash \\ & 0 \\ & \stackrel{\gamma}{\vdash} \end{aligned}$		I 0 0 0 1 0 0 1			$\begin{aligned} & \text { y } \\ & u \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{y} \\ & 5 \\ & 0 \\ & 0 \\ & \stackrel{\gamma}{1} \end{aligned}$	$\begin{aligned} & \text { y } \\ & \stackrel{1}{5} \\ & 0 \\ & \stackrel{y}{4} \end{aligned}$							$\begin{aligned} & \underset{U}{u} \\ & \underset{~}{0} \\ & \underset{\Sigma}{\Sigma} \end{aligned}$	$\begin{aligned} & \underline{y} \\ & \vec{u} \\ & \bar{O} \\ & \bar{u} \end{aligned}$	$\begin{aligned} & y \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \\ & \vdots \\ & \mathbf{y} \end{aligned}$	4 0 0 0 0 0 0 0			Y U U U ¢
					0 2 0 0 0 0 1 1				$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { y } \\ & 0 \\ & 0 \end{aligned}$			1 2 0 0 0 0 0 2 2 0 0 0			8 0 0 0 4 0 0 1 1 6 1 1	1 0 0 0 0 0 0 0 0	EAST OF MINE SHOP IMPND			
$\begin{aligned} & \infty \\ & \substack{\infty \\ \hline 0} \end{aligned}$	$\begin{aligned} & \infty \\ & \text { م } \\ & \text { Non } \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathbf{N} \end{aligned}$	$\stackrel{\circ}{6}$	$\underset{\substack{N}}{N}$	ి్లిలి	$\begin{aligned} & \text { O్ } \\ & \text { Co } \end{aligned}$	$\begin{aligned} & \text { O+ } \\ & \stackrel{\text { O}}{\mathbf{N}} \end{aligned}$		$\begin{gathered} \text { N } \\ \text { O- } \end{gathered}$	ষ্ণ	$\begin{aligned} & \mathbf{~} \\ & \stackrel{0}{0} \\ & \end{aligned}$	$\begin{aligned} & \text { H0 } \\ & \text { He } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \text { ê } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \end{aligned}$	$\begin{aligned} & \text { O8} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & N \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \bar{N} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{N}{N}$	$\stackrel{10}{\stackrel{1}{N}}$	
¢	is	is	in	ก	is	-	is	¢	ก	-	E	-	is	¢	-	in	N	ก	is	in

$\stackrel{\circ}{\circ}$	-	N	$\begin{aligned} & \text { No } \\ & \underset{\mathbf{N}}{ } \end{aligned}$	$\stackrel{6}{6}$	「	O \sim i	\bigcirc	-	N	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { N } \\ & \text { O} \end{aligned}$	¢	$\begin{aligned} & \text { م } \\ & \text { + } \end{aligned}$	$\overline{6}$	$\begin{aligned} & \infty \\ & \infty \\ & \end{aligned}$	N/	-	\ldots	-	$\stackrel{\sim}{\sim}$
$\stackrel{6}{6}$	N	V	$\underset{\sim}{\underset{\sim}{\mathbf{o}}}$	$\stackrel{\bigcirc}{6}$	$\frac{\bullet}{N}$	B \sim \sim	$\bar{\square}$	$\stackrel{\bullet}{\dot{m}}$	N	N	$\frac{8}{7}$	¢	¢	$\overline{8}$	$\begin{aligned} & \text { ti } \\ & \stackrel{y}{\sim} \end{aligned}$	N	\bigcirc	앙	-8	$\stackrel{m}{\sim}$
$\begin{aligned} & 0 \\ & \hline \mathbf{N} \\ & \frac{1}{6} \\ & \frac{1}{7} \end{aligned}$	$\begin{aligned} & 0 \\ & \hline \\ & N \\ & \stackrel{N}{6} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & N \\ & \frac{1}{6} \end{aligned}$		\circ - N N 응	$\begin{aligned} & 0.0 \\ & \mathbf{O} \\ & \stackrel{0}{0} \\ & \hline 6 \end{aligned}$	\circ -C N N 응	\circ - 응 은	$\begin{aligned} & 8 \\ & \stackrel{8}{N} \\ & \stackrel{N}{N} \\ & \stackrel{1}{6} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{0} \\ & \frac{1}{6} \end{aligned}$	$\begin{aligned} & 0 \\ & \hline \mathbf{N} \\ & \underset{i}{5} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{O}{N} \\ & \stackrel{N}{N} \end{aligned}$	\circ - N N 응	$\begin{aligned} & 8 \\ & \mathbf{O} \\ & \text { N } \\ & \text { Nin } \end{aligned}$	\circ - N $\stackrel{y}{m}$ $\stackrel{-}{-}$	0 - N 0 0 0		$\begin{aligned} & 8 \\ & \text { O} \\ & \stackrel{N}{5} \end{aligned}$	8 -8 $\stackrel{y}{5}$ 1	\circ 8 N O M 0	O N N N
$\stackrel{\circ}{\square}$	\ulcorner	N	$\stackrel{\underset{N}{N}}{N}$	$\stackrel{6}{6}$	O-	$\begin{aligned} & 0 \\ & \stackrel{0}{1} \\ & \mathbf{N} \end{aligned}$	\bigcirc	-	N	ㅇ	$\begin{aligned} & \stackrel{N}{N} \\ & \stackrel{N}{N} \end{aligned}$	¢	$\begin{aligned} & \text { n } \\ & \substack{0 \\ 6} \end{aligned}$	$\overline{8}$	-	N	-	\bigcirc	$\frac{8}{5}$	$\stackrel{\sim}{\infty}$
$\stackrel{60}{0}$	\circ $\stackrel{\circ}{\mathrm{O}}$ $\stackrel{y}{2}$ $\underset{i}{2}$	$\begin{aligned} & \text { n} \\ & \text { N } \\ & \stackrel{N}{7} \\ & \vdots \end{aligned}$		$\begin{aligned} & 0 \\ & \mathbf{0} \\ & \stackrel{N}{5} \\ & \underset{i}{7} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{O}{N} \\ & \stackrel{1}{\infty} \\ & \infty \end{aligned}$	$\begin{aligned} & \text { n } \\ & 0 \\ & N \\ & i \\ & i \end{aligned}$		\circ $\stackrel{\circ}{\circ}$ $\stackrel{N}{i}$ i	\circ - N - -	$\begin{aligned} & \text { BO} \\ & \stackrel{0}{N} \\ & \underset{i}{7} \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{0}{N} \\ & \stackrel{i}{j} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { N } \\ & \stackrel{N}{5} \\ & \underset{i}{2} \end{aligned}$		$\stackrel{2}{8}$ $\stackrel{2}{N}$ $\stackrel{y}{5}$	$\begin{aligned} & 0 \\ & \mathrm{O} \\ & \mathrm{~N} \\ & \vdots \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { N} \\ & \stackrel{N}{5} \\ & i \end{aligned}$	\circ - N ㅇ 응		$\stackrel{2}{8}$ $\stackrel{2}{N}$ $\stackrel{y}{5}$ i	O O N -
$\begin{aligned} & y \\ & 0 \\ & \vdots \\ & 0 \\ & 07 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{U}{u} \\ & \underset{~}{0} \\ & \underset{\Sigma}{\Sigma} \end{aligned}$					$\begin{aligned} & \frac{Y}{U} \\ & \frac{I}{U S} \\ & \underline{L} \end{aligned}$	$$	$$						$\begin{aligned} & \text { Y } \\ & 3 \\ & 3 \\ & \vdots \\ & \vdots \\ & 3 \end{aligned}$	$\begin{aligned} & y \\ & 0 \\ & z \\ & 0 \\ & 0 \\ & E \\ & \vdots \end{aligned}$					
$\begin{aligned} & \stackrel{m}{\infty} \\ & \hline \mathbf{N} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\Omega} \\ & \stackrel{N}{2} \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \stackrel{N}{\mathbf{N}} \end{aligned}$		oু	$\begin{aligned} & \mathrm{O} \\ & \text { Nem } \end{aligned}$	$\begin{aligned} & \overline{\mathrm{O}} \\ & \text { Nen } \end{aligned}$	గ్ల	$\underset{\sim}{\mathbf{H}}$	$\begin{aligned} & \circ \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \text { B } \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{0}{0} \end{aligned}$	$\underset{\sim}{\underset{\sim}{7}}$	$\underset{\sim}{\underset{\sim}{N}}$	$\stackrel{m}{\underset{N}{m}}$	$\stackrel{\infty}{\underset{\sim}{n}}$	$\frac{9}{6}$	N	$\stackrel{\text { N}}{\text { N}}$	N
¢	¢	is		$\stackrel{\infty}{\circ}$	\propto	∞	∞	∞	\sim	∞	\propto	\propto	\bigcirc	∞	∞	$\stackrel{\infty}{\circ}$	$\stackrel{\sim}{\circ}$	\bigcirc	∞	∞

$\stackrel{\curvearrowleft}{\rightleftharpoons}$	$\stackrel{\text { ® }}{ }$	\sim	N	®ٌ	$\stackrel{\infty}{\stackrel{\infty}{N}}$	Nọ	\bigcirc	든	\hat{m}	$\stackrel{\sim}{\sim}$	∞	앙	\bigcirc	$\stackrel{\%}{0}$	∞	＊	$\stackrel{\sim}{\sim}$	$\stackrel{m}{\square}$	$\stackrel{\infty}{\infty}$	\bullet
$\stackrel{0}{\sim}$	$\stackrel{\sim}{\sim}$	\sim	N	$\stackrel{\circ}{1}$	Nivin	$\stackrel{\text { Na }}{0}$	$\stackrel{\text { ¢ }}{+}$	ํ．ర	ले	จั	F	$\stackrel{N}{\sim}$	\％	¢	∞	＊	$\stackrel{\bigcirc}{\square}$	$\stackrel{m}{\square}$	$\stackrel{\sim}{\infty}$	\wedge
		$\begin{aligned} & 8 \\ & \stackrel{0}{N} \\ & \text { in } \\ & \text { in } \end{aligned}$		$\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { N } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 8 \\ & \mathbf{N} \\ & \frac{1}{5} \end{aligned}$			$\begin{aligned} & \text { ob } \\ & \text { N } \\ & \text { N } \\ & \text { in } \end{aligned}$		$\begin{aligned} & \circ \\ & \stackrel{O}{N} \\ & \underset{\sim}{N} \\ & \underset{V}{2} \end{aligned}$	8 0 0 5 5	$$	\circ \mathbf{O} N 	\circ 0 $\stackrel{y}{5}$ \vdots 6	\circ 0 \vdots \vdots -			$\begin{aligned} & \text { O} \\ & \text { N } \\ & \stackrel{1}{N} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$		8 N
－	$\stackrel{\text { ® }}{ }$	\sim	N	$\stackrel{\text { N }}{\text { N }}$	$\stackrel{\sim}{\sim}$	No	\bigcirc	응	¢	$\stackrel{\sim}{\sim}$	∞	∞	\bigcirc	$\stackrel{\circ}{0}$	∞	＊	$\stackrel{\square}{\circ}$	$\stackrel{m}{\square}$	$\stackrel{\infty}{\infty}$	๑
$\begin{aligned} & \text { n } \\ & \substack{1 \\ 5} \\ & \end{aligned}$	$\stackrel{\circ}{0}$ $\stackrel{N}{5}$ $\stackrel{7}{7}$		$\stackrel{\leftrightarrow}{0}$	\circ $\stackrel{\circ}{0}$ $\stackrel{N}{1}$ $\stackrel{N}{1}$	$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{N} \\ & \underset{\sim}{7} \end{aligned}$		$\stackrel{4}{0}$	$\stackrel{0}{0}$	$\begin{array}{r}\circ \\ \stackrel{0}{0} \\ \underset{y}{7} \\ \hline\end{array}$	$\begin{gathered} \text { O} \\ \stackrel{0}{\mathrm{~N}} \\ \underset{\infty}{2} \end{gathered}$	$\stackrel{8}{0}$	$\stackrel{\circ}{0}$ $\stackrel{1}{N}$ $\underset{\sim}{-}$			$\begin{aligned} & \text { OO } \\ & \stackrel{N}{7} \\ & \underset{\sim}{7} \end{aligned}$		$\stackrel{4}{2}$	$\stackrel{0}{0}$		$\stackrel{\text { O }}{\substack{\text { N }}}$
$\begin{aligned} & \frac{r}{0} \\ & \text { z} \\ & 0 \\ & \vdots \\ & 3 \end{aligned}$		$\begin{aligned} & \text { y } \\ & \text { प } \\ & \text { y } \end{aligned}$				$\begin{aligned} & \text { ত } \\ & 0 \\ & 0 \\ & \frac{0}{\mathbf{d}} \\ & 0 \end{aligned}$		$\begin{aligned} & \underset{\sim}{\underset{\sim}{c}} \\ & \underset{\sim}{\underset{\alpha}{\alpha}} \\ & \underset{\sim}{\underset{\sim}{u}} \end{aligned}$		$\begin{aligned} & \text { y } \\ & \text { z } \\ & 0 \\ & \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 드 } \\ & \text { 岂 } \\ & \stackrel{y}{3} \end{aligned}$	$\begin{aligned} & \text { y } \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \\ & 3 \end{aligned}$				$\begin{aligned} & \text { J } \\ & 0 \\ & \text { O} \\ & \stackrel{Y}{u} \\ & \underset{\sim}{\underset{\sim}{u}} \end{aligned}$		$\begin{aligned} & \text { J } \\ & \text { I } \\ & \frac{T}{4} \end{aligned}$		
							$\begin{aligned} & \underset{\sim}{w} \\ & \underset{\sim}{c} \\ & \underset{y}{c} \\ & \underset{~}{1} \\ & \underset{\sim}{r} \end{aligned}$					0 0 0 0 0 1 0 $\frac{1}{4}$ 2		8 0 0 \vdots \vdots 0				O 0 0 ㄴ 0 3 0		2 0 0 0 2 2 0 0 1 S
N్ల్ల	$\stackrel{\sim}{\sim}$	Oiగ్ల	N్ల్ల	Oi/	皆	$\underset{\sim}{\underset{\sim}{f}}$	志	怣	$\begin{aligned} & \text { O } \\ & \text { Ner } \end{aligned}$	皆	$\stackrel{i}{0}$	$\stackrel{\circ}{6}$	苍	$\stackrel{\circ}{\circ}$	$\stackrel{\pi}{i n}$	$\stackrel{\otimes}{\circ}$	$\stackrel{\text { êen }}{\substack{0}}$	$\stackrel{\leftrightarrow}{0}$	冎	－0\％
¢	¢	$\stackrel{\circ}{\circ}$	∞	∞	¢	\bigcirc	\％	\bigcirc	$\stackrel{\circ}{\circ}$	$\stackrel{\infty}{\circ}$	\bigcirc	\％	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	\bigcirc	¢	$\stackrel{\circ}{\circ}$	¢

の	m	$\stackrel{\text { N}}{6}$	안	$\stackrel{7}{0}$	$\stackrel{\sim}{\sim}$	N	－	∞	$\stackrel{7}{m}$	m	$\stackrel{\circ}{\circ}$	N	$\stackrel{\text { N }}{6}$	N	－	$\stackrel{\circ}{\circ}$	$\stackrel{\bigcirc}{+}$	$\bar{\sim}$	®	$\stackrel{-}{\infty}$
앙	\bullet	N్ఞু	안	$\stackrel{\text { O }}{0}$	$\stackrel{\sim}{\sim}$	N	$\stackrel{\curvearrowleft}{\text { Ñ }}$	の	$\stackrel{\square}{\text { ¢ }}$	m	$\stackrel{\circ}{\circ}$	̇	¢	N	－	\％	$\stackrel{\bigcirc}{\stackrel{冂}{+}}$	N	－	$\stackrel{\Gamma}{\infty}$
$\begin{aligned} & 8 \\ & \stackrel{0}{N} \\ & \frac{N}{\hat{1}} \end{aligned}$	$$	\circ N N N in		$\begin{aligned} & 8 \\ & \text { O} \\ & \stackrel{N}{N} \\ & \text { Non } \end{aligned}$	\circ $\stackrel{8}{\mathrm{O}}$ $\stackrel{1}{5}$ －	8 	\circ 0 0 \vdots 1	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \stackrel{N}{\gamma} \end{aligned}$	\circ 0 N $\frac{1}{7}$	$\begin{aligned} & \text { oid } \\ & \stackrel{\rightharpoonup}{N} \\ & \stackrel{N}{0} \end{aligned}$	8 0 N 5			$\begin{aligned} & \text { BO } \\ & \stackrel{N}{\Sigma} \\ & \stackrel{N}{5} \end{aligned}$	8 0 N N N	\circ $\stackrel{0}{0}$ ∞ $\frac{\infty}{7}$		\circ O N N N		O O N ¢ －
∞	N	$\stackrel{\infty}{\stackrel{\circ}{\square}}$	앙	O	$\stackrel{\sim}{\sim}$	\bigcirc	$\stackrel{\infty}{\sim}$	∞	N	m	$\stackrel{\circ}{\circ}$	̇	$\stackrel{\text { ¢ }}{6}$	－	\bigcirc	$\stackrel{\circ}{\circ}$	$\stackrel{\bigcirc}{\square}$	$\bar{\sim}$	－	$\underset{\infty}{\bar{\sim}}$
$\begin{aligned} & \text { OO } \\ & \stackrel{N}{2} \\ & \stackrel{i}{2} \end{aligned}$	$\begin{aligned} & \text { ®O } \\ & \stackrel{N}{N} \\ & \stackrel{N}{5} \end{aligned}$		$\begin{aligned} & \text { ®O } \\ & \text { N } \\ & \stackrel{N}{5} \end{aligned}$	$\begin{aligned} & \text { BO } \\ & \stackrel{N}{N} \\ & \stackrel{N}{5} \end{aligned}$		8 $\stackrel{8}{\mathrm{~N}}$ $\stackrel{y}{5}$	$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{N} \\ & \text { in } \end{aligned}$	$\stackrel{\text { O}}{\substack{\mathbf{N} \\ \underset{\sim}{7}}}$				$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{N} \\ & \underset{\sim}{7} \end{aligned}$		$\begin{aligned} & 0.8 \\ & \text { N } \\ & \underset{N}{N} \end{aligned}$		$\begin{array}{r}8 \\ 0 \\ \text { N } \\ \text { N } \\ \text { N } \\ \hline-\end{array}$		$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{N} \\ & \underset{~}{5} \end{aligned}$		－
$\begin{aligned} & \text { 드 } \\ & 3 \\ & 0 \\ & 1 \\ & 3 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \end{aligned}$	$\begin{aligned} & \text { ㄱ } \\ & \text { z} \\ & \frac{3}{4} \end{aligned}$			$\begin{aligned} & \text { 드 } \\ & \text { a } \\ & \text { O} \\ & \text { in } \end{aligned}$			$\begin{aligned} & \frac{y}{0} \\ & \frac{y}{4} \end{aligned}$					$\begin{aligned} & \frac{y}{0} \\ & \underline{Z} \\ & \underline{k} \\ & \frac{\alpha}{x} \end{aligned}$		$\begin{aligned} & \text { ㄴ } \\ & \text { ㄹ } \\ & \text { Ẅ } \end{aligned}$	$\begin{aligned} & \text { ㄷ } \\ & \text { 를 } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { y } \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { ㅡㅣ } \\ & \text { u} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ㄷ } \\ & \text { ru } \\ & \underset{\sim}{\underset{\sim}{x}} \end{aligned}$		
									Q 0 2 2 2 \sum_{3} 0 0	$\begin{aligned} & \text { O} \\ & 0 \\ & \sum_{0}^{n} \\ & \sum_{\infty}^{\infty} \end{aligned}$										
$\begin{aligned} & \text { O} \\ & \hline 0 \end{aligned}$	$\stackrel{\text { O్ల }}{\substack{0}}$	$\overline{\text { 厄/e }}$	$\begin{aligned} & \text { に/ } \\ & \text { Kin } \end{aligned}$		$\stackrel{\circ}{\circ}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\mathrm{N}} \end{aligned}$	$\underset{\sim}{N}$	$\stackrel{\sim}{N}$	$\stackrel{\sim}{N}$	๗లల	$\stackrel{\hat{g}}{\substack{c}}$	$\underset{\sim}{\text { Non }}$	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{\text { N }}{\underset{\sim}{n}}$	$\begin{aligned} & \stackrel{\otimes}{\mathrm{N}} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{\stackrel{\infty}{\infty}}{\infty}$	$\stackrel{\infty}{\stackrel{\infty}{ల}}$	$\stackrel{\sim}{\infty}$	$\begin{aligned} & \circ \\ & \stackrel{\infty}{0} \end{aligned}$	¢
$\stackrel{\sim}{\circ}$	$\stackrel{\circ}{\circ}$	¢	¢	©	¢	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	\bigcirc	\％	$\stackrel{\circ}{\circ}$	\％	i	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	¢	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	∞

58	3943	GOOF UP PONDS	TRIBUTARIES-ELK R	7/19/2006	4	5/12/2006	8.3	5
58	4213	STAGECOACH RESERVOIR	YAMPA RIVER	3/29/2006	26533	5/6/2006	33612	31608
58	4240	YAMCOLO RES	BEAR RIVER	9/1/2006	4509	5/22/2006	9749	6352
58	4362	HENDERSON RES	HENDERSON CK	11/1/2005	15	6/2/2006	31	20
58	4366	MAD RANCH POND	HOT SPRING CK	11/1/2005	10.2	10/31/2006	10.2	10.2
58	4376	STEAMBOAT WW RECL RES	TRIBUTARIES	7/24/2006	35	11/1/2005	50	40
58	4420	BROOKIE LAKE	WHEELER, LAKE CK	11/1/2005	32	10/31/2006	32	32
58	5102	GOTT POND \#1	ELK RIVER	11/1/2005	3.3	5/18/2006	3.3	3.3
			TOTAL FOR DISTRICT 58		72,063		100,727	83,790

WATER DIVERSION SUMMARIES

STRUCTURES REPORTING						EST. No. of VIIITSTIODIVERSION structures	TOTALDIVERSIONS			NUMBER OFACRES IRRIGATED	$\begin{aligned} & \text { AVERAGE } \\ & \text { ACRERERERER } \\ & \text { ACRE } \end{aligned}$
wo	$\begin{gathered} \text { With } \\ \text { Record } \\ \text { Revailable } \end{gathered}$	($\begin{gathered}\text { Nowater } \\ \text { Available }\end{gathered}$	$\begin{aligned} & \text { No } \\ & \text { Tater } \\ & \text { Taken } \end{aligned}$	No Info Available	Active Struct. wiNo Record						
43	589	104	141	11	2,132	436	683,303	840	250,280	24,824	
44	246	${ }^{36}$			2,952	665	154,318		139,5	30,0	
47	492	\%	53			421	370,332	1,373	348,380	101,9	
54	4			12		${ }^{139}$	${ }^{73,828}$	337	62,947	3,37	
55	6					${ }^{26}$	12,435		12,428	,745	
56	43					${ }^{22}$	9,381	596	5,386	1,863	
57	93		69			364	46,008	182	40,93	9,029	
58	441		122		1.876	2.752	217,669	804	129,17	28.82	

[^0] WATER YEAR 2006
WATER DIVERSIONS TO VARIOUS USES

USES	WD 43	WD 44	WD 47	WD 54	WD 55	WD 56	WD 57	WD 58	TOTALS
TRANSMOUNTAIN OUT	0	0	2,743	0	0	0	0	0	2,743
TRANSBASIN OUT	0	0	0	0	0	0	0	3,013	3,013
MUNICIPAL	3,067	2,232	196	0	0	0	329	3,690	9,514
COMMERCIAL	232	0	0	0	0	97	0	14	343
INDUSTRIAL	2,898	10,137	44	0	0	0	2,688	18	15,785
RECREATION	818	0	0	0	0	0	0	3,162	3,980
FISHERY	45,596	54	742	10,118	0	0	572	6,345	63,427
DOMESTIC \& HOUSEHOLD	2,382	24	1	58	0	55	26	1,100	3,646
LIVESTOCK	11,310	0	6,507	369	6	202	1,854	10,221	30,410
AUGMENTATION	114	0	2	0	0	0	0	0	116
EVAPORATION	10	0	0	0	0	0	0	0	10
GEOTHERMAL	0	0	0	0	0	0	0	0	0
SNOWMAKING	0	0	0	0	0	0	0	293	293
MINIMUM STREAMFLOW	0	0	0	0	0	0	0	0	0
POWER GENERATION	365,577	2,329	0	0	0	0	0	54,007	422,382
WILDLIFE	0	22	313	0	0	3,047	41	0	3,423
RECHARGE	0	0	0	0	0	0	0	577	577
ALL BENEFICIAL USES	0	0	0	0	0	0	0	5,246	5,246
TOTALS	432,004	14,798	10,548	10,545	6	3,401	5,510	87,686	564,908

TRANSMOUNTAIN DIVERSION SUMMARY - OUTFLOWS

SOURCE								RECIPIENT		
WD	ID	NAME	STREAM	10-YR AVG		CURRENT YEAR		WD	ID	STREAM
				AF	DAYS	AF	DAYS			
47	4602	Cameron Pass Ditch	Michigan River	112	29	162	33	3		Poudre River
47	4603	Michigan Ditch	Michigan River	4403	325	2582	335	3		Poudre River
58	4630	Dome Creek Ditch	Dome Creek	146	73	78	65	50		Egeria Creek
58	4684	Sarvis Ditch	Sarvis Creek	472	78	484	47	53		Muddy Creek
58	4685	Stillwater Ditch	Bear River	2262	109	2451	123	53		Egeria Creek

NO TRANSMOUNTAIN DIVERSION INFLOWS
$\overline{\text { ON NIWOV }}$

8
8
0
0
$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{\circ}$

\circ
8
0
0
.
0

13720.00000
12198.00000

 1323277.00000
13077.0000

 $\stackrel{\text { Lo }}{\stackrel{-}{\circ}}$

90/GO/LO

06/12/06
응
$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{ }$
$\stackrel{\circ}{\circ}$

RIVER CALLS - WATER YEAR 2006

WD	STREAM	CALLING STRUCTURE	CALLING PERSON	FIRST
43	PICEANCE CREEK	METZ \& REIGAN DITCH	BURKE BROTHERS	05/17/06
43	PICEANCE CREEK	METZ DITCH	BURKE BROTHERS	05/17/06
44	FORTIFICATION CK	WISCONSIN DITCH	TOM GREY	06/07/06
44	LITTLE BEAR CK	LITTLE BEAR DITCH	JANET CAMELITTI	06/01/06
44	MORAPAS CREEK	DEER CREEK \& MORAPAS D.	LARRY OSBORN	06/02/06
47	GOVERNMENT CK	COE DITCH NO. 2	CARL TRICK	05/21/06
47	PINKHAM CREEK	CAPRON DITCH	STATE LINE RANCHES	06/12/06
47	NEWCOMB CREEK	NEWCOMB DITCH	SANDRA KNOX	06/29/06
47	MICHIGAN RIVER	KIWA DITCH	TRICK, WILFORD, SILVER	05/15/06
47	ILLINOIS RIVER	EVERHARD BALDWIN DITCH	BILL BURR	05/15/06
47	ROCK CREEK	KERR DITCH	D. VERHEUL	05/16/06
47	MICHIGAN RIVER	KIWA DITCH	TRICK, WILFORD, SILVER	05/30/06
47	ILLINOIS RIVER	HOME DITCH NO. 2	KEN FOSHA	06/15/06
47	SPRING CREEK	NELLIE E DITCH	MARK HUTCHESON	07/07/06
47	MICHIGAN RIVER	OLD SC	WALDEN RES CO	10/02/06
56	BEAVER CREEK	MCKNIGHT DITCH \#1	BOB HARDING	06/07/06
57	WEST FISH CREEK	HIGHLAND DITCH	ANDY \& STAN PEROULIS	0526/06
57	TROUT CREEK	PINE GROVE DITCH	BERNARD KNOTT	07/26/06
58	OAK CREEK	OAK CREEK DITCH	GREGORY \& CRAWFORD	06/26/06
58	BEAR RIVER	FIX DITCH	JERRY SCHALNUS	06/22/06
58	BEAR RIVER	NICKELL DITCH	DEAN ROSSI	05/28/06
58	BEAR RIVER	NICKELL DITCH	DEAN ROSSI	06/12/06
58	BEAR RIVER	WOOLEY DITCH	JERRY SCHALNUS	07/31/06
58	BEAR RIVER	MANDALL	GARY CLYNCKE	08/01/06
58	BEAR RIVER	BIG MESA DITCH	DOUG GATES	08/03/06
58	BEAR RIVER	STILLWATER DITCH	MULT OWNERS	08/24/06
58	MIDDLE HUNT CREEK	SIMON DITCH	MARK ROSSI	05/16/06
58	SOUTH HUNT CREEK	LAFON DITCH	KIM WINESTEIN	06/16/06
58	MARTIN CREEK	MARTIN DITCH	RICHARD GIBBS	06/02/06

Appendix C
DIVISION 6
ORGANIZATIONAL

Appendix D

2006 OFFICE ADMINISTRATION and WORKLOAD MEASURES

Professional and Technical Staff (FTE) 4.0
Water Commissioners Assigned (FTE) 6.5
Wells Permitted 209
Water Court Appearances 0
Division Engineer Contacts with Water Referee 20
Division Engineer Contacts with Attorneys 100
Meetings with Water Users 25
Meetings to Resolve Water Related Disputes 1
Contacts to Give Public Assistance 8500

[^0]: (1) Grouped by ID
 (2) Count of Structures with NUC $=B$
 (3) Count of Structures with NUC $=A+C+D$
 (4) Count of Structures with NUC $=E+F+$
 (5) Count of Diversion Structures with $\mathrm{CIU}=\mathrm{U}$ (1) Grouped by ID
 (2) Count of Structures with NUC $=B$
 (3) Count of Structures with NUC $=A+C+D$
 (4) Count of Structures with NUC $=E+F+$
 (5) Count of Diversion Structures with $\mathrm{CIU}=\mathrm{U}$ (1) Grouped by ID
 (2) Count of Structures with NUC $=B$
 (3) Count of Structures with NUC $=A+C+D$
 (4) Count of Structures with NUC $=E+F+$
 (5) Count of Diversion Structures with $\mathrm{CIU}=\mathrm{U}$ (1) Grouped by ID
 (2) Count of Structures with NUC $=B$
 (3) Count of Structures with NUC $=A+C+D$
 (4) Count of Structures with NUC $=E+F+$
 (5) Count of Diversion Structures with $\mathrm{CIU}=\mathrm{U}$

