DIVISION OF WATER RESOURCES

DIVISION NO. 6

1980 ANNUAL REPORT

Wesley E. Signs
Division Engineer

February 10, 1981

DIVISION OF WATER RESOURCES DIVISION NO. 6

1980 ANNUAL REPORT
I. Introductory Statement 1
II, Personnel 3
III. Water Supply
Forecast 4
Precipitation 4
Flooding 4
Ground water 5
Transmountain Diversions (Transbasin) 5
Reservoir Storage 6
IV. Agriculture 13
V. Compacts 14
VI. Dams 16
VII, Water Rights 18
VIII, Organizations 20
IX, Water Commissioner's Summary 21
X. Division Engineer's Summary
Direct Flow Diversions 29
Storage Report 30
Structures Reported \& Observations Made 31
Workload and Statistical Indicators 32
XI. Annual Summary - Districts 33
XII. Recommendations 34

I. INTRODUCTION

Division 6 is located in the northwestern corner of the state and includes the Yampa, White, and North Platte River Drainages. Elevations range from 5000 feet within the canyons along the western boundary of the state to more than 12,000 feet along the Continental Divide. Frecipitation ranges from less than nine inches in the desert areas to more than fifty inches along the Continental Divide.

The most productive crop bearing areas lie between the 6000 feet and 8000 feet range in elevation. The higher elevations and the western desert areas are primarily used for summer and winter grazing and for recreational purposes. The bulk of these lands are owned by the US Government and are managed by the Bureau of Land Management and the Forest Service.

The growing season in Division 6 varies from less than 30 days in the North Platte Drainage to around 90 days in the lower White and Yampa Drainage. This snort growing season is most suitable for the production of irrigated native hay, alfalfa hay, and irrigated pasture which total about 250,000 acres within the Division. Irrigated acreage broken down by drainage basin is as follows: Yampa River - 100,000 acres, North Platte River - 120,000 acres, and the White River - 30,000 acres. Dry land farming is practiced in the mid-areas of the Yampa River and the White River Drainages, with small grains being the basic crops. Dry crop lands amount to around 131,000 acres in the Yampa River Drainage with approximately 17,000 acres in the White River Drainage. This ground is normally summer fallowed, which means that only a little over fifty percent is in crop in any given year.

Although the population density of Division 6 remains relatively light, the booming energy, construction, and recreational industries have contributed to substantial population gains during the past decade with the population of Routt County nearly doubling from 1970 to 1980. The population boom has moderated somewhat during the past several months with the completion of the Craig Power Plants and a slackening of demand for coal. The power plant has reduced its work force from a peak of 1850 workers down to about 400, and many of the local mines have been forced to either close or cut back production, The energy focus has shifted recently from coal production to oil shale. Oil shale Tracts Ca and Cb in the Piceance Basin near Meeker have been the center of much activity in the past year as Occidental Petroleum and Rio Blanco continue the development of these tracts for the experimental production of oil from oil shale. Several coal slurry pipelines have been proposed for the Division, the most recent of which is designed to carry crude oil shale from the Colony Oil Shale Tract near Parachute to Casper, Wyoming, transportation facilities. The project is proposed by Exxon and would include a spur to transport the slurry to transportation facilities near Rangely. The project has been opposed by ranchers in Moffat County.

Division 6 enjoyed an above average snow pack during the 1979-80 water year. Reservoir storage was also above average going into the irrigation season which resulted in above normal water deliveries to irrigators. A lack of precipitation during the summer and fall accompanied by hot dry winds reduced yields on second and third hay cuttings in the lower Yampa and White Basins. The dry summer also caused the majority of stream gages to fall well below normal in the fall months for the fourth year in a row.
II. PERSONNEL

Name	Position D	District	FY 79-80 Months		$\begin{array}{r} \text { FY } 79-80 \\ \text { Mileage } \\ \hline \end{array}$
			Worked	Budgeted	
Wesley E. Signs	Division Engineer		Full	Time	1,240
Robert McCabe	Asst. Div. Engineer		Full	Time	1,377
W. Kent Holt	Hyärographer		Full	Time	1,230
Roy D. Steffen	1042 Water Commissioner		Full	Time	
Karen McPherren	Secretary		Full	Time	
Joe E. Brown	Water Commissioner C	43	Full	Time	
*William Dunham	Water Commissioner A	43	7	2	5,108
Ben E. Cordle	Water Commissioner B	44	Full	Time	7,526
Donald C. Gilroy	Water Commissioner B	54	5	6	3,784
Jack Leonard	Water Commissioner B	55-56	5	5	3,531
James E. Sellers	Water Commissioner B	57	Full	Time	5,770
Charles Gregory	Water Commissioner B	58	Full	Time	6,477
Billy R. Milner	Water Commissioner B	58	7	8	3,818
Eric H. Wagner	Water Commissioner C	47	Full	Time	3,822

*Additional time above budget allotment was paid for with Piceance Basin Study funds.
III. WATER SUPPLY
A. Forecast

The heavy snowpack made the streamflow well above average at most of the stations. Runoff at key gaging stations was as follows: Station Acre Feet \% Average No. of Years

Yampa River at Steamboat Springs	332,100	98	
Yampa River at Maybell	$1,298,200$	116	58
Little Snake near Lily Park	559,000	135	63
S. Fk. of White River at Buford	187,600	102	58
N. Fk. of White River at Buford	224,600	101	29
White River near Meeker	457,600	102	34
White River above Rangely	498,400	106	75
White River near Colo State Line	526,500	105	7
N. Platte River near Northgate	373,600	120	56

B, Precipitation

Precipitation for selected stations in Division 6:

	Steamboat Springs	Hayden	Walden
November	1.90	1.57	.37
December	.63	.48	.33
January	5.80	3.40	2.26
February	2.73	1.63	.78
March	2.92	1.83	.74
April	1.14	.73	.58
May	2.76	2.34	2.43
June	.10	.02	.04
July	.75	.79	.32
August	1.29	1.92	.98
September	1.04	.90	1.08
October	1.72	16.91	.75
Totals	21.97		10.66
C.			
Flooding			

D. Ground Water

1980 saw a slight decline from the previous year in the number of new well permits issued in Division 6. A total of 310 well permits were issued during 1980 compared with 470 permits granted last year. The slow down can probably be attributed to the negative impact of record high interest rates. Increased competition has kept the well drilling costs relatively stable over the past year, but fewer and fewer people are able to afford the exorbitant costs of building a new house.
Proliferation of wells in some subdivisions and small munici-
palities has resulted in conflicts among well owners due to over-drafting of aquifers and contamination from septic tanks. Aquiferpollution forced the city of Phippsburg to develop a central well anddistribution system instead of individual wells. Milner has also hadproblems with polluted wells and is moving toward a similar solution.E. Transmountain Diversions (Transbasin)
Structure Acre Feet
Stillwater Ditch 1,888
Sarvis Ditch 0
Rich Ditch 1,311
Morgan Creek 592
Dome Creek 190
Michigan Ditch 1,110
Cameron Pass Ditch 154
5,245
Total water exported from Yampa R. to Colorado R. Drainage: 2078
Total water exported from N. Platte R. to S. Platte Drainage: 1264
III. Water Supply
F. Reservoir Storage

7700

III. Water Supply F. Reservoir Storage NAME OF RESERVOIR.	SOURCE	AMT. IN STORAGE $11 / 1 / 79$	FILL DURING SEASON	RELEASE + EVAPORATION	AMT. IN STORAGE $10 / 31 / 80$	TOTAL CHANGE IN STORAGE
DISTRICT NO. 44 CONT.						
Fredrickson No. 1 Reservoir	Tributary to Elk Head	5	0	0	5	0
Fredrickson No. 2 Reservoir	Tributary to Elk Head	2	0	0	2	0
Fredrickson No. 3 Reservoir	Tributary to Elk Head	9	0	0	9	0
Fredrickson No. 4 Reservoir	Tributary to Elk Head	3	0	0	3	0
Freeman Reservoir	Little Cottonwood Creek	137	0	0	137	0
Gerber Reservoir	Sand Spring Gulch	5	0	0	5	0
Konopik Reservoir	Clear Creek	13	0	0	13	0
Leftwich Reservoir	Boone Gulch	36	0	24	12	-24
Malburg Pond	Brown's Gulch	2	0	0	2	0
Morin Reservoir	Dayton Creek	7	0	0	7	0
Morton Reservoir	Deacon Gulch	9	0	0	9	0
Pitney Reservoir	Corral Gulch	11	0	0	11	0
Poose Creek Reservoir	Poose Creek	277	125	125	277	0
Falph White Reservoir	Fortification Creek	925	300	300	925	0
Roby Reservoir	Morapos Creek	0	26	26	0	0
Sagebrush Reservoir No. 1	Butler Creek	3	0	0	3	0
Sagebrush Reservoir No. 2	Butler Creek	4	2	2	4	0
Sellers Crowell Reservoir	Willow Creek	8	60	48	20	12
Shafer Reservoir	Willow Creek	13	67	0	80	67
Velanzas Reservoir No. 1	Jeffway Gulch	8	0	0	8	0
Velanzas Reservoir No. 2	Jeffway Gulch	4	0	0	4	0
Waddle Creek Reservoir	Waddle Creek	5	20	20	5	0
Wilson Reservoir	Good Springs Creek	68	0	0	68	0
Wyman Reservoir	Beaver Creek	78	0	0	78	0
TOTALS (All figures in Acre Feet)		16344	2673	3267	15750	-594
DISTRICT NO. 47						
Addison Reservoir	Buffalo Creek	0	42	42	0	0
Aqua Fria Reservoir	Beaver Creek	731	115	846	0	-731
Bennett Reservoir	T. Beaver Creek	0	0	0	0	0
Big Creek Lake	Big Creek	1434	0	0	1434	0
Boettcher Lake	Lake Creek	0	0	0	0	0
Brands Reservoir	T. N. Fk. North Platte	0	0	0	0	0

F. Reservoir Storage NAME OF RESERVOIR	SOURCE	AMT. IN STORAGE $11 / 1 / 79$	FILL DURING SEASON	RELEASE + EVAPORATION	AMT. IN STORAGE 10/31/80	TOTAL CHANGE IN STORAGE
DISTRICT NO. 47 CONT.						
Buffalo Reservoir	Buffalo Creek	486	250	250	486	0
Burns Reservoir	Burns Draw	39	0	0	39	0
Butte (South and East) Res.	Roaring Fork	411	0	209	202	-209
, Carlstrom (Upper Cowdrey) Res.	Michigan River	448	200	200	448	0
Case No. 1 Reservoir	Illinois River	0	117	117	0	0
Case No. 2 Reservoir	Illinois River	0	98	98	0	0
Case No. 3 Reservoir	Illinois River	0	60	60	0	0
Clayton Reservoir	Buffalo Creek	213	0	156	57	-156
Cowdrey (Lower) Reservoir	Michigan River	0	0	0	0	0
Coyte Reservoir	Arapahoe Creek	38	36	36	38	0
Fisher Lake and Pump	Seepage T Michigan R.	58	0	0	58	0
Fuller Reservoir	Cow Creek	6	2	0	8	2
Gamber Reservoir	Little Grizzly River	0	0	0	0	0
Ginger Quill Reservoir	Three Mile Creek	38	0	0	38	0
Hap Reservoir	Buffalo Creek	0	14	14	0	0
Hecla Reservoir	Arapaho Creek	255	160	160	255	0
House (Upper) Reservoir	Spring Creek	44	0	0	44	0
Hunter Reservoir	Three Mile Creek	0	62	62	0	0
Jackson Reservoir	Dry Creek	119	60	60	119	0
Kettle Reservoir	Newcomb Creek	0	0	0	0	0
Lake John	Lake Creek	5415	0	0	5415	0
Lake Roslyn	Willow Creek	200	0	0	200	0
Laune Reservoir	Roaring Fork	1850	2426	1782	2494	644
MacFarlane Resexvoir	Illinois River	4000	65	2413	1652	-2348
McGowan Reservoir	Middle Fk Mexican Cr.	32	8	40	0	-32
Mexican Reservoir	Mexican Creek	0	80	80	0	0
Muddy Pass Reservoir	T. Grizzly Creek	58	0	0	58	0
Ninegar Reservoir	Ninegar Creek	24	0	24	0	-24
North Michigan Reservoir	No. Fk. Michigan Cr.	1250	0	0	1250	0
Petry Lake	T. Grizzly Creek	72	0	0	72	0
Pole Mountain Reservoir	Mexican Creek	1351	554	1284	621	-730
Ridings Reservoir	Buffalo Creek	0	46	46	0	0
Rock Reservoir	Newcomb Creek	0	0	0	0	0
Seymour Reservoir	Ninegar Creek	525	465	465	525	0
Shawver Reservoir	Sutton Creek	4	0	0	4	0
Slack and Weiss Reservoir	Ninegar Creek	137	30	135	32	-105

III. Water Supply
F. Reservoir Storage
NAME OF RESERVOIR
DISTRICT NO. 57
Emrick Reservoir Apple Reservoir
Dry Fk, Trout Creek Basin \& Buchanan Gulch Hutchinson Gulch Hooker Draw Foidel Creek Foidel Creek Foidel Creek Morgan Creek Fiske Creek Fiske Creek Dill Gulch Yampa River Yoast Creek
Temple Gulch Morgan Morgan Creek
Grassy Creek Grassy Creek
Sage Creek
cotchmans Gulch Middle Fish Creek Trout Creek Miller Draw Yoast Creek

AMT. IN STORAGE \qquad	FILI DURING SEASON	RELEASE + EVAPORATION	AMT. IN STORAGE $10 / 31 / 80$	TOTAL CHANGE IN STORAGE
0	421	50	371	371
1	10	11	0	- 1
74	215	145	144	70
7	0	5	2	-5
48	36	74	10	-38
2	0	0	2	0
110	0	10	100	-10
12	0	2	10	-2
2	19	0	21	19
30	0	19	11	-19
4	1	1	4	0
2	0	0	2	0
0	0	0	0	0
263	966	200	929	366
0	147	144	3	3
0	553	524	29	29
28	33	33	28	0
35	291	298	28	-7
350	106	0	456	106
230	114	0	344	114
349	332	445	236	113
0	12	0	12	12
0	21	21	0	0
986	0	0	986	0
0	1	1	0	0
5	2	6	1	14

AMT. IN	FILL		AMT. IN	TOTAL
STORAGE	DURING	RELEASE +	STORAGE	CHANGE IN
$11 / 1 / 79$	SEASON	EVAPORATION	$10 / 31 / 80$	STORAGE

III Water Supply
F. Reservoir Storage
III.

$$
\begin{array}{lr}
\text { Middle Hunt Creek } & 689 \\
\text { Fish Creek } & 3 \\
\text { West Branch Watson Creek } & 0 \\
\text { South Hunt Creek } & 10 \\
\text { Little Oak Creek } & 80 \\
\text { Beaver Creek } & 0 \\
\text { Fish Creek } & 1842 \\
\text { Wheeler Creek } & 35 \\
\text { Jack Creek } & 4 \\
\text { Gardner Creek } & 1155 \\
\text { Cow Creek } & 2 \\
\text { Willow Creek } & 600 \\
\text { Watson Creek } & 0 \\
\text { Wheeler Creek } & 261 \\
\text { Farnsworth Creek } & 10 \\
\text { Chimney Creek } & 0 \\
\text { Lester Creek } & 5757 \\
\text { Fish Creek } & 397 \\
\text { Yel low Jacket Creek } & 10 \\
\text { Salt Creek } & 10 \\
\text { Watson Creek } & 0 \\
\text { Elgin Creek } & 0 \\
\text { Oak Creek } & 1 \\
\text { French Creek } & 100 \\
\text { Dome Creek } & 122 \\
\text { Chimney Rock Creek } & 20 \\
\text { Ft. Willy Gulch } & 45 \\
\text { Big Creek } & 2 \\
\text { Big Creek } & 7 \\
\text { Big Creek } & 7 \\
\text { Middle Hunt Creek } & 503 \\
\text { Yampa River } & 2332 \\
\text { Burgess Creek } & 2 \\
\text { Spring Creek } & 0 \\
\text { Lawson Creek } & \\
\hline
\end{array}
$$

IV. AGRICULTURE

Summer precipitation was well below average causing a shortage in dry land production of both hay and small grains. Most summer pasture was also short because of the below normal rainfall. It has been several years since we have had sufficient moisture to make a good crop of grain or dry land hay.

The irrigated hay was also short even though we had a good water supply. It seems that the lack of precipitation also effected this crop.

The one bright spot was the so-called desert or low elevation winter range. Early May rains provided excellent growth in these areas giving better than average winter range conditions.

V. COMPACTS

Interstate compacts, decrees, and agreements governing Division 6 and actual deliveries are discussed in detail below.
A. Upper Colorado River Compact - Article XIII (a) of the Upper Colorado River Compact specifies that the state of Colorado will not cause the flow of the Yampa River at the Maybell gage to be depleted below an aggregate of 5,000,000 acre feet for any period of ten consecutive years beginning with the first day of October succeeding ratification of the Compact. Total flow past the Maybell gage during the 1980 water year was $1,298,000 \mathrm{AF}$ making the aggregate for the last ten consecutive years $11,428,900 \mathrm{AF}$. The 1980 flow was 16 percent above the normal based on a 62 year period of record.

Article XI of the Upper Colorado River Compact opportions the consumptive use of water of the Little Snake River and its tributaries between the states of Colorado and Wyoming. Article XI was not administered during the 1980 water year due to sufficient water supplies. Total flow past the Little Snake River gage near Lily Park was 559,000 AF.
B. Decree Exerpted from Nebraska VS. Wyoming (325 V.S. 589 (1945) The Nebraska VS. Wyoming Decree enjoins the state of Colorado from:

1. Diverting or permitting the diversion of water from the North Platte River and its tributaries for the irrigation of more than a total of 145,000 acres of land in Jackson County, Colorado during any one irrigation year;
2. Storing or permitting the storage of more than a total amount of $17,000 \mathrm{AF}$ of water for irrigation purposes from the North. Platte River and its tributaries in Jackson County, Colorado between October 1 of any year and September 30 of the following year;
3. Exporting out of the oasin of the ivortin Platte River and its tributaries in Jackson County, Colorado to any other stream basin or basins more than $60,000 \mathrm{AF}$ of water in any period of ten consecutive years reckoned in continuing progressive series beginning with October 1, 1945.

All requirements set forth in the Decree were satisfied during the 1980 water year. Total irrigated acreage in Jackson County was 114,294 acres, down 862 acres from the 1979 total of 115,156 acres. Total storage from the North Platte Basin in Jackson County was 3951 AF in 1980 and exports from the North Platte Basin totaled 1264 AF. Total aggregate exports during the last ten consecutive years total 13,460 AF which is well within the allowable.
VI. DAMS

Two more reservoirs, Yamcola and Meadow Creek, were completed in 1980 adding another 13,400 acre feet of potential storage in Division 6. Two other projects, Juniper-Cross Mountain and Rangely Reservoir, are in the active planning stages.

The 1800 foot long and 110 foot high Yamcola Dam was completed late this fall and has begun to store water for the 1981 season. The reservoir is sponsored by the Upper Yampa Water Conservancy District and is located on the Upper Yampa River about 12 miles above the town of Yampa. Of the total 8000 AF of useable capacity, 4000 AF has been committed to Colorado Ute Electric for its power plants in Hayden and Craig. 1000 AF will be allocated for municipal use with the remaining 3000 AF going to irrigators in the Yampa and Toponas area. The Conservancy District has received authorization from the State Engineer to fill the reservoir to the 9530 foot level under the state Engineer's monitoring program.

Construction was also completed on the Neadow Creek Reservoir in North Park during 1980. The reservoir is located about 13 miles southeast of Walden on Meadow Creek and will store flood waters from Meadow Creek and the Michigan River for late season irrigation. The reservoir was built by 15 water users and has a capacity of 4400 acre feet.

The Colorado River Water Conservation District and Colorado Ute Electric Association have filed an application with the Federal Energy Regulatory Commission for a license to construct and operate the proposed JuniperCross Mountain Hydroelectric Project. The project will be located on the Yampa River in Moffat County between the city of Craig and Dinosaur National Monument. The project will require over 27,000 acres of Federal, State, and private lands and will inundate approximately 75 miles of river and 22,000 acres of land. Two proposed dams and reservoirs are planned with a combined generating capacity of 148 MW at an estimated cost of $\$ 170 \mathrm{million}$.

Rangely voters have approved the construction of a new municipal reservoir to be located five miles upstream from Rangely on the White River. The $\$ 14$ million project is expected to store 569 acre feet and will give the community its first dependable water supply and will provide recreation features. Construction is supposed to commence in the fall of 1981 and be completed about one year later.
VII. WATER RIGHTS

The number of water right cases processed by the water court in Division 6 during 1980 remained about the same as last year with the exception of minimum streamflow applications filed by the Colorado Water Conservation Board. 1980 was the first year these applications were processed through the courts with six minimum flow decrees granted in District 43 and 78 decrees granted for the rest of Division 6. All the applications filed in Division 6 were protested by the Colorado River Water Conservation District and the United States. The CRWCD protested on grounds that the minimum streamflow bill was unconstitutional. When the bill was found constitutional in Division 5 Water Court, the protests were withdrawn. The protests filed by the United States were settled when the $C W C B$ agreed to a stipulation that all applications will be subject to senior US decreed rights and properly decreed senior reserved rights. The stipulation also requires the CWCB to acquire special use permits or right-of-ways if required by law.

During 1980 the Division 6 Water Court moved to abandon many of the old conditional water rights which have not been showing due diligence. In each case where a conditional right was proposed to be abandoned, two notices were sent to the owners to show cause why the decrees should not be abandoned. On Term Day, October 14, 1980, 39 conditional water rights were abandoned when no cause was shown by the owners.

SUMMARY OF 1980 COURT TRANSACTIONS IN DIVISION 6 (EXCEPT DISTRICT 43*)

Type of Filing	Applications	Rulings	Decrees
Underground	43	15	19
Change of right	9	3	4
Augmentation plan	2	2	
Surface	140	98	96
Reservoir	58	29	32
Minimum streamflow		90	78

[^0]| Type of Filing | Applications | Rulings | Decrees |
| :--- | :---: | :---: | ---: |
| Undergrounà | 7 | 9 | 13 |
| Change of right | 1 | | 1 |
| Augmentation plan | 49 | 32 | 39 |
| Surface | 8 | 14 | 8 |
| Reservoir | 10 | 9 | 6 |

A. Colorado River Water Conservation District, Glenwood Springs, Colorado - Mr. Roland C. Fischer, Secretary-Engineer

Upper Yampa Water Conservancy District, Steamboat Springs, Colorado - John Fetcher, Secretary; Jim Funk, President

Yellow Jacket Water Conservancy District, Meeker, Colorado Frank Cooley, Attorney

Pot Hook Conservancy District, Baggs, Wyoming Darwin Dunn, President

Lower Yampa Conservancy District, Craig, Colorado Tony Angelo, Chairman

Great Northern Conservancy District, Craig, Colorado Tony Angelo, Chairman

Northwest Colorado Water Council, Craig, Colorado Tony Angelo, Chairman

Jackson County Water Conservancy District, Walden, Colorado Lloyd Hampton, Secretary
B. Bear River Reservoir Company, Yampa, Colorado

Stillwater Ditch Company, Yampa, Colorado
Maybell Irrigation District, Maybell, Colorado
Miller Creek Ditch Company, Meeker, Colorado

Woodchuck Ditch Company, Steamboat Springs, Colorado
Mt. Werner Water \& Sanitation District, Steamboat Springs, CO
Morrison Creek Water \& Sanitation District, Oak Creek, CO

Steamboat Lake Water District, Clark, Colorado

Riverside Water \& Sanitation District, Steamboat Springs, CO

Steamboat II Water \& Sanitation District, Steamboat Springs, CO
Tree Haus Water \& Sanitation District, Steamboat Springs, CO
Direct Flow Diversions to Irrigation 284,229
Direct Flow Diversions to Transbasin 0
Direct Flow Diversions to Municipal \& Domestic. 2,000
Direct Flow Diversions to Industrial 3,658
Direct Flow Diversions to Other Uses 13,765
TOTAL DIVERSIONS 303,652
Reservoir Storaqe (11/1/79) 7,700
Reservoir Storage (10/31/80) 7,823
Net Change in Storage 123
Fill During Season 1,412
Release + Evaporation During Season 1,535
Direct Diversions to Irrigation 284,229
Diversions from Storage to Irrigation 310
TOTAL DIVERSIONS 'IO IRRIGATION. 284,539
Total Acres Irrigated 30,904
Average Demand for Irrigation 9.2
Number of Active Ditches Observed 400
Number of Active Reservoirs Observed 22
Number of Active Springs Observed 329
Number of Active Wells Observed. 30
Number of Inactive Structures Observed 127
TOTAL STRUCTURES OBSERVED 908
Total Number of Structures Requilated 36
Total Number of Field Observations Made 4,372
IX. WATER COMMISSIONER'S SUMMARY
Water District No. 44
Direct Flow Diversions to Irrigation 160,210
Direct Flow Diversions to Transbasin.....(Net.Export) 592
Direct Flow Diversions to Municipal \& Domestic 2,500
Direct Flow Diversions to Industrial 4,298
Direct Flow Diversions to Other Uses 800
TOTAL DIVERSIONS 168,400
Reservoir Storage (11/1/79) 16,344
Reservoir Storage (10/31/80) 15,750
Net Change in Storage - 594
Fill During Season 2,673
Release + Evaporation During Season 3,267
Direct Diversions to Irrigation 160,210
Diversions from Storage to Irrigation 2,122
TOTAL DIVERSIONS TO IRRIGATION. 162,332
Total Acres Irrigated 30,723
Average Demand for Irrigation 5.3
Number of Active Ditches Observed 226
Number of Active Reservoirs Observed. 48
Number of Active Springs Observed 60
Number of Active Wells Observed. 10
Number of Inactive Structures Observed. 50
TOTAL STRUCTURES OBSERVED. 394
Total Number of Structures Regulated 41
Total Number of Field Observations Made 1,583
IX. WATER COMMISSIONER'S SUMMARY
Water District No. 47
Direct Flow Diversions to Irrigation 362,591
Direct Flow Diversions to Transbasin 1,264
Direct Flow Diversions to Municipal \& Domestic 700
Direct Flow Diversions to Industrial 0
Direct Flow Diversions to Other Uses 1,000
TOTAL DIVERSIONS 365,555
Reservoir Storage (11/1/79) 23,715
Reservoir Storage (10/31/80) 17,949
Net Change in Storage -5,766
Fill During Season 5,246
Release + Evaporation During Season 11,012
Direct Diversions to Irrigation 362,591
Diversions from Storage to Irrigation 8,581
TOTAL DIVERSIONS TO IRRIGATION 371,172
Total Acres Irriqated 114,294
Average Demand for Irrigation 3.2
Number of Active Ditches Observed 399
Number of Active Reservoirs Observed 34
Number of Active Springs Observed 17
Number of Active Wells Observed 8
Number of Inactive Structures Observed 39
TOTAL STRUCTURES OBSERVED 497
Total Number of Structures Regulated 50
Total Number of Field Observations Made 2,020
Water District No. 54
Direct Flow Diversions to Irrigation 34,458
Direct Flow Diversions to Transbasin. 0
Direct Flow Diversions to Municipal \& Domestic. 150
Direct Flow Diversions to Industrial 0
Direct Flow Diversions to Other Uses 600
TOTAL DIVERSIONS 35,208
Reservoir Storage (11/1/79) 476
Reservoir Storage (10/31/80) 476
Net Change in Storage 0
Fill During Season 423
Release + Evaporation During Season 423
Direct Diversions to Irrigation. 34,458
Diversions from Storage to Irrigation 398
TOTAL DIVERSIONS TO IRRIGATION 34,856
Total Acres Irrigated 5,398
Average Demand for Irrigation 6.5
Number of Active Ditches Observed 78
Number of Active Reservoirs Observed. 5
Number of Active Springs Observed 0
Number of Active Wells Observed. 0
Number of Inactive Structures Observed. 14
TOTAL STRUCTURES OBSERVED. 97
Total Number of Structures Regulated. 0
Total Numher of Field Observations Made 194
IX. WATER COMMISSIONER'S SUMMARY
Water District No. 55
Direct Flow Diversions to Irrigation 10,205
Direct Flow Diversions to Transbasin 0
Direct Flow Diversions to Municipal \& Domestic 7
Direct Flow Diversions to Industrial 0
Direct Flow Diversions to Other Uses 124
TOTAL DIVERSIONS 10,336
Reservoir Storage (11/1/79) 0
Reservoir Storage (10/31/80) 0
Net Change in Storage 0
Fill During Season 0
Release + Evaporation During Season 0
Direct Diversions to Irrigation 10,205
Diversions from Storage to Irrigation 0
TOTAL DIVERSIONS TO IRRIGATION 10,205
Total Acres Irrigated 1,388
Average Demand for Irrigation 7.4
Number of Active Ditches Observed 13
Number of Active Reservoirs Observed 0
Number of Active Springs Observed 20
Number of Active Wells Observed. 7
Number of Inactive Structures Observed 7
TOTAL STRUCTURES OBSERVED 47
Total Number of Structures Requlated 0
Total Number of Field Observations Made 147

IX. WATER COMMISSIONER'S SUMMARY

Water District No. 56

Direct Flow Diversions to Irrigation 12,371
Direct Flow Diversions to Transbasin 0
Direct Flow Diversions to Municipal \& Domestic 200
Direct Flow Diversions to Industrial 0
Direct Flow Diversions to Other Uses 2,942
TOTAL DIVERSIONS 15,312
Reservoir Storage (11/1/79) 156
Reservoir Storage (10/31/80) 177
Net Change in Storage 21
Fill During Season 419
Release + Evaporation During Season 398
Direct Diversions to Irrigation 12,371
Diversions from Storage to Irrigation 16
TOTAL DIVERSIONS TO IRRIGATION. 12,387
Total Acres Irrigated 2,147
Average Demand for Irrigation 5.8
Number of Active Ditches Observed 40
Number of Active Reservoirs Observed. 9
Number of Active Springs Observed 55
Number of Active Wells Observed 8
Number of Inactive Structures Observed 20
TOTAL STRUCTURES OBSERVED 132
Total Number of Structures Regulated 4
Total Number of Field Observations Made 512

IX. WATER COMMISSIONER'S SUMMARY

Water District No. 57

Direct Flow Diversions to Irrigation 52,744
Direct Flow Diversions to Transbasin...(Net.Export) 1,121
Direct Flow Diversions to Municipal \& Domestic 800
Direct Flow Diversions to Industrial 5,330
Direct Flow Diversions to Other Uses 1,400
TOTAL DIVERSIONS. 61,395
Reservoir Storage (11/1/79) 2,538
Reservoir Storage (10/31/80) 3,729
Net Change in Storage 1,417
Fill During Season 3,280
Release + Evaporation During Season 1,889
Direct Diversions to Irrigation 52,744
Diversions from Storage to Irrigation 1,340
TOTAL DIVERSIONS TO IRRIGATION 54,084
Total Acres Irrigated 10,761
Average Demand for Irrigation. 5.0
Number of Active Ditches Observed 81
Number of Active Reservoirs Observed. 42
Number of Active Springs Observed 130
Number of Active Wells Observed. 15
Number of Inactive Structures Observed. 60
TOTAL STRUCTURES OBSERVED. 328
Total Number of Structures Regulated. 2
Total Number of Field Observations Made 735
IX. WATER COMMISSIONER'S SUMMARY
Water District No. 58
Direct Flow Diversions to Irrigation 141,042
Direct Flow Diversions to Transbasin 768
Direct Flow Diversions to Municipal \& Domestic 5,200
Direct Flow Diversions to Industrial 0
Direct Flow Diversions to Other Uses 1,800
TOTAL DIVERSIONS 148,917
Reservoir Storage (1l/l/79) 45,188
Reservoir Storage (10/31/80) 42,900
Net Change in Storage -2,288
Fill During Season 9,277
Release + Evaporation During Season 11,565
Direct Diversions to Irrigation 141,042
Diversions from Storage to Irrigation. 5,767
TOTAL DIVERSIONS TO IRRIGATION. 146,809
Total Acres Irrigated 41,331
Average Demand for Irrigation 3.6
Number of Active Ditches Observed. 370
Number of Active Reservoirs Observed. 61
Number of Active Springs Observed. 416
Number of Active Wells Observed. 70
Number of Inactive Structures Observed. 160
TOTAL STRUCTURES OBSERVED. 1,022
Total Number of Structures Regulated. 50
Total Number of Field Observations Made 4,332

X. DIVISION ENGINEER'S SUMMARY

X. DIVISION ENGINEER'S SUMMARY

Table DWORKLOAD AND STATISTICAL INDICATORS
Acre Feet Water Used 1,108,775
Acre Feet Diverted for Agricultural Use 1,076,117
Acre Feet Diverted for Stoarge 22,730
Acre Feet Diverted for Industrial Use 13,286
Acre Feet Diverted for Recreation Use 22,431
Acre Feet Diverted for Domestic and Municipal Use ll,557
Acre Feet Diverted to Compact Commitment 0
Acre Feet Water Stored (10/31/80) 88,804
Acre Feet Water Transbasin Diversion 3,745
Acres Irrigated 236,946
Total Structures Administered 183
Total Daily Observations 13,895
Total Structures Observed or Reported 3,832
KI. ANNUAL SUMMARY - DISTRICTS
ACRE FEET (11-1-7) thru 10-31-8U)

Districts	$\begin{aligned} & \text { Non-Exempt } \\ & \text { Wells } \end{aligned}$	Ditch Structures Reported	IRRIGATION			CURRENT YEAR	TRANS-MOUNTAIN	
			Direct Diversions To Irrigation	Diversions To Storage	Storage to Irrigation	Acres Irrigated	Export	iv. Import
43	11	400	284,229	1,412	310	30,904	0	0
44	15	220	100,210	2,673	2,122	30,723	0	0
47	9	399	362,591	5,246	8,581	114,294	1,264	0
54	1	78	34,458	423	398	1,388	0	0
55	1	13	10,205	419	16	2,147	0	0
56	0	40	12,371	3,280	1,340	10,761	0	0
57	9	81	22,744 146,809	9,277	5,767	41,331	2,078	0
58	18	370	140,809					
TOTALS	64	1007	1,076,117	22,730	18,534	236,946	3,342	0

	MUNICIPAL			INDUS'TRIAL			RECREATION	ACTUAL STORAGE		
Districts	Direct Diversions	Diversions To Storage	Storage Releases	Direct Diversions	Diversions To Storage	HydroPower	Storage Wildife Parks	For Year All Reservoirs	\# Decree Applications	\# Water Court Applications
			0	3,658	0	0	7,467	7,823	67	73
43	2,000	0	0	4,298	0	0	6,775	15,750	37	
44	2.500 700	0	0	- 0	0	0	9,600	17,949	30	38
54	150	0	0	0	0	0	0	\checkmark	12	3
55	7	0	0	0	0	0	0	156	\checkmark	6
56	200	0	0	5,330	0	0	986	3,729	25	18
57	800	300	600	0	0	0	37,400	42,900	104	130
58	5,200	300	600							
TOTALS	11,557	300	600	13,286	0	0	62,446	88,574	290	327

XII. RECOMMENDATIONS

Ownership of water rights is still an issue which everyone seems to avoid. One of our most precious assets is in the dilemma of being unable to have title insurance issued in its behalf. It would seem that legislation could be passed so title of water rights could be straightened out and ownership could be verified without huge expense. The present adjudication system is not overly expensive. It would seem that if this system is adequate to originate water rights, it would be sufficient to verify ownership. Persons who are using water in the decreed locations on the originally designated land could file a $\$ 26$ case showing that they are owners. If after advertising no one comes forth showing anything different, the court could verify title.

Consumptive use is more important than ever and we need to know what our use is so that we can discuss energy needs, compact negotiations, and many other issues in an intelligent manner.

In face of what could be a record short year, the importance of storage is again facing us. It would seem that all federal and many state regulations are geared to stop or hinder most storage projects. We would like to have studies made that would relate the peak runoff to snow melt on the western slope as it truly happens, rather than relating to ficticious rainfall data which is designed for entirely different areas. To our knowledge, this has only been slightly covered and this is the true source of peak runoff rather than intense rainfall.

RECEIVED

MAR 121981
mater repounces
SNAE ENGINEER Om:m

COLORADO DIVISION OF WATER RESOURCES
DIVISION 6 WATER BUDGET PROGRAM

SUMMARY FOR WATER DISTRICT 43 IN ACRE-FT
IRRIGATION DEPLETION 36983.
RESERVOIR EVAPORATION 1120.
CHANGE IN RESERVOIR STORAGE 123.
OUT OF BASIN OIVERSIONS 0.
MUNICIPAL+INDUSTRIAL CONSUMPTION 4200.
MISC. USE OR CORRECTIONS 500.
TOTAL DEPLETION 42926.
SUMMARY FOR WATER OISTRICT 44 IN ACRE-FT
IRRIGATION DEPLETION 36675
RESERVOIR EVAPORATION 2313.
CHANGE IN RESERVOIR STORAGE -594.
OUT OF BASIN CIIVERSIONS 592.
MUNICIPAL+INDULTRIAL CONSUMPTION 5200.
MISC. USE OR CORRECTIONS 400.
TOTAL DEPLETION 44586.
SUMMARY FOR WATER DISTRICT 47 IN ACRE-FT
IRRIGATION DEPLETION 93219.
RESERVOIR EVAPORATION 7248.
CHANGF IN RESERVOIR STORAGE - 5766.
OUE OF BASIN DIVERSIONS 1264.
MUNICIPAL + INDUSTRIAL CONSUMPTION 100.
MISC. USE OR CORRECTIONS 500.
TOTAL DEPLETION 96565.
SUMMARY FOR WATER DISTRICT S4 IN ACRE-FT
IRRIGATION DEPLETION 3230°
RESERVOIR EVAPORATION 211.
CHANGE IN RESERVOIR STORAGE 0.
OUT OF BASIN DIVERSIONS 0.
MUNICIPAL+INDUSTRIAL CONSUMPTION 0.
MISC. USE OR CORRECTIONS 100.
TOTAL DEPLETION 5540.
SUMMARY FOR WATER DISTRICT 55 IN ACRE-FT
IRRIGATION DEPLETION 2014
RESERVOIR EVADORATION 0.
CHANGE IN RESERVOIR STORAGE 0.
OUT OF BASIN OIVERSIONS σ.
MUNICIPAL+INDUSTRIAL CONSUMPTION 0.
MISC. USE OR CORRECTIONS 50.
TOTAL DEPLETION 2064.
SUMMARY FOR WATER DISTRICT 56 IN ACRE-FT
IRRIGATION OEPLETION 3635.
RESERVOIR EVAPORATION 197.
CHANGE IN RESERVOIR STORAGE 21.
OUT OF BASIN DIVERSIONS 0.
MUNICIPAL+INDUSTRIAL CONSUMPTION 0.
MISC. USE OR CORRECTIONS 100.

```
SUMMARY FOR WATER DISTRICT ST IN ACRE-FT
IRRIGATION DEPLETION ——_M.
RESERVOIR EVAPORATION 554.
CHANGE IN RESERVOIR STORAGE 141%.
OUT OF BASIN DIVERSIONS T19.
MUNICIPAL+INDUSTRIAL CONSUMPTION 5600.
MISC. USE OR CORRECTIONS 100.
```

TOTAL DEPLETION
24386.
SUMMARY FOR WATER DISTRICT 58 IN ACRE=FT
IRRIGATION DEPLETION $\quad 4848$.
RESERVOIR EVAPORATION 5945.
CHANGE IN RESERVOIR STORAGE -2288.
OUT OF BASIN CIVERSIONS 2078.
MUNICIPAL+INDUSIRIAL CONSUMPTION 1000.
MISC. USE OR CORRECTIONS 300.
TOTAL DEPLETION 55519.

[^0]: *District 43 water cases are handled in Division 5 Water Court (next page).

