DIVISION OF WATER RESOURCES

DIVISION NO. 6

1977 ANNUAL REPORT

I. Introductory Statement 1-3
II. Personnel 4
III. Water Supply
A. Forecast 5
B. Precipitation 5
C. Flooding 5
D. Water Budget 1977 Water Year 6-29
E. Ground Water 30
F. Transmountain Diversions (Transbasin) 30
G. Reservoir Storage 31-37
IV. Agriculture 38
V. Compacts 38
VI. Dams
A. Reservoir Projects 39
B. Stock Dams 39
VII. Water Rights
A. Tabulation 39
B. Referee's Findings and Decrees 39
VIII. Organizations
A. Conservancy Districts 40
B. Ditch Companies and Water and Sanitation Districts. 40
IX. Water Commissioner's Summary 42-49
X. Division Engineer's Summary
A. Direct Flow Diversions. 50
B. Storage Report 51
C. Structures Reported and Observations Made 52
D. Workload and Statistical Indicators 53
XI. Recommendations and Suggestions 54

1977 ANNUAL REPORT

I. INTRODUCTORY STATEMENT

Geographically, Irrigation Division 6 is comprised of high mountains, irrigated valleys, farmed mesas, desert range land, and deep canyons. The area of the Division is the natural drainage of the Yampa, Green, Little Snake, White, and North Platte Rivers. Precipitation varies from seven inches annually in the most westerly regions to over forty inches in the eastern high mountains with an average of twenty inches in the crop producing portions of the Division. The majority of the precipitation is in the form of snow during the winter months, however, some areas do receive adequate rain to permit the growing of small grain crops and dry land hay.

Primarily the irrigation is on mountain meadows producing hay and irrigated pasture. This acreage is approximately as follows for various drainages: Yampa River - 100,000 acres, White River - 30,000 acres, and North Platte 120,000 acres. Dry farming in the North Platte drainage is practically nonexistent due to the short growing season and a minimum elevation of 8,000 feet. The dry crop acreage in the Yampa basin is approximately 131,000 acres and the White River drainage has approximately 17,000 acres. Dry land crops consist of wheat, oats, and barley. The land is generally summer fallowed which, for the most part, means only fifty percent of the land is in production annually.

The population in Division No. 6 is sparse with most of the population being in Craig, Steamboat Springs, and Meeker. As a result of the national energy crisis, the city of craig is presently showing the most rapid growth. Several coal mines are being opened in the Craig area and construction has started on a new fossil fuel power plant. Meeker is located near the two
tracts of land that were recently leased from the Federal Government for oil shale development which is resulting in a slight population growth in that area. Steambat Springs has stabilized to some degree and is not at present experiencing the phenomenal growth that it has had in the past.

Agriculture is the primary industry in the entire Division. Industry, though, particularly coal mining, is rapidly becoming a key source of revenue to Routt and Moffat Counties. Recreational development has stabilized with only one additional project planned. The oil shale industry, as of yet, has not caught fire, although there are several people being employed in making studies and formulating development plans.

The only area to receive substantial increases in population has been Craig. With the planned opening of two additional strip mines and work being in full swing on the power plant, many people have been attracted to the region. Several new trailer parks along with sub-divisions have been started.

This past irrigation season was one of the driest years on record. There was drought experienced throughout the state of Colorado and the Division 6 was no exception. There were many ditches that usually would have had adequate water that did not receive any water this past season and several reservoirs did not fill. As a result of the short water supply, irrigated crop production was down as well as dry land production.

The shortage of water resulted in the installation of several new headgates and measuring devices. The upper end of the Yampa River was severely affected by the drought and at times the first four water rights out of approximately seventy were the only ones with water. Water was released from the State Fish and Game Reservoir, Upper Stillwater, to supply the town of Yampa. The water users of the Stillwater Reservoir which only stored 21 percent of its capacity received 10 days of water through their ditch. All tributaries to the Yampa were similarly affected.

There were times in July and August when a call could have been placed on the entire river system. This occured when the city of Craig was short at its inlets and had to install a diversion dam across the river. As a result, the amount of water that it took to fill the small reservoir behind the dam caused a drop in the river at the Maybell Canal. However, several heavy rains fell within that week and it was not necessary to place a call on the main stem of the Yampa below the town of Yampa. There were many locations along the river where ditches were not receiving their full decree, but these ditches did not have proper headgates, diversion dams, or measuring devices. At the time the Yampa River was becoming quite low, most ranchers were starting to dry up their meadows to harvest hay; consequently, no call was placed on the Yampa River. If the pattern of use were to change and another short supply year occured, a call would be almost certain for the entire Yampa River system.

The Elk River flow held up longer and everyone on it received enough water to raise good crops and no call was required.

The White River was put under administration in early July from Old Agency Headgate upstream. The Highline Ditch called for water and consequently all rights junior to it were shut off and water was delivered to supply it. The return flow from the Old Agency and Highline was enough to supply the irrigation downstream. The town of Rangely had to do extensive work on its diversion dam to keep water at its pumps. A plan was developed where water could be released from Johnny Johnson Reservoir if necessary to supply Rangely.

The North Platte drainage had several streams under administration, some of them for the first time in over thirty years. Only the main stem of the North Platte, the Canadian River, and Big Creek were not administered. Most of the reservoirs did not fill and the hay production, on the average, was estimated at fifty percent.
II. PERSONNEL

FY 76-77
Months
FY 76-77
Name
Position District Worked Budgeted Mileage

Wesley E. Signs	Division Engineer		Full Time
Daries C. Lile	Asst. Division Engineer		1256
W. Kent Holt	Hydrographer	Full Time	524
Linda L. Fox	Secretary	Full Time	296
Karen McPherren	Secretary	F	12
Roy D. Steffen	lo42 Water Commissioner		1

[^0]III. WATER SUPPLY

A. Forecast

Drought was throughout the Division with streamflow being at a thirtyyear low. Runoff at key gaging stations was as follows:

Station

Yampa River at Steamboat Springs Elk River at Clark
Yampa River at Hayden
Yampa River at Maybell
Little Snake near Slater
Little Snake near Lilly Park
South Fork of White River near Buford
North Fork of White River near Buford
White River near Meeker
Piceance Creek below Ryan Gulch
White River above Rangely
White River near Watson, Utah Michigan River near Cameron Pass North Fork Michigan River near Gould North Platte River near Northgate

Acre Feet Average No. of Years
$125.400 \quad 37 \quad 68$
$87.490 \quad 36$
$236,000 \quad 30 \quad 10$
$345,70031 \quad 59$
$62.490 \quad 38$
103,200 . 254
94,260 5125
113.4005030

198,600 44 71
9,220 $68 \quad 11$
226,000 -- --
$233.100 \quad 4452$
1.420 -- --

6,490 51 26
$89,910 \quad 69$
B. Precipitation

Precipitation for selected stations in Division 6:

	Steamboat Springs	Hayden	Walden
November	.54	.12	.11
December	.70	.39	.21
January	1.02	.66	.14
February	1.29	.45	.42
March	1.22	.60	.49
April	1.50	1.03	.47
May	2.38	1.20	2.00
June	1.72	.05	.11
July	2.79	1.91	1.54
August	1.02	1.99	2.42
September	1.44	.65	1.02
October	15.84	-90	1.44
Totals		9.95	10.37

66\% of normal 62% of normal 103% of normal
C. Flooding

As a result of the drought in the Division, there was no high water in the spring. However, slight flooding did occur on the Yampa drainage in mid August as a result of severe thunder storms. Several diversion dams were washed out as well as one county road bridge.
D. Water Budget

The 1977 Water Budget was compiled using the computer program designed last year with minor changes made to improve the end product. Because of the drought this season, it became necessary to add more subunits within each district to more accurately describe the water supply for each hydrologic unit. Where last year the North Platte drainage was computed as one subunit, this year's output was derived using ten subunits and two additional weather stations. Each of these subunits will reflect the acreage, irrigation season, and local climate for that subunit so that the actual irrigation depletion estimates are improved. Better reservoir surface area inputs were also included this year, primarily due to additional investigation of capacity-area relationships for most major reservoirs in Division 6.

WATER DISTRICT 47

WATER DISTRICT 54
54 WATER DISTRICT
** MONTH EVAPORAIION(INCHES) NET DEPLETION(AF,

EVAPORATIONIINCHESI NEI DEPLETION(AF-)
0.

 - 9LSE STV101 E8*LC

MONTH DEPLETION (INCHES)
4.15
${ }_{3.23}$ N .2

SUMMARY FOR WATER DISTR 47 IN ACRE-FT
IRRIGATION DEPLETION 61709.
RESERVOIR EVAPORATION 5767.
-14960
680.
100.
600.

NOIIdWNSNOS 7VIYISNONI +7甘dIDINNW

MISC. USE OR CORRECTIONS
N01137d30 78101

SUMMARY FOR WATER DISTA 54 IN ACRE-FT

$$
\begin{array}{r}
7020 . \\
\hline 195 \\
-8 . \\
0 . \\
\hline 0 . \\
50 .
\end{array}
$$

7258.

IRRIGATION DEPLETION	3762.
RESERVOIR EVAPORATION	116.
CHANGE IN RESERVOIR STORAGE	-92.
OUT OF BASIN DIVERSIONS.	0.
MUNIGIPAL+INDUSTRIAL CONSUMPTION	0.
MISG. USE OR CORRECTIONS	0.

3829.
 TOTAL DEPLETION

IRRIGATION SUMMARY COMPARISON OF $1976 \& 1977$ WATER YEARS

E. Ground Water

The dry weather conditions produced a high demand for ground water in the Division. Well permits for the construction of new wells were being asked for daily. Replacement permits for existing wells that were going dry were also being processed at a greater number than ever before. The requests for these additional permits caused a back-log to occur in the Denver Ground Water Section and often verbal approval had to be given for the construction of the wells.

Although the majority of the ground water being used in the Division is in shallow alluvium aquifers, the exploration for coal has uncovered possibilities of new deeper aquifers of ground water. One of these is the Twenty Mile Sandstone which is producing artesian flow of 50 gpm to 450 gpm . New ground water supplies are also being reported in the North Park Basin with some shallow wells (60 feet) producing artesian flows. Work needs to be done in the North Park area to further define these potential sources of ground water.

The exploration for coal has also caused some problems in the Division with unplugged exploration holes being drilled. Several coal companies are doing extensive exploration work in the area and often test holes are left open without proper casing or plugging measures.
F. Transmountain Diversions (Transbasin)

Structure

Stillwater Ditch
Sarvis Ditch
Rich Ditch
Morgan Creek Dome Creek
Michigan Ditch
Cameron Pass Ditch

Acre Feet
644.0
0.0
1303.0
148.0
24.8
466.0
214.0

Total water exported from Yampa River to Colorado River Drainage: 668.0 Total water exported from N. Platte River to S. Platte Drainage: 680.0
III. Water Supply
TOTALS (All Figures in Acre Feet)
TOTAL

FILL

$$
15,991.36 \quad 525.44 \quad 978.99 \quad 15,537.81-453.55
$$

AMT. IN STORAGE DURING

,

$\dot{\circ} \dot{\circ} \dot{\sim} \dot{\sim}$
~i $\dot{\sim}$

Buffalo Creek
Beaver Creek
T. Beaver Creek
Big Creek
Lake Creek
T. N. Fk. North Platte
Buffalo Creek
Burns Draw
Roaring Fork
Michigan River
Illinois River
Illinois River
Illinois River
Buffalo Creek
Michigan River
Arapahoe Creek
Seepage T. Michigan River
Cow Creek
Little Grizzly River
Three Mile Creek
Buffalo Creek
Arapaho Creek
Spring Creek
Three Mile Creek
Dry Creek
NewComb Creek
Lake Creek
Howd Creek
Roaring Fork
Illinois River
Middle Fork Mexican Creek
Mexican Creek
T. Grizzly Creek
Ninegar Creek
North Fk. Michigan Creek
Unnamed T. Little Grizzly
Mexican Creek

$0 \cdot 9$	－	0.0	$\varepsilon 8 \cdot 9$	$\varepsilon 8^{\circ}$	$0 \cdot 9$
0^{*} T	－	$0^{\circ} 0$	0＊τ	0＊0	0＊T
－¢ ¢ ¢	$+$	－¢ ¢ \％	て＊8T9	$\varepsilon * T 96$	0＊28
0＊0		$0 \cdot 0$	$6^{\circ} 01$	＊＊0T	$0 \cdot 0$
$0^{\circ} \mathrm{Z}$	$+$	$0^{\circ} \mathrm{Z}$	$0^{\circ} 0$	$0^{\circ} \mathrm{Z}$	$0 \cdot 0$
$0 \cdot 8$	－	$0^{\circ} 0$	$0 \cdot 8$	$0 \cdot 0$	0＊8
$0 \% 0$		$0^{\circ} 0$	＊＊9	＊${ }^{\text {－}}$	$0 \cdot 0$
0．0tt	＋	0\％0ts	0^{*} E8T	0＊$\varepsilon 6 Z$	$0 \cdot 0$
$0 \cdot 097$	－	$0^{\circ} 00$	$0^{\circ} \mathrm{ZOE}$	0° ても	0．00\％
9＊¢8	－	$0^{\circ} 0$	9^{*} ¢8乙	$0 \cdot 007$	$9^{\cdot 1} \mathrm{~EB}$
0＊8	$+$	0．82	$0^{\circ} 0$	0．82	$0^{\circ} 0$
$0^{\circ} \mathrm{LE}$	－	－0	0° Tも¢	0＊＊OE	$0^{\circ} \angle \varepsilon$
$0^{\circ} 0$		－ 0	0＊L\％T	0＊ $2 \boldsymbol{\text { ¢ T }}$	－ 0
$0^{\circ} \mathrm{\varepsilon}$ ¢	$+$	0＊\＆g	－ 0	0＊ESZ	－ 0
$0^{\circ} 0$		－ 0	$0^{\circ} \mathrm{Tz}$	0＊TZ	－ 0
$0{ }^{\circ} 0$		－ 0	TL＊ 2	TL＊${ }^{\circ}$	－ 0
$0^{\circ} \mathrm{Z}$	＋	$0^{\circ} \mathrm{Z}$	－ 0	0＊τ	－ 0
8G＊ 8	－	$0^{\circ} \varepsilon$	$85^{\circ} 8$	－ 0	$8 S^{\circ} \tau T$
$0^{\circ} \mathrm{E} 9$ ¢	＋	0＊$¢ 97$	－ 0	O＊と9Z	－ 0
$0^{\circ} 0 \varepsilon$	＋	－ 0ε	－ 0	－ 0ε	－ 0
$0^{\circ} \mathrm{Z}$	＋	$0^{*} 2$	－ 0	$0^{\circ} \mathrm{Z}$	$0 \cdot 0$
$0^{\circ} 0$		て・てT	－ 0	－ 0	て＇てT
08＊9	－	$0 \cdot 08$	8．9ع	－ 0	8＊9TT
$0^{\circ} 0$		$0^{\circ} \mathrm{Z}$	${ }^{\circ} \mathrm{O}$	－ 0	$0^{*} \mathrm{Z}$
$87^{\circ} 0 \varepsilon$	－	$0 \cdot 0$		96＊ $0^{\circ} \mathrm{T}$	$8 \square^{*} 0 \varepsilon$
$0^{\circ} 0$		$0^{\circ} \mathrm{T}$	¢ $8^{\circ} \mathrm{G}$	$68^{\circ} \mathrm{S}$	0^{*} T
て＇T9	－	$\varepsilon \cdot \varepsilon \tau$	$00^{*} 8 L$	て．LT	$5 \cdot \square L$
0．90S	＋	0＊90s＊T	－LOG	00＊とT0＊T	－ 0
$0^{\circ} \mathrm{Z}$	＋	$0^{\circ} \mathrm{Z}$	$00^{*} \varepsilon$	$00^{\circ} \mathrm{S}$	－ 0
てE＊66	－	0＊ 49	で＊Lてて	T•8てT	2E•99T
$0 \cdot 6 \varepsilon$	－	$0 \cdot 52$	$0 \cdot 9 Z T$	0.98	0＊89
$0^{\circ} \mathrm{Z}$	－	－ 0	$0^{\circ} \mathrm{E}$	$0^{\circ} \mathrm{T}$	$0^{\circ} \mathrm{Z}$
0^{*} \％	－	－ 0	$0^{\prime} z$	$0^{\circ} \mathrm{T}$	$0^{\circ} \mathrm{L}$
99vzo	als	LL／TE／OT	NOIJWYOdY ${ }^{\text {a }}$	NOSYES	9L／T／TT
NI GSNEHD TYLOL		玉ฺษ\％OLS	＋GSVETITM	9NIGAa	9ロviols
		NI • $W W \%$		I＇IIA	NI • LW\％

DISTRICT NO． 57
TOTALS（All Figures in Acre Feet）
TONALS（All Figures in Acre Feet）
Haunted Spring Reservoir Haunted Spring Gulch Flynn Spring Pot Creek
\qquad
Offield Reservoir

District 56 Cont．	
Haunted Spring Reservoir	Haunted Spring Gulch
Massey Reservoir	Flynn Spring
Offield Reservoir	Pot Creek
TOTALS（All Figures in Acre Feet）	
DISTRICT NO． 57	

	AMT. IN STORAGE 11/1/76	FILL DURING SEASON	RELEASE + EVAPORATION	AMT. IN STORAGE 10/31/77	\qquad
	611.0	602.0	1.169.0	44.0	- 567.0
	2.6	0.0	0.0	2.6	0.0
	80.0	0.0	0.0	80.0	0.0
	0.0	30.0	30.0	0.0	0.0
	3.0	7.0	10.0	0.0	3.0
	50.0	203.0	243.0	10.0	40.0
	0.0	0.0	0.0	0.0	0.0
	1,637.0	205.0	312.0	1.530.0	- 107.0
	35.0	0.0	0.0	35.0	0.0
	4.0	0.0	0.0	4.0	0.0
	728.0	0.0	726.0	2.0	- 726.0
	2.43	0.0	0.0	2.43	0.0
	600.5	0.0	0.0	600.5	0.0
	5.0	0.0	5.0	0.0	5.0
	. 4	0.0	0.0	. 4	0.0
	261.0	0.0	0.0	261.0	0.0
	77.0	0.0	77.0	0.0	77.0
	3.0	0.0	3.0	0.0	3.0
	2,742.0	1,658.0	0.0	4,400.0	+1,658.0
	396.6	297.92	297.92	396.6	0.0
	10.0	55.0	60.0	5.0	5.0
	6.0	19.0	19.0	Est. 6.0	0.0
	30.0	60.0	90.0	0.0	30.0
	0.0	20.85	20.85	0.0	0.0
	1.0	0.0	0.0	1.0	0.0
Est.	100.0	0.0	0.0	Est. 100.0	0.0
	0.0	122.0	0.0	122.0	+ 122.0
	8.21	11.79	20.0	0.0	8.21
	45.0	0.0	0.0	45.0	0.0
	2.5	0.0	0.0	2.5	0.0
	7.0	0.0	0.0	7.0	0.0
	6.8	0.0	0.0	6.8	0.0
	361.0	284.0	525.0	120.0	241.0
	0.0	1,676.9	1,655.95	20.95	+ 20.95
	1.74	0.0	0.0	1.74	0.0
	4.6	0.0	0.0	4.6	0.0

AMT. IN	FILL		AMT. IN	TOTAL
STORAGE	DURING	RELEASE +	AMT. STORAGE	CHANGE IN
II/1/76	SEASON	EVAPORATION	IO/31/77	STORAGE
0.0	12.0	12.0	0.0	0.
5.0	0.0	0.0	5.0	0.0
35.0	40.0	75.0	0.0	-35.0
620.0	324.9	617.5	327.4	-292.6
$23,604.0$	0.0	0.0	$23,604.0$	0.0
37.0	0.0	0.0	37.0	0.0
390.0	34.0	350.0	74.0	-316.0
1.0	0.0	1.0	0.0	-
15.0	0.0	0.0	15.0	0.0
$32,529.38$	$5,663.36$	$6,319.22$	$31,873.52$	-655.86

IV. AGRICULTURE

Crop production throughout the Division 6 area was below average as a result of the dry weather conditions. However, those irrigated crops that were supplied with adequate water on the White and Yampa Rivers did produce good crops as a result of the longer growing season.

Some drainages on the Yampa that did not supply enough water were the Yampa above the town of Yampa, Elkhead Creek, Fortification Creek, and Morapas Creek. Crops in these areas were estimated to be as low as twenty percent of normal production.

The White River, although being short above Meeker, did supply enough water to raise near average hay production. The North Platte drainage as a basin produced approximately sixty percent of the normal hay crop.

Dry land crop production was very poor with wheat production being as low as twenty percent in some areas. Also grass-fattened cattle as a whole were not as heavy this fall as previous years.

V. COMPACTS

Preliminary gaging station records show $345 ; 700$ acre feet at the Maybell gage on the Yampa River for the past water year. Although this is less than 500,000 acre feet, it is still within the requirements of the Upper Colorado River Compact with the ten year consecutive average being $1,099,258$ acre feet per year for the Yampa River flow at Maybell.

The Nebraska VS Wyoming Supreme Court stipulations were met with 10,973 acre feet for irrigation purposes being stored, 110,481 acres of land irrigated, and 680 acre feet of water being transported out of the North Platte River basin.

The operation of Pot Creek this past season was relatively easy since no water was available for Colorado. The majority of the water that was received by the water rights in Colorado was the result of a reservoir release being
made by Utah of water that was stored the previous year. The total flow for Pot Creek at the Colorado State line was 65 acre feet with the reservoir release accounting for 56 acre feet.

VI. DAMS

A. Since the past irrigation season was one of the driest on record, many reservoirs did not fill and there was no major problems developed by any of the reservoirs during the year.

Construction is 95 percent complete on Lake Catamount Reservoir on the main stem of the Yampa River. This reservoir will be allowed to fill as soon as the final inspection has been approved.

Lester Creek Reservoir has still not been completely filled, primarily due to lack of water availability. The Forest Service as yet has not allowed the construction of a permanent road to the dam and this could possibly cause problems for any future maintenance work that may be needed.
B. The construction of stock dams has been increasing as a result of the drought and assistance monies being made available through the Soil Conservation Service. There was a total of sixteen new stock dams approved during 1977.

VII. WATER RIGHTS

A. During the month of August, Water Referee hearings were held by the Division 6 Water Referee. Cases heard were those that had been objected to and the referee was hearing them in an attempt to resolve differences of the parties involved so that a full hearing before the Court would be avoided. In most cases, this was possible; however, those cases involving the Federal Government and a case involving the claim to a spring were not resolved.
B. Consultations with the water referees are made upon their request and are up-to-date. All water cases are field checked by a member of the Division

6 staff with the water referee unless both parties have previous knowledge of the case or the case is a conditional water right for which there would be no advantage in seeing.

	Applications	Rulings	Decrees
Underground	45	35	37
Change of Water Right	25	15	19
Plan of Augmentation	3	0	0
Water Right	118	95	86
Diligence	3	3	6
Water Storage	52	15	14
Applications received in Water Court	246		
Number of Referee Consultations	163		

VIII. ORGANIZATIONS

A. Colorado River Water Consaxvation District, Glenwood Springs, Colorado - Mr. Roland C. Fischer, Secretary-Engineer

Upper Yampa Water Conservancy District, Steamboat Springs, Colorado - John Fetcher, Secretary; Jim Funk, President

Yellow Jacket Water Conservancy District, Meeker, Colorado Frank Cooley, Attorney

Pot Hook Conservancy District, Baggs, Wyoming Darwin Dunn, President

Lower Yampa Conservancy District, Craig, Colorado Tony Angelo, Chairman

Great Northern Conservancy District, Craig, Colorado Tony Angelo, Chairman

Northwest Colorado Water Council, Craig, Colorado Tony Angelo, Chairman

Jackson County Water Conservancy District, Walden, Colorado Lloyd Hampton, Secretary
B. Bear River Reservoir Company, Yampa, Colarado

Stillwater Ditch Company, Yampa, Colorado
Maybell Irrigation District, Maybell, Colorado
Miller Creek Ditch Company, Meekex, Colorado

Woodchuck Ditch Company, Steamboat Springs, Colorado
Mt. Werner Water and Sanitation District, Steamboat Springs, Colorado
Morrison Creek Water and Sanitation District, Oak Creek, Colorado
Steamboat Lake Water District, Clark, Colorado
Riverside Water and Sanitation District, Steamboat Springs, Colorado
Steamboat II Water and Sanitation District, Steamboat Springs, Colorado
Tree Haus Water and Sanitation District, Steamboat Springs, Colorado
IX. WATER COMMISSIONER'S SUMMARY
Water District No. 4 43
Direct Flow Diversions to Irrigation 264, 332 AF
Direct Flow Diversions to Transbasin 0
Direct Flow Diversions to Municipal \& Domestic. 1.148 AF
Direct Flow Diversions to Industrial 5,272 AF
Direct Flow Diversions to Other Uses 14.111 AF
TOTAL DIVERSIONS 284,863 AF
Reservoir Storage (11/1/76) 8,066 AF
Reservoir Storage (10/31/77) $7,919 \mathrm{AF}$
Net Change in Storage 147 AF
Fill During Season 1,416 AF
Release + Evaporation During Season $1,562 \mathrm{AF}$
Direct Diversions to Irrigation 264,332 AF
Diversions from Storage to Irrigation 146 AF
TOTAL DIVERSIONS TO IRRIGATION 264,478 AF
Total Acres Irrigated 24,371 Acres
Average Demand for Irrigation10.8 AF/Acre
Number of Active Ditches Observed 431
Number of Active Reservoirs Observed 23
Number of Active Springs Observed 230
Number of Active Wells Oioserved 10
Number of Inactive Structures Observed 134
TOTAL STRUCTURES OBSERVED 828
Total Number of Structures Regulated 231
Total Number of Field Observations Made 5,891
Water District 44
Direct Flow Diversions to Irrigation 148,486 AF
Direct Flow Diversions to Transbasin 148 AF
Direct Flow Diversions to Municipal \& Domestic. $1,810 \mathrm{AF}$
Direct Flow Diversions to Industrial 0
Direct Flow Diversions to Other Uses 523 AF
TOTAL DIVERSIONS $150,967 \mathrm{AF}$
Reservoir Storage (11/l/76) 15,991 AF
Reservoir Storage (10/31/77) 15,538 AF
Net Change in Storage 454 AF
Fill During Season 525 AF
Release + Evaporation During Season 979 AF
Direct Diversions to Irrigation 148,486 AF
Diversions from Storage to Irrigation 114 AF
TOTAL DIVERSIONS TO IRRIGATION $148,600 \mathrm{AF}$
Total Acres Irrigated 21.496 Acres
Average Demand for Irrigation6.9 AF/Acre
Number of Active Ditches Observed 225
Number of Active Reservoirs Observed 49
Number of Active Springs Observed 29
Number of Active Wells Oiserved 3
Number of Inactive Structures Observed 87
TOTAL STRUCTURES OBSERVED 393
Total Number of Structures Regulated 55
Total Number of Field Observations Made 1,675

Water District

Direct Flow Diversions to Irrigation 206,986 AF
Direct Flow Diversions to Transbasin 680 AF
Direct Flow Diversions to Municipal \& Domestic 368 AF
Direct Flow Diversions to Industrial 0
Direct Flow Diversions to Other Uses 4,466 AF
TOTAL DIVERSIONS 212,500 AF
Reservoir Storage (11/1/76) 15,614 AF
Reservoir Storage (10/31/77) 14,118 AF
Net Change in Storage $1,496 \mathrm{AF}$
Fill During Season 11,647 AF
Release + Evaporation During Season 13,143 AF
Direct Diversions to Irrigation 206,986 AF
Diversions from Storage to Irrigation $4,537 \mathrm{AF}$
TOTAL DIVERSIONS TO IRRIGATION $211,523 \mathrm{AF}$
Total Acres Irrigated 110,481 Acres
Average Demand for Irrigation 1.9 AF/Acre
Number of Active Ditches Observed 222
Number of Active Reservoirs Observed 35
Number of Active Springs Observed 1
Number of Active Wells Onserved 2
Number of Inactive Structures Observed 41
TOTAL STRUCTURES OBSERVED 301
Total Number of Structures Regulated 165
Total Number of Field Observations Made 1,214

Direct Flow Diversions to Irrigation	22,232 AF
Direct Flow Diversions to Transbasin	0
Direct Flow Diversions to Municipal	118 AF
Direct Flow Diversions to Industrial	0
Direct Flow Diversions to Other Uses	590 AF
TOTAL DIVERSIONS	23,340 AF

Reservoir Storage (11/1/76) 462 AF
Reservoir Storage (10/31/77) 454 AF
Net Change in Storage 8 AF
Fill During Season 398 AF
Release + Evaporation During Season 406 AF
Direct Diversions to Irrigation $22,232 \mathrm{AF}$
Diversions from Storage to Irrigation 400 AF
TOTAL DIVERSIONS TO IRRIGATION 22,622 AF
Total Acres Irrigated 10,960 Acres
Average Demand for Irrigation 2.1 AF/Acre
Number of Active Ditches Observed 65
Number of Active Reservoirs Observed 7
Number of Active Springs Observed 3
Number of Active Wells Onserved 0
Number of Inactive Structures Observed 24
TOTAL S'TRUCTURES OBSERVED 99
Total Number of Structures Regulated 65
Total Number of Field Observations Made 230
Water District No. 55
Direct Flow Diversions to Irrigation 9.387 AF
Direct Flow Diversions to Transbasin 1
Direct Flow Diversions to Industrial 0
Direct Flow Diversions to Other Uses 130
TOTAL DIVERSIONS 9.518 AF
Reservoir Storage (11/1/76) 0
Reservoir Storage (10/31/77) 0
Net Change in Storage 0
Fill During Season 0
Release + Evaporation During Season 0
Direct Diversions to Irrigation 9,387 AF
Diversions from Storage to Irrigation 0 TOTAL DIVERSIONS TO IRRIGATION 9,387 AF
Total Acres Irrigated 1,368 Acres
Average Demand for Irrigation 6.9 AF/Acre
Number of Active Ditches Observed 11
Number of Active Reservoirs Observed 0
Number of Active Springs Observed 20
Number of Active Wells Oinserved 5
Number of Inactive Structures Observed 8
TOTAL STRUCTURES OBSERVED 44
Total Number of Structures Regulated 0
Total Number of Field Observations Made 126
Water District No. 56
Direct Flow Diversions to Irrigation $11,454 \mathrm{AF}$
Direct Flow Diversions to Transbasin 0
Direct Flow Diversions to Municipal 279 AF
Direct Flow Diversions to Industrial 0
Direct Flow Dive
TOTAL DIVERSIONS 14,452 AF
Reservoir Storage (11/1/76) 166 AF
Reservoir Storage (10/31/77) 67 AF
Net Change in Storage 99 AF
Fill During Season 128 AF
Release + Evaporation During Season 227 AF
Direct Diversions to Irrigation 11,454 AF
Diversions from Storage to Irrigation 248 AF
TOTAL DIVERSIONS TO IRRIGATION 11,702 AF
Total Acres Irrigated 2,335 Acres
Average Demand for Irrigation 5.0 AF/Acre
Number of Active Ditches Observed 33
Number of Active Reservoirs Observed 8
Number of Active Springs Observed 65
Number of Active Wells Oinserved 4
Number of Inactive Structures Observed 25
TOTAL STRUCTURES OBSERVED 135
Total Number of Structures Regulated 0
Total Number of Field Observations Made 502
Water District No. 57

Direct Flow Diversions to Municipal \& Domestic. 915 AF
Direct Flow Diversions to Industrial 4.520 AF
Direct Flow Diversions to Other Uses $\frac{2,054 \mathrm{AF}}{63,456 \mathrm{AF}}$ TOTAL DIVERSIONS
Reservoir Storage (11/1/76) 1.165 AF
Reservoir Storage (10/31/77) 2.174 AF
Net Change in Storage $+1,009 \mathrm{AF}$
Fill During Season 3,622 AF
Release + Evaporation During Season 2,613 AF
Direct Diversions to Irrigation 54,895 AF
Diversions from Storage to Irrigation 538 AF
TOTAL DIVERSIONS TO IRRIGATION 55.433 AF
Total Acres Irrigated 9.564 Acres
Average Demand for Irrigation 5.6 AF/Acre
Number of Active Ditches Observed 71
Number of Active Reservoirs Observed 30
Number of Active Springs Observed 107
Number of Active Wells Onserved 6
Number of Inactive Structures Observed 75
TOTAL S'TRUCTURES OBSERVED 291
Total Number of Structures Regulated 28
Total Number of Field Observations Made 716
Water District No. 58
Direct Flow Diversions to Irrigation 97,106 AF
Direct Flow Diversions to Transbasin 25 AF
Direct Flow Diversions to Municipal \& Domestic. 2,998 AF
Direct Flow Diversions to Industrial 0
Direct Flow Diversions to Other Uses 946 AF
TOTAL DIVERSIONS 101,075 AF
Reservoir Storage (11/1/76) 32,529 AF
Reservoir Storage (10/31/77) 31,874 AF
Net Change in Storage 655 AF
Fill During Season 5,663 AF
Release + Evaporation During Season 6,319 AF
Direct Diversions to Irrigation 97,876 AF
Diversions from Storage to Irrigation 3,620 AF
TOTAL DIVERSIONS TO IRRIGATION 101,496 AF
Total Acres Irrigated 30,499 Acres
Average Demand for Irrigation 3.3 AF/Acre
Number of Active Ditches Observed 351
Number of Active Reservoirs Observed 44
Number of Active Springs Observed 225
Number of Active Wells Oiserved 30
Number of Inactive Structures Observed 160
TOTAL STRUCTURES OBSERVED 810
Total Number of Structures Regulated 127
Total Number of Field Observations Made 3,374

Table A

Reported on in Dist.

Total Diversions A.F.

Transbasin/Transmen. Diversions A.F.

Recreational \& Other Uses A.F.

Municipal \& Domestic A.F.

Industrial Use A. F.
A.F. per Acre

No. of Acres Irrigated

Total Diversions for Irrigation A.F.

Total Inactive Ditches Reported Active
Delivered to Compact Commitment A. F.

Water District

Table A												
		3 0 0 0 H. B	$\begin{aligned} & \text { Ho } \\ & \text { W. } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { En } \\ & 0 . \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \sim \\ & \sim \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			Recreational \& Other Uses A.F.	$\begin{aligned} & 0.9 \\ & 0 . \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			
43	431	134	264,478	24,371	10.8	5,272	1,148	14,111	0	284,863	828	0
44	225	87	148,600	21,496	6.9	0	1,810	523	148	150,967	393	0
47	222	41	211,523	110,481	1.9	0	368	4,466	680	212,500	301	0
54	65	24	22,622	10,960	2.1	0	118	590	0	23,340	99	0
55	11	8	9,387	1,368	6.9	0	1	130	0	9,518	44	0
56	33	25	11,702	2,335	5.0	0	279	2,719	0	14,452	135	0
57	71	75	55,433	9,564	5.6	4,520	915	2,054	1,072	63,456	291	0
58	351	160	101,496	30,499	3.3	0	2,998	946	668	101,075	810	0
totals	1,409	554	825,241	211,074	$\begin{gathered} 3.9 \\ (\text { Avg. }) \end{gathered}$	9,792	7,637	25,539	2,568	860,171	2,901	0

DIVISION ENGINEER'S SUMMARY
Table C
STRUCTURES REPORTED AND OBSERVATIONS MADE
 Reported

43	240	23	431	134	828	5,891	231
44	32	49	225	87	393	1,675	55
47	3	35	222	41	301	1,214	165
54	3	7	65	24	99	230	65
55	25	0	11	8	44	126	0
56	69	8	33	25	135	502	0
57	115	30	71	75	291	716	28
58	255	44	351	160	810	3,374	127
TOTALS	742	196	1,409	554	2,901	13,728	671

X. DIVISION ENGINEER'S SUMMARY

Table D

WORKLOAD AND STATISTICAL INDICATORS

Acre Feet Water Used 860,171
Acre Feet Diverted for Agricultural Use 825,241
Acre Feet Diverted for Industrial Use 9,792
Acre Feet Diverted for Recreation Use 25,539
Acre Feet Diverted for Domestic \& Municipal Use 7,637
Acre Feet Diverted to Compact Commitment 0
Acre Feet Water Stored (10/31/77) 47,380
Acre Feet Water Transbasin Diversion 2,568
Acres Irrigated 211,074
Total Structures Administered 671
Total Daily Observations 13.728
Total Structures Observed or Reported 2,899

XI. RECOMMENDATIONS AND SUGGESTIONS

After a record year of water shortages, the continued need for storage becomes even more evident. With the national attitude on storage being what it is, it becomes even more important for the State to concentrate on a program of its own. The future of Colorado and its well being is going to depend on a good water supply. Especially on the Western slope, storage is the only practical way that this can be accomplished.

The revolving fund that is in existance is probably a start, but is terribly inadequate to complete the jow that needs to be done.

The age-old problem of keeping water comissioner jobs upgraded to compete with local employment is becoming more of a problem. The increasing job openings in the energy related fields in Northwestern Colorado make it harder than ever to keep personnel: Jobs in new coal mines and power plants pay ever increasing wages in non-skilled and semi-skilled fields. This makes many commissioners, particularly the younger men, wonder if it is wise to continue working for the state. It would be well if the commissioners could be upgraded to compete with non-state employment. State-furnished transportation would also be a help. With the increasing fuel costs, many men are subsidizing the State through transportation, as well as being in the lower pay scale brackets.

Ownership of water rights also continues to be a problem. Water rights, for the most part, are well defined. The problem lies in a clear-cut definition as to who owns the water. In cases where the parties involved agree to amounts of water owned by each, it seems like an application under a water case showing ownership might be an easy, inexpensive way to clarify this situation.

[^0]: *Additional time above budget allotment was paid for with Piceance Basin Study funds.

