CONTENTS

DIVISION OF WATER RESOURCES

DIVISION NO. 6
1975 ANNUAL REPORT
I. Introductory Statement 1
II. Personnel 3
III. Water Supply
A. Forecast 4
B. Precipitation 4
C. Flooding 5
D. Water Budget 6
E. Ground Water 7
F. Transmountain (Transbasin) 7
G. Reservoir Storage 8
IV. Agriculture 14
V. Compacts 15
VI. Dams
A. Reservoir Projects 15
B. Stock Dams 16
VII. Water Rights
A. Tabulation 16
B. Referee's Findings and Decrees 16
VIII. Organizations
A. Conservancy Districts 17
B. Ditch Companies and Water and Sanitation Districts 18
IX. Water Commissioner's Summary 19
X. Division Engineer's Summary
A. Direct Flow Diversions 21
B. Storage Report 22
C. Structures Reported and Observations Made 23
XI. Recommendations and Suggestions 24

DIVISION OF WATER RESOURCES
 DIVISION NO. 6
 1975 ANNUAL REPORT

I. Introductory Statement

The Yampa, North Platte, Green, Little Snake and White River drainage basins comprise Division No. 6 which includes the major portion of the Northwestern corner of Colorado. Elevations range from 14,000 feet in the Eastern portion to around 5,000 feet in the West including rugged mountains, irrigated valleys, farmed mesas, desert ranges and the beautiful canyon country of the Yampa and Green River. The annual precipitation varies from seven inches annually in the western winter ranges to over 40 inches in the high mountains with about 20 inches in the crop producing portions of the Division. The bulk of precipitation is in the form of snow during the winter months with some areas having summer precipitation enough to support small grains and some dry land hay.

Primarily the irrigation is on mountain meadows producing hay and irrigated pasture. This acreage is approximately as follows for various drainages: Yampa River - 100,000 acres, White River - 37,000 acres and 120,000 acres for the North Platte drainage., Dry farming in the North Platte drainage is practically nonexistent due to the short growing season and a minimum elevation of 8,000 feet. The dry crop acreage in the Yampa basin is approximately 131,000 acres and the White River
drainage has approximately 17,000 acres. Dry land crops consist of wheat, oats and barley. The land is generally summer fallowed which for the most part means only 50 per cent of the 1 and is in production annually.

The population in Division No. 6 is sparse with most of the population being in Craig, Steamboat Springs and Meeker. As a result of the national energy crisis, the cities of Craig and Meeker are presently showing the most rapid growth. Several coal mines are being opened in the Craig area and construction has started on a new fossil fuel power plant. Meeker is located near the two tracts of land that were recently leased from the Federal Government for oil shale development which is resulting in population growth in that area. Steamboat Springs has stabilized to some degree and is not at present experiencing the phenomenal growth that it has had in the past.

Agriculture is the primary industry in the entire Division. Industry, though, particularly coal mining, is rapidly becoming a key source of revenue to Routt and Moffat Counties. Recreational development has stabilized with only one additional project planned. The oil shale industry, as of yet, has not caught fire, although there are several people being employed in making studies and formulating development plans.

The only area to receive substantial increases in population has been Craig. With the planned opening of two additional strip mines and work being in full swing on the power plant, many people have been attracted to the region. Several new trailer parks along with subdivisions have been started.
II. Personnel
A.

FY 74-75
MONTHS FY 74-75 MAME

POSITION DISTRICT WORKED BUDGETED MILEAGE

Wesley E. Signs	Division Engineer		Full Time	$\$ 43.20$
Daries C. Lile	Asst. Division Engineer		Full Time	162.96
W. Kent Holt	Hydrographer		Full Time	

III. Water Supply

A. Forecast

The winter snow pack in the Division 6 drainage areas resulted in a good water year. The peak flows were not has high as those experienced in the spring of 1974 as a result of the snow melting much slower and at a more uniform rate this spring. The U.S. Department of Agriculture Soil Conservation Service May 1, 1975 stream flow forecast were all above 115 percent and soil moisture in the mountain areas were near normal.

May 1, 1975 stream flow forecasts were:
Stream Percent of Average
Elk River at Clark 126\%
Little Snake at Lilly Park 117\%
Yampa River at Maybell: 133\%
Yampa River at Steamboat 133\%
White River near Meeker 136\%
North Platte at Northgate $\quad 140 \%$

B. Precipitation

The summer and fall precipitation has been below normal for most of the area. Soil moisture consequently is lower which may reduce next springs runoff. The August and September precipitation for various $\begin{array}{rrr}\text { Division } 6 \text { locations are: } & \begin{array}{c}\text { August } \\ \text { Departure }\end{array} & \text { September } \\ & \text { Departure } \\ & \text { Precipitation From Normal } & \text { Precipitation From Normal }\end{array}$

Steamboat Springs	.52	-1.09	.23	-1.36
Hayden	.60	-.80	.21	-.98
Meeker No. 2	.44		.48	
Walden	1.46	+.17	.38	-.63

Page 5

III. Water Supply
C. Flooding

There were no major flood problems in the Division. The Yampa River at Steamboat Springs peaked at approximately 4,260 c.f.s. on June 8, 1975. This was considerably less than the 1974 peak which was 5,790 c.f.s. on April 26, 1974. The trend on the Yampa River was reflected throughout the Division.

III. Water Supply

D. Water Budget - Water Year 1974

DRAINAGE BASINS

Yampa Riv. Little Snake Riv. White Riv. near North Platte Riv. at Maybell at Lily Park Watson, Utah at Northgate

Drainage Area Sq. Mile	3,400	3,700	4,000	1,400
Estimated				
Irrigated Acres	98,800	11,300	36,500	121,800
Irrigation				
Diversions A.F.	356,120	35,708	322,150	846,247
Municipal				
Diversions A.F.	7,430	0	946	394
Industrial				
Diversions A.F.	4,920	0	7,590	0
Transmountain Diversions A.F.	750	0	0	2,090
Estimated Irrig. (1) Depletion				
	89,030	0	80,540	169,250
Estimated Munc. Depletion A.F.	1,500	0	190	80
Estimated Ind.				
Change in Res. Storage A.F.	- 970	$+649$	+1,580	-2,300
Surface Outflow A.F.	1,418,000	523,200	566,000	417,000
Basin Yield A.F.	1,510,780	523,849 (2)	655,900	586,120
Basin Yield AF/SQ. Mile	444	142	164	419
Notes: 1. Estimated depletion figures on 25% consumptive use for all drainages except North Platte which is				use Wyoming

E. Ground Water

The use of ground water continues to increase in the division. There has been 75 new domestic wells, three municipal, five industrial and 18 observation wells drilled. The drilling of observation wells has provided new data on deep aquifers. The most promising is the Twenty Mile sandstone, a member of the Williams Fork Formation, which is cretaceous in age. Artesian flow of approximately 450 gpm at depths of 800 feet is being encountered in the Moffat County area.

F. Transmountain Diversions (Transbasin)

Stillwater Ditch

Acre Feet

Sarvis Ditch 0
Rich Ditch (Transbasin) 1510
Morgan Creek Feeder (Transbasin) 246
Dome Creek Ditch 335
Four Counties Ditch 0
Michigan Ditch 1710
Cameron Pass Ditch 276

 Cottonwood Creek
Biskup Gulch
Bunker Creek
Morapos Creek
Morapos Creek
Hullett Draw
Long Gulch
Willow Creek

Pinkham Creek
Pinkham Creek
Cow Creek
Little Grizzly River
Three Mile Creek
Buffalo Creek
Arapaho Creek
Spring Creek
Three Mile Creek
Dry Creek
Newcomb Creek
Lake Creek
Roaring Fork
Ilinois River
Middle Fork Mexican Creek
Mexican Creek
T. Grizzly Creek
Ninegar Creek
North Fk. Michigan Creek
Unnamed Trib. Little Grizzly
Mexican Creek
Buffalo Creek
Newcomb Creek
Hound Creek
Ninegar Creek
Sutton Creek
Ninegar Creek
Spring \& Flood Water
Arapaho Creek
Three Mile Creek
T. Coyote Creek
Van Valkenburg Draw
Illinois River
T. Arapaho Creek

District No. 56 Ainge Reservoir Bassett Reservoir No. 1 Dry Lake Reservoir Haunted Spring Reservoir Massey Reservoir
T.W. Blevins Reservoir
T.W. Blevins Reservoir
District No. 57

B

District No. 54
Cull Reservoir
Elk Lake Reservoir Gold Blossom Reservoir Lake Fork Reservoir Lower Cogdill Reservoir Skunk Creek Reservoir Upper Cogdill Reservoir

$$
\begin{aligned}
& \text { Apple Reservoir } \\
& \text { Ash Ponds to Hayden Station }
\end{aligned}
$$

Basin Reservoir

Greasewood Flats Reservoir
Brock Reservoir J.M. Yoast Reservoir Morgan Creek Reservoir No. 1 Sage Creek Reservoir Seaton Reservoir Sheriff Reservoir

Yoast Reservoir No. 1, No. 2

Washed
ACRE FEET

IV. Agriculture

The past season has again provided an average hay crop, but late frost conditions did serious damage to the dry land grain crops. The yield per acre for dry land grain was below normal. Beef prices are somewhat higher than last years, but hay and grain are still very high which makes it very difficult to make a, profit in the beef industry. Fat lamb prices are extremely good and the sheep industry is stable financially. However, predator control still continues to be a problem.

The White River drainage has almost twice as much irrigated land as dry crop land. Most of the irrigated land is in hay production for livestock feed. This land is probably about equally divided between wild meadow hay and alfalfa. The average production on wild hay is around two to three tons per acre with alfalfa being slightly higher. Alfalfa usually produces two cuttings of hay per season. The dry crop land is almost exclusively planted in grains, wheat, oats and barley. The crop yields vary greatly in proportion to the climatic conditions. The average for wheat is around 26 bushels per acre with oats and barley slightly higher. The bulk of the dry crop land is fallowed in alternating years, which cuts production to something over 50 per cent of the total acreage annually.

The Yampa drainage has about 40 per cent more dry crop land than irrigated. The dry land crops in the Yampa drainage are almost identical to the White River drainage, with the exception that a small portion of $i t$ is in the production of hay. This dry land is mostly alfalfa and generally produces only one cutting. The wheat yield for the Yampa drainage is around 30 bushels per acre. The hay in the Yampa
drainage is predominately wild hay with a yield of two to three tons per acre.

The North Platte drainage produces only wild hay with an average yield of around one ton per acre. The elevation of North Park is high and the growing season is short.

V. Compacts

The Upper Colorado River Compact was complied with the delivery of more than 500,000 acre feet of water past the Maybell Yampa River gaging station.

The Supreme Court stipulations on the North Platte were met with the total water stored over last year being 13,550 acre feet, 120,074 acres of land were irrigated, and 2,018 acre feet of water was diverted out of the basin.

Pot Creek was operated with little difficulty with Utah delivering an excess amount of water to the Colorado diversions. However, there has been no further progress on updating the 1958 agreement.

The Little Snake River was administered in accordance with Article XI of the Upper Colorado River Compact with no problems occurring.
VI. Dams
A. Elkhead Reservoir was completed this spring but during its filling two serious leaks which are located in the abutments developed. Grouting was attempted to decrease the amount of flow from the leakage. It was not successful in the case of the right abutment, but the flow on the left abutment has deminished.

Lester Creek Reservoir has had several problems which began with the slippage of the right abutment which has been leaking for several years. Also, difficulties occurred with the headgate which required divers to remove the hydraulic cylinder and rebuild it. Temporary trenches have been dug to leach away the seep area in an effort to dry up and stabilize the slope. The reservoir is presently being drawn down to decrease the head on the structure.

Sage Creek Reservoir which was the victim of a land slide in the spring of 1974 which plugged the outlet pipe with debris has been breached and a new outlet pipe along with a new headgate are being installed. The work has stopped this fall due to weather and consequently the reservoir may not be able to store water next season.

The dams and reservoir section engineers have made several field inspections of all the structure that require maintenance. They have also made routine inspection of the major reservoirs in the division and issued orders for all necessary repair work.
B. Several stock dams have been constructed during the past year. A total of 24 were approved for construction.

VII. Water Rights

A. At present, all new water court decrees are coded and punched as they are received by the Division. This procedure enables us to keep up-to-date information on all new water rights and insures that they will be included on the computer tabulations. Corrections are continuously being made to the existing tabulation even though it will not be published until 1978.
B. Referee's Findings and Decrees

Consultations with the water referees are made upon their request and are up-to-date. All of the water cases are field checked by a member of the division staff with the water referee unless both parties have previous knowledge of the case.

Underground	37	28	37
Change of Water Right	42	17	18
Plan of Augmentation	0	0	0
Water Right	116	105	129
Diligence	0	2	3
Water Storage	23	9	9
Applications received in Water Court	218		
Number of Referee Consultations	161		

VIII. Organizations

A. Colorado River Water Conservation District - Glenwood Springs, CO, Mr. Roland C. Fischer, Secretary-Engineer

Upper Yampa Water Conservancy District - Steamboat Springs, CO John Fetcher, Secretary

Yellow Jacket Water Conservancy District - Meeker, CO Frank Cooley, Attorney

Pot Hook Conservancy District - Baggs, WY Darwin Dunn, President

Lower Yampa Conservancy District - Craig, CO
Tony Angelo
Great Northern Conservancy District - Craig, CO Tony Angelo

Northwest Colorado Water Council, Craig, CO Sam Has lem, Chairman

Jackson County Water Conservancy District - Walden, CO Lloyd Hampton, Secretary
B. Bear River Reservoir Company - Yampa, CO

Stillwater Ditch Company - Yampa, CO
Maybell Irrigation District - Maybel1, C0
Miller Creek Ditch Company - Meeker, CO
Woodchuck Ditch Company - Steamboat Springs, CO
Mt. Werner Water and Sanitation District - Steamboat Springs, CO
Morrison Creek Water and Sanitation District - Oak Creek, CO
Steamboat Lake Water District - Clark, CO
Riverside Water and Sanitation District - Steamboat Springs, CO
Steamboat II Water and Sanitation District - Steamboat Springs, CO
Tree Haus Water and Sanitation District - Steamboat Springs, CO

IX. Water Commissioner's Summary

District No. 43

Direct Flow Diversions (ac.ft.) 308,319.46
Reservoir Storage (ac.ft.) 9,543.13
Amount Delivered from Storage 250.70
Acres Irrigated 38,987.00
Number of Ditches 458
Number of Daily Ditch Reports 6,500
Number of Reservoirs Served 19
Average Demand (ac.ft./ac.) 7.4
District No. 44
Direct Flow Diversions (ac.ft.) 152,447.7
Reservoir Storage (ac.ft.) 3,009.9
Amount Delivered from Storage 1,565.8
Acres Irrigated 30,574.0
Number of Ditches 284
Number of Daily Ditch Reports 1,800
Number of Reservoirs Served 47
Average Demand (ac.ft./ac.) 4.93
Transbasin 246.0
Municipalities 1,296.5
District No. 47
Direct Flow Diversions (ac.ft.) 736,213.53
Reservoir Storage (ac.ft.) 13,545.3
Amount Delivered from Storage 8,928.53
Acres Irrigated 120,074.24
Number of Ditches 484
Number of Daily Ditch Reports 811
Number of Reservoirs Served 50
Average Demand 6.11
Transmountain 2,018.0
Municipalities 431.0
District No. 54
Direct Flow Diversions (ac.ft.) 33,218.26
Reservoir Storage (ac.ft.) 631.56
Amount Delivered from Storage 313.0
Acres Irrigated 9,920.0
Number of Ditches 93
Number of Daily Ditch Reports 240
Number of Reservoirs Served 3
Average Demand (ac.ft./ac.) 3.34

District No. 55
Direct Flow Diversions (ac.ft.) 7,888.1
Reservoir Storage (ac.ft.) 0
Amount Delivered from Storage 0
Acres Irrigated $1,142.0$
Number of Ditches 6
Number of Daily Ditch Reports 92
Number of Reservoirs Served 0
Average Demand (ac.ft./ac.) 6.90
District No. 56
Direct Flow Diversions (ac.ft.) 19,238. 16
Reservoir Storage (ac.ft.) 0
Amount Delivered from Storage 0
Acres Irrigated 2,650.0
Number of Ditches 72
Number of Daily Ditch Reports 545
Number of Reservoirs Served 0
Average Demand (ac.ft./ac.) 7.27
District No. 57
Direct Flow Diversions (ac.ft.) 68,288.40
Reservoir Storage (ac.ft.) 1,952.90
Amount Delivered from Storage 1,624.0
Acres Irrigated 14,696
Number of Ditches 124
Number of Daily Ditch Reports 815
Number of Reservoirs Served 42
Average Demand (ac.ft./ac.) 4.12
Transbasin 1,510.0
District No. 58
Direct Flow Diversions (ac.ft.) 152,523.46
Reservoir Storage (ac.ft.) 39,792. 5
Amount Delivered from Storage 4,244.5
Acres Irrigated 48,824.0
Number of Ditches 464
Number of Daily Ditch Reports 3,451
Number of Reservoirs Served 51
Average Demand (ac.ft./ac.) 2.92
Transmountain 1,212.94
Municipalities 1,693.0

X. Division Engineer's Summary

Table C

STRUCTURES REPORTED AND OBSERVATIONS MADE

43	8	19	362	96	485	6,500
44	11	47	213	71	342	1,800
47	2	50	479	5	536	810
54	2	3	56	37	98	240
55	22	0	11	5	38	90
56	26	8	40	32	106	540
57	55	42	70	54	221	810
58	175	51	332	132	690	3,450

X. Recommendations

The ownership of older water rights continues to be difficult to establish. Perhaps a method of recording and maintaining ownership does exist through the present water court structures. Water rights which are being subjected to court proceedings such as changes of points of diversion or uses can set out the apparent ownership in the application. When the court acts on these cases, then the ownership becomes a matter of court records. This system could be used to establish ownership. The question would remain if this approach actually constitutes legal proof of ownership. It appears that it would be strong evidence.

The points of diversion of many rights are difficult to located. Consequently, a program of monumentation could be started in conjunction with ownership establishment. Many of the points of diversion of water rights have changed from their original location over the years and when the present point is located an application could be entered into the water court spelling out the ownership and the present location. Monuments could be then installed as previously outlined in past annual reports.

Progress is being made in the use of the computer for record keeping purposes. Key punching data has proven to be considerably better than the opscan approach. Utilizing key punch services avaitable locally the lag time between what has been reported and reviewed has been reduced. Through a very simple listing program, we are able to generate a complete record of data for a water year, except for the calculations of the totals, without the added cost of computer time. Corrections are made simply by removing the cards which have errors from the deck and replacing them
with corrected ones. No computer time is then required and the problem of removing incorrect data from the computer is minimized.

