ANNUAL REPORT

WATER DIVISION 5

TABLE OF CONTENTS
PAGE
I. WATER ADMINISTRATION
A. 1987 Water Year

1. Accomplishments 1
2. Involvement in the Water User Community 3
3. Issues Impacting Division 5 4
4. Issues of Concern 6
5. Effect of Workload Changes 7
6. Impact of the Budgets on Operations 7
B. 1988 Water Year
7. Operational Concerns 8
8. Projected Work Items for 1988 8
9. Goals and objectives 9
II. STATISTICAL INFORMATION
A. Transmountain Diversion Summaries 11-13
B. Reservoir Storage Summaries 14-30
C. Water Diversion Summaries by District 31-32
D. Water Court Activities 33
E. River Calls 33
F. Office Administration 34

I. WATER ADMINISTRATION

A. 1987_Water_Year

In 1985 a lot of projects were identified and started as well as implementation of new procedures for about everything done in Division 5. In 1986 the work force jelled and a great volume of work both accurate and professional, was accomplished. 1987 was to be the payoff year.

This year began with an aura of optimism. Heality, however, set in and to offer an analogy, the situation resembles the building of a house where the framers work for a week and have what looks like a project 50 percent done. However, it takes the plumbers, electricians, and finish workers another three months to bring it to completion.

1987 was devoted to detail. The finish work takes time and expectations of project completions and moving on to others just never materialized. The net result is that 1987 was very similar to 1986. A lot of good solid work was accomplished but the mile markers were hard to see.

1. Accomplishments

The goals and objectives of the last several years' reports are continually couing closer to being a reality as various work items are accomplished or near completion.

The abandonment hearings are completed. A decree will be forthcoming which will finalize the list and ready it for inclusion in the 1988 tabulation.

Work on the tabulation continued with approximately 50 percent of the backlog in augmentation plans completed. Sixty percent of the 399 new decrees have been entered and Water Distriot 38 was thoroughly reviewed and corrected (3,500 pis line items). A lot of work occurred in the other districts as well since the software became available for current status listings.

There were 328 water court applications in 1986 and 398 in 1987. Most of these were field inspected, have had water referee consultations written, and were decreed.

The 1987 diversion data of water usage has been collected and entered into the diversion data base. We are now going through the lasl revisions of the printouts and readying them for signing by the Water Commissioners. The in-house PC and software are continuing to revolutionize this process.

We have completed all of the 44 assigned reservoir inspections plus 4 carryovers from the year before. Two were done by engineers in order to access improvements in order to remove restrictions. All five assigned to Division 5 engineers were done.

Fifty reservoir restrictions were carefully monitored by the Water Commissioners. Due to owner cooperation and efforts by personnel from the Dam Safety Branch and our office, nine restrictions were lifted; five new restrictions were added. Two restrictions were relaxed but not removed and restrictions were increased on six.

We continue to develop and use several much-needed data bases. The wells, water cases, abandonments, reservoirs, augmentation plans and our expenditures are now tracked electronically.

Each Water Commissioner diagrammed and coded a system for record keeping for diversions, deliveries, and water use for each non-ordinary (source river, use irrigation, etc.) diversion. Including these in this year's and future years' records should greatly enhance the quality of the records. Also the percentage of diversions for which records are kept increased from an estimated level of 30 percent to perhaps 50 percent. User--supplied data is being solicited in many instances, particularly in small spring and well situations and in nearly all municipal supply situations.

Probably the most significant single accomplishment, however, was that a total river call was administered much of the year--not perfectly by any means--but many of the individual parts are coming together. The Colorado River Accounting software is about 80 percent complete and usable. Water Commissioner understanding and ability to timely deliver real time diversion data is increasing.

The remote data transmitted via satellite provided real time data that enabled our administrative decisions to be more responsive and save water. This system also monitored data from other agencies such as the National Weather Service, the USGS, the U.S. Bureau of Reclamation, Denver Water Board, Northern Colorado Water Conservancy District, and Colorado Springs.

The water-using public is becoming aware that water administration does and will exist on a whole river scale.

2. Involvement_in the Water_User_Community

There has been continued effort this year to increase contact with the water user community. Water Commissioners have specifically made that their responsibility and have been successful in it. Municipalities and non-exempt well owners including those with augmentation plans have been systematically contacted concerning measuring devices and have submitted much diversion information.

The Division Engineer has been carefully reviewing each new augmentation plan. It is imperative that he work with the applicants' engineers and attorneys to make these plans acceptable for water administration. Establishment of accounting procedures for each is of utmost importance. Many, many problems and misconceptions have been resolved before the decrees were signed.

The Division Office continues to facilitate usage by the public. The more accurate tabulation, decree books with indexes, updated structure lists, well permit information, organized diversion data, combined with a concerted effort to assist anyone with questions has brought this about. It is also convenient for them to have a place to work.

Public information meetings were set up in five locations within the Division. While these were sporadically attended, those who did attend expressed appreciation and approval, and learned a lot. Three well-attended meetings were held for major water users where the subject was "Clarification of Division $\overline{5}$ Water Administration."

3. Isgues_Impacting_Division_5

There are several important trends that are impacting Division 5 which affect the direction of water administration. Decisions will be made for manpower needs, work coverage, and new technology required to deal with these trends.

First, the NEW DEMANDS on a sometimes limited water supply are creating all kinds of pressures.
(a) The rapid growth in the high country combined with ski industry demands, including water for snow making, has necessitated not only more augmentation plans but increasingly complex augmentation plans requiring more manpower and expertise in administration.
(b) East Slope demands, such as Windy Gap, Northern Colorado's major transmountain water diversion, have come on-line and effectively depleted any excess water in the Upper Colorado River requiring more stringent administrative practices. The exchange pool from Windy Gap for the Middle Park Water Conservancy District will create additional measurements and paperwork to track water exchanged up the Blue River for snow making and municipal uses.
(c) The Front Range metropolitan area has been involved in several major negotiations concerning water from the Colorado River. An agreement has been signed with Public Service Company of Colorado concerning payment in lieu of power generation at the Shoshone Power Plant (the major river call on the Colorado River), thus freeing up an additional depletion to the Colorado River of 30,000 to 50,000 acre feet of firm yield during the non-irrigation season. No request to administer this agreement has been made but will occur sometime.
(d) Previously, agreements were signed with Summit County enabling augmentation plans and growth to proceed in the Upper Blue River with a uniform approach and protection for Denver water rights. Those have run headlong into minimum streamflow filings by the Water Conservation Board. This will create need for careful winter administration of the exchanges involved.
(e) Finally, a major agreement was worked out. last year with the Colorado River Water Conservation District which basically gives Western Colorado
a number of storage reservoirs for their usage, gives Northern Colorado several storage reservoirs for their replacement usage, and gives the Denver metro area the Blue and Williams Fork Rivers, including Green Mountain Reservoir.

All of these agreements will necessarily be administered by exchanges with very little of the administrative details as of yet even conceived. The fairly new principal operating policy for Green Mountain Reservoir along with the federal Blue River decrees and Senate Document 80 now look like interim steps in the continual movement of water to the highest usage.

Second, under OLD DEMANDS, the entry and demise of the oil shale industry has affected Division 5 in many ways.
(a) Conditional water rights have been left undeveloped, water rights that were transferred from agriculture to industrial uses have been left standing and once farmed lands are turning to sagebrush. Oil prices will rise again and therefore the industry is protecting their rights but the population growth pressures associated with it has waned.
(b) Agriculture, along with the economy on the lower river, is just getting by. With farm prices as low as they are and real estate falling terribly with the oil shale industry, there is little incentive to use water and maintain agriculture. The bright spots are the good fruit crop this year and the rise in cattle prices.
(c) Further downstream, the Central Arizona Project is using more water and so far has taken it from California. Someday this will affect administration in Colorado also and we should be prepared for it.
(d) Finally, governmental policies are continuing to slowly shift toward more emphasis on environmental issues. The federal government has been heavily involved in cleaning up the salinity problems in the Grand Valley. The Federal Fish and Wildlife Service is making overtures toward storage pools in West Slope reservoirs to be used for endangered species programs. The United States Bureau o: Reclanation is less involved with large agriculture projects. Even the Colorado Water Conservation Board's involvement centers around minimum streamflows and fish and wildlife habitat.

The adopting of the Colorado River Accounting which is being phased out by the United States Bureau of Reclamation has put considerable strain on our manpower. This project has had to be absorbed by our staff and the hydrographic work necessary is left undone. A bill is presently before the state legislature to create the FTE's and funding support to correct the deficiencies.

4. Issues of Concern

We, again, have many of the same concerns that we had last year. The main concern is the inability of the staff to accomplish all that needs to be done in almost any area. The continuing areas of concern are:
-- Number and complexity of augmentation plans are prohibitive to administer with existing staff and methods.
-- Much work is still needed on the tabulation prior to republishing.

- Do not have the hydrographic staff to handle the river accounting.
-- Fifty percent of the structures have no record at all.
-- Many diversion records are estimated rather than observed.
-- Staff gauges and capacity tables are almost non-existent for reservoirs.
-- Many of the structures have no control and/or measuring devices.

A general river call requiring deliveries of Green Mountain water and the accounting of such is still not satisfactory. The Satellite Monitoring system has improved our accessibility to accurate data; however, there are a number of holes in the system.

There is a lack of Water Commissioner coverage in the Blue River area. There has been a large conversion of agricultural lands and waters to commercial and municipal development in District 36
and the decretal information and the data-gathering network cannot function without a Water Commissioner.

Three hundred thousand to five hundred thousand acre-feet of diversions are not monitored for quality control by any neutral party, which creates nervousness and feeds East Slope/West Slope tensions.

5. Effect_of Workload_Changes

As mentioned above, the adoption of the Colorado River Accounting, the addition of the PC's to the Division Office, and the Abandonment proceedings have all placed extra time demands on the Division 5 office staff. The time spent learning how to operate the PC's will eventually decrease as we develop operating proficiency. The Satellite Monitoring system does take additional time to put the data produced in a usable form as well as time spent in training personnel in operations.

An engineering FTE was transferred into Division 5. This has helped offset the general increase in workload and will eventually help to reduce the work backlog.

6. Impact of the_Budgets_on_Operations

We do not have enough FTE's to put Water Commissioners in each Water District. Additionally, 14 of 19 are part-time people and the seasonal nature of their employment severely hampers the updating of structure lists, administrative lists, tabulations, or any other non-direct water administration activity.

Not only were we short in human resources but operating funds were precariously low. We had only enough to provide us with the supplies we needed to function by transferring travel money to operating.

Funds for capital expenditures were not received. However, we did divert small amounts of operating to purchase used goods through the government resale program.

Travel money was one place we had ar excess in 1987. This was due to the terrible water jear that we had. We also were fairly confined to the office due to priority work there. This will shift as the backlog of work is completed.
B. 1988 Water Year

1. Operational Concerns

1988 will surely be the year of finishing old projects and moving on to new ones. We are still working on a sizable backlog but expect to bring much of that to an end, especially if we get some additional help. The real problem is the large backlog of untabulated decrees. Most are very complicated augmentation plans or large multi structure decrees covering several water districts. We continue to deal with the present as needs dictate and are implementing projects necessary to provide the basis for better administration in the future.

The U.S. Bureau of Reclamation's pullout of operations on the Colorado-Big Thompson has left a hydrographic void on the Upper Colorado that, combined with the Satellite Monitoring maintenance on gaging stations, creates a need for several full-time hydrographers.

The volume of Water Court activity has increased somewhat again which will continue to use our resources.

2. Projected Work_Items for 1988:

Other than the usual business of:
(1) administering water, (2) collecting and recording diversion data, (3) reservoir inspections, (4) hydrographic work, and (5) reviewing water applications, the following are Projected Work Items for the next year and for the next five years:
(a) Train Water Commissioners in (1) reviewing water rights applications, (2) estimating irrigated acreage, (3) determining stream mile numbers.
(b) Finish tabulation work for Districts 36 and 51 .
(c) In Colorado River Accounting, create spread sheet program for West Slope depletions.
(d) Assemble corrected up-to-date current status lists for all Water Districts by which water administration can take place.
(e) Tabulate outstanding augmentation plans.
(f) Install control structures and measuring devices at appropriate headings.
g) Establish an augmentation plan data base that can be used for administration.
(h) Establish accounting systen for each active augmentation plan.
(i) Write Individual Performance Ob,jectives (IPO's) for Water Commissioners on diversion data and annual record submittal.
(j) Upgrade structure data base to complement tabulation.
(k) Organize and implement program for hydrographic data collection for Division.
(1) Utilize accounting system to monitor expenditures.

Projected Long-Range_Work Items:

(a) Create and assemble a Water Cominissioner handbook.
(b) Implement regular training sessions for Water Commissioners.
(c) Spend time in field with Water Commissioners.
(d) PACE program.
(e) In Colorado River Accounting, continue to (1) phase in hydrographic support and (2) utilize real time diversion data.
(f) Continue upgrading each Water District's tabulations.
(g) Get reservoir staff gages installed and capacity tables to match.

3. Goals_and Obiectives

Our objectives are quite broad, yet simply stated, are as follows:
(a) Establish the capability to administer a total river call prompted by either in-state priorities or an interstate water compact requirement.
(b) Uphold all other statutory duties of the State Engineer's office.
(c) Provide the public with service regarding our administration and their needs in water resources.

In order to fulfill these objectives, the following goals must be attained. It is imperative that we have a complete and reliable tabulation. All water usage and consumption must be inventoried and we need to possess the ability to monitor the same on a real time basis. We need to know where augmentation and exchanges are taking place and in what amounts. We must know the locations and amounts of the water supply at any given time. We have to fully develop our personnel and must have an educated public willing to cooperate with us. We must also work with the legislature and other governmental agencies in order to have our needs provided for. We can begin to reach these objectives as more of the work projects are completed.

[^0]| | $7 \times 88{ }^{\circ} 6$ | $\varsigma^{\prime} \varsigma 9 \varepsilon^{\prime} \varepsilon I$ | $6^{\circ} \mathrm{Z} 66^{\prime} \mathrm{I}$ | | で 176 「 | | て・て0て「I | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \wedge | $0 \cdot 962$ | 0．900 ${ }^{\circ}$ T | 0．991 | | 9．19 | | $0 \cdot \varepsilon 9 \tau$ | | səy uțqej apestried | |
| | $\bigcirc 0$ | 0．020＇โ | 0.0 | | | | $0 \cdot 0$ | หวəコว neazeโd | say z－ON 7uamnuok | |
| \％ | $0^{\circ} 0$ | $0 \cdot 2 \angle 5$ | $0 \cdot 99$ | | O•ELS | | $0 \cdot 0$ | yวajว neazeld | səy I－on 7uamnuoh | |
| λ | $0 \cdot 0$ | 0.0 | $8^{\circ} \mathrm{SI}$ | | 8． 51 | | $8^{\circ} \mathrm{SI}$ | หวәлว еsəれ | say 5 －on yoaxว esək | |
| | $0 \cdot 0$ | T＊6 | $0 \cdot 0$ | | 0．してZ | | $0 \cdot 0$ | yeas esak | soy 7 －on yzaj了 esar | |
| | 0＊ε ¢ | $0 \cdot 582$ | 0．062 | | 0．062 | | $0 \cdot 062$ | yәax esak | | |
| | $0^{\circ} 0$ | 0.0 | サ・8ワ | | ワ－8ワ | | $7{ }^{\circ} 8$ | หәәлว еsəฟ | | |
| U | 0．T6 | 0＊IET | $\varepsilon \cdot \angle 8$ | | 0．6をz | | $0 \cdot 0$ | yәąjo esak | | |
| 3 | $0 \cdot 0$ | 0.0 | $0 \cdot 0$ | | $0 \cdot 0$ | | $0 \cdot 0$ | หวәлว โIng | хт̣олдәsəy әяет 7sot | |
| A | 0．657 | 0＊99T＇z | ${ }^{*} \cdot{ }^{\prime} \cdot \mathrm{N}$ | | $\cdot \mathrm{V} \cdot \mathrm{I} \cdot \mathrm{N}$ | | $\cdot \mathrm{V} \cdot \mathrm{I} \cdot \mathrm{N}$ | Y『asy | say ач̧̧t uоәт | |
| \because | $0 \cdot 0$ | $0 \cdot 0$ | $0 \cdot 0$ | | 0.0 | | $0 \cdot 0$ | | say（ ${ }^{\text {a }}$（J）uoszix | |
| へ | 0．56\％＇s | 0．005＇5 | ${ }^{*} \cdot{ }^{\prime} \cdot{ }^{\prime} \mathrm{N}$ | | ${ }^{*} \cdot{ }^{\prime}{ }^{\prime} N$ | | ${ }^{*} \cdot{ }^{\prime}{ }^{\prime} \mathrm{N}$ | yәajs nealetd | səy $乙$－on yəəコว Kıxə¢ | |
| \bigcirc | 0．02E＇I | 0．02E＇T | $\cdot{ }^{\prime} \cdot \mathrm{I} \cdot \mathrm{N}$ | | $\bullet \cdot{ }^{\prime} \mathrm{I} \cdot \mathrm{N}$ | | ${ }^{*} \cdot{ }^{\prime}{ }^{\circ} \mathrm{N}$ | Yәәлว neazeld | | |
| A | 0．52z | $0 \cdot 5 z \%$ | 0．5zて | | 0＊¢ 2 \％ | | 0．0 | яәәлј роомиод70ว | sәy uosuar | |
| fir | $0 \cdot 05$ | 0＊ヶらエ | 0＊$\angle 1 I$ | | 0． 882 | | $0^{\circ} 0$ | צәә天Ј 7sınчхмен | soy 7sInपхмен | |
| \bigcirc | $7{ }^{\circ} 8 \mathrm{E}$ | 7－8E | $7 \cdot 8 \varepsilon$ | | $7 \cdot 8 \varepsilon$ | | 0－9］ | | say（paxin）duread | |
| 1 | $0 \cdot 02 z$ | $0 \cdot 022$ | $0 \cdot 028$ | | 0．02z | | 0．0zz | หอәх） 8 ¢！9 | səy uosmed | |
| 1 | 0＊でき | 0てワを | | | $0 \cdot$ ¢8T | | 0．682 | | sey S－ON poomuoz7oj | |
| 1 | 0.671 | $0 \cdot L L E$ | $0 . \angle L E$ | | $0 \cdot 65 z$ | | 0．09］ | | say $7 \cdot 0 \mathrm{O}$ рооmu07703 | 22 |
| | IV | | | 6 | IV | 2 | IV | ョวษกัด WYJeIS | 3h\％y yonyasix | am |
| | y．il pua | | | | | | | | | |
| वyojevi 30 dxI | | | | dXI SnOIn y ${ }^{\text {d }}$ | | | | | | |

				－					
$62 T$	9 $49^{\prime} 8$	010＇s	296＊${ }^{6} 5^{\text {c }} \mathrm{L}$	E6L＇SI	$700^{\prime} \mathrm{LS}$	$609^{\prime} 82$	$666^{\text {c }}$ 乙	L00＇207	
						2			
		．				－			
L		0	0	0「7	IZて＇とて	$9 E Z^{\prime} \mathrm{S}$	788^{\prime} T	$\varepsilon Z S^{\prime} 乙$	ZL
0	0	0	0	256	OS	059 ${ }^{\text {T }}$	0	0	02
0	656	Lて8＇t	サエ0 ${ }^{\text {a }}$		$6 \angle 5^{6} \varepsilon$	25	0	0	$\varepsilon \varsigma$
0	0	9 9ワ	0	LO7	0 ．	078	0	0	2S
$70 \pm$	$\left[\angle \varepsilon^{6} Z\right.$	97 －	$276^{6} 79$	こて7	$68 \varepsilon^{6} \dagger$	$5 \varepsilon L^{6} 乙$	0	ャI9＇9IE	TS
0	97	0	0	6I	0	$\angle Z$	0	0	05
0	I	06E＇I	06	$\dagger \tau Z^{6}$ 仡	287＇I	028＇91	ワてI	0	57
7	808^{\prime} 2	0	0	$79 \varepsilon^{\prime} 9$	$\varsigma ¢ T$＇乙	$609{ }^{\prime}$ I	$\varepsilon 66$	0	6ε
ET	89て＇乙	8LT	$9 \varsigma \varepsilon^{5} \varsigma 乙 \tau$	987^{\prime} T	STO＇OL	072	0	$976^{\text {a }}$ て	8ε
I	0	626	0	96T	$890^{6} 6$	0	0	てワ9 「ワて	LE
0	0	7	$09 S^{\text {² }} 9 \mathrm{E}$	87	¢9て＇	0	0	て8て＇ऽ	9ε
TVIJ\＆	XYEHSII	THNOIIVEYOJ4	TVIMISnanI	OIISTWOC	TVdIJIN＠	YOOLS	MOTIINO NISVGSNVAI	MOTIINO NIVINOOK －SNVZI	${ }^{\text {a M }}$
（230 2	Vd）	$1 \exists$	3yวy NI LJİ	Id Xg S	MWnl NOI	1Id Y 3 I			

D. WATER COURT ACTIVITIES - 1987 CALENDAR YEAR 1/1/87-12/31/87

Number of Water Court Applications Filed 398
Structures in Water Court Applications 719
Canals and Tunnels $=5$
Conduits $=6$
Ditches $=71$
Pipelines (Pumping Stations, etc.) = 41
Power Plants $=6$
Reservoirs $=83$
Springs and Ponds $=215$
Wells $=252$
Miscellaneous $=46$
Number of Consultations with Water Referee 341
Number of Decrees Issued by Water Court 399
Abandonment List Activity
215 Water Rights Decreed Abandoned
233 Water Rights Deleted from Abandonment List
6 Cases Pending in Water Court re Abandonment
E. RIVER CALLS - 1987

Public Served - 6,642 Public Consultations - 9, 282 Water Court Appearances - 46		No. of Employees - 4 Professional			
				18 FT	
WATER DISTRICT	EMPLOYEE	PRIVATE VEH 2-WHEEL	PRIVATE VEH 4-WHEEL	STATE VEH	TOTAL MILEAGE
$36 \& 37$	Wells, Wayne	-	-	9,376	9,376
38	Callicotte, Stephen	1,700	353	-	2,053
38	Nichols, Rebecca	8,289	1,958	-	10,247
38	Whitehead, Dwight	-	-	-	-
39	Lemon, James	1,838	4,067	-	5,905
45	Klenda, Robert	1,343	9,225	-	10,568
45	Nelson, Glen	1,229	-	-	1,229
50	Thompson, William	- .	13,609	-	13,609
51	Daxton, James	16,106	-	-	16,106
$52 \& 53$	Shelden, James	9,828	4,612	-	14,440
70	Anderson, George	6,666	-	-	6,666
72	Klocker, Marcus	-	-	7,486	7,486
72	Bieser, Robert	-	2,627	-	2,627
72	Cox, Tom	368	3,425	-	3,793
72	Hill, Clifford	360	4,530	-	4,890
72	Hittle, Ray	-	3,953	-	3,953
72	Reed, Miles	251	2,476	-	2,727
WELLS COMMISSR	Cerise, Alvin	-	-	19,060	19,060
OFFICE STAFF	Bell, Orlyn	-	-	20,440	20,440
	Martellaro, Alan	721	-	12,320	13,041
	Blair, John	1,689	-	-	1,689
	McCabe, Robert	-	-	-	-
	Hitchcock, Nancy	659	-	-	659
	TOTALS:	$51,047 \mathrm{mi}$	$50,835 \mathrm{mi}$	68,682 m	170,564

[^0]:

