DIVISION OF WATER RESOURCES

ANNUAL REPORT WATER DIVISION IV 1995

O
\qquad

STATE OF COLORADO

DIVISION OF WATER RESOURCES

NATER DIVISION FOUR
Office of the State Engineer
Department of Natural Resources
1540 E. Niagara
P.O. 456

Montrose, Colorado 81402
Phone (303) 249-6622
FAX (303) 249-8895
Roy Romer
Governor

April 2, 1996

James S. Lochhead Executive Director

Hal D. Simpson State Engineer

Kenneth W. Knox Division Engineer

Mr. Hal Simpson, State Engineer
Division of Water Resources
1313 Sherman, Room 818
Denver, CO 80203

Dear Hal,

On behalf of the staff of Division IV, submitted herewith is the Annual Report for 1995.
Sincere appreciation is extended to yourself, your staff in Denver, and Division IV for the support and dedication provided in fulfillment of our statutory and professional duties.

Sincerely,

Kenneth W. Knox
Division Engineer
KWK:jk
Encs.

INDEX

CURRENT WATER YEAR

ACCOMPLISHMENTS
Page
Water Administration 1-2
Personal/Budget 2-3
Hydrography 3-4
Dam Safety 4-5
Groundwater 5
Records and Information 5-6
Special Projects 6
Quality Assurance/Quality Control (QA/QC) 6-7
SIGNIFICANT WATER ISSUES
7-8
INVOLVEMENT WITH THE COMMUNITY 8-9
COMING WATER YEAR
KEY OBJECTIVES 9-10
INFLUENTIAL LAW CASE, STATUTES, PROJECTS 10-13
Union Park Reservoir Decision 10-13
House Bill 95-1151 13
TRANSMOUNTAIN DIVERSIONS 14
STORAGE SUMMARIES 15-26
WATER DIVERSIONS 27-28
WATER COURT ACTIVITES 29
RIVER CALL 30-33
OFFICE ADMINISTRATION AND WORKLOAD MEASURES
STAFFING 34
STATISTICS 35

CURRENT WATER YEAR

ACCOMPLISHMENTS

Water Administration

The Gunnison and San Miguel River Basins experienced near record spring runoff in 1995 despite early winter drought predictions. Snow survey information in late February indicated Water Division IV was well below historical averages in both snowpack depth and water content. During March and continuing through May, the San Juan mountain range and Grand Mesa enjoyed repeated snowstorms that yielded heavy precipitation and snowfall in higher elevations. Anticipation toward distributing low water supplies was quickly refocused to providing flood protection. In the Upper Gunnison region, defined as being upstream of the three-reservoir Aspinall Unit, sandbagging and other preventive measures were taken in Almont and at strategic locations within the Town of Gunnison, Colorado. Both the high magnitude and bank-full duration of Gunnison River flows caused significant damage to riparian lands along the river course. Many permanent diversion and measuring structures were either damaged or destroyed. In several stream reaches, the dynamic river flows caused the Gunnison to reestablish former main-channel flow paths or to create new courses which consumed large acreage formerly under crop production.

Conditions in the San Miguel drainage were less dramatic. Again, the total runoff was high and lasted for an extended duration; however, the river stayed within its natural high waterline causing no recognizable damage and supplying a bountiful water yield. During the 1995 irrigation season, all vested water rights on the San Miguel River mainstem and tributaries received their full demand. Senior Water Commissioner Lyman Campbell reported that this was the first season in his 21 years of experience administering the San Miguel River, that a valid river call was not received which required curtailment of a junior water right necessary to satisfy the demands of a senior adjudication.

The south side of Grand Mesa also enjoyed a good water supply. Although river administration was required, the depth of curtailment was much less severe than that in average historic practice. All irrigation reservoirs filled by early July, and released stored waters to meet late
irrigation season demands.
Active curtailment on the Uncompahgre River and tributary inflows began in late March and lasted for only a short duration--less than two weeks. By mid-April the ambient temperature had risen sufficiently to induce low elevation snowmelt, which quickly supplied enough water to meet all early irrigation season demands. The Gunnison Tunnel was turned on March 21, 1995 to provide up to 1,175 cfs of transbasin Gunnison River streamflow into the Uncompahgre system for irrigation of approximately 85,000 acres of land within the Uncompahgre Valley Water User's Association (UVWUA) Project. Cooperation with UVWUA allowed us to manage Gunnison Tunnel diversions in conjunction with Uncompahgre River streamflows and reservoir releases from on-channel Ridgway Reservoir to satisfy vested water rights on, or tributary to, the Uncompahgre River. Aside from the early March river call, no further administrative curtailment was necessary in the Uncompahgre River Basin for the remainder of the irrigation year.

Personal/Budget

Appreciation is extended to Division IV personnel for their dedication and creativity in service. Although fiscal and personnel allocations remain static, continual identification and reassessment of priorities has allowed us to meet the challenge of increasing workload and inherent complexity.

Water Division IV implemented a comprehensive reorganization late in the calendar year. Intent of the plan was to utilize the talent and expertise of two senior water commissioners in providing technical and administrative support to the Division Engineer and Assistant Division Engineer. The initial step was to transfer all water right tabulation and annual diversion record responsibilities for Water District 40 to Robert Starr. Mr. Starr will help the Assistant Division Engineer in the training and support of water rights interpretation/coding and diversion records to all water districts within Division IV. Senior Commissioner Jimmie Boyd is now able to provide an increased level of technical support to the Division Engineer and offer liaison services to the public. Another significant impact is the ability for Mr. Boyd to provide water administration and field inspection training to new commissioners located throughout the division. Positive impacts from the reorganization include 1) the Division office enjoys highly qualified assistance that helps to alleviate our workload, 2) time gained in the Division office promotes better and more effective decision making and management practices, 3) two senior staff members enjoy new and significant occupational challenges, 4) new water commissioners receive extensive training in water administration, field inspections for water court filings, and interpretation/coding of water rights
and diversion records, and 5) the quality and consistency of water administration, water rights tabulation, and annual diversion records increases throughout the Division.

Division IV welcomed six new water commissioners in 1995. Tenured employees Gail Brooks (WD-40--Surface Creek) and Jack Carter (WD-42-Kannah Creek) retired after many years of dedicated and professional service. We were fortunate to retain two highly qualified individuals who stepped in and fulfilled their duties admirably, James Holiman and Lynne Bixler respectively. Two other temporary employees were hired on a permanent status: Cliff Davis (WD-40--Muddy Creek) and Walter "Bud" McDonald (WD-62--Lake Fork of the Gunnison River). In the Upper Gunnison River Basin, George Wear assumed WD-59 (Crested Butte--Taylor and East Rivers) responsibilities, and Paul Manning took over WD-28 (Tomichi and Cochetopa Creeks).

Hydrography

Hydrographic records compiled in Division IV were submitted to the Chief Hydrographer in Denver for publication in Streamflow Data for Colorado 1994 Water Year. Six records were published, three of which were used in the 1995 annual diversion records; the AB Lateral and South Canal in Water District 41, and Redlands Power Canal in Water District 42.

Hydrographic streamflow measurements were expanded into the Upper Gunnison River Basin this year. To aid in water administration and distribution, the following sites were measured on a scheduled interval during the irrigation season: Taylor River above Taylor Park Reservoir, Taylor River below Taylor Park Reservoir, Gunnison River at Gunnison, Colorado, and Gunnison River below the East Portal of the Gunnison Tunnel. These upper basin measurements were accomplished in conjunction with eleven other sites routinely measured on the lower Gunnison River, Uncompahgre River, and tributaries to obtain basin-wide water administrative accuracy.

The satellite monitoring system again proved invaluable in providing early warning flood protection. The hydrographic staff is
 commended for keeping the system fully operational during the extended runoff season and for timely inputting the most current hydrographic measurement and shift information. This year we were able to get accurate reservoir content information at Taylor Park Reservoir. Division IV staff coordinated with the reservoir owners/operators to install and calibrate a new pressure transducer.

Construction this year was directed toward rehabilitation of the gaging station on Muddy Creek below Paonia Reservoir.

Dam Safety

Quality dam safety inspections were performed on all scheduled dams in the 1-2-6 inspection time format by resident Dam Safety Engineer Jim Norfleet. Assistant Division Engineer Wayne Schieldt performed several inspections on Class II dams scheduled in the "off year" status. Water commissioner expertise was again utilized in formal inspection of Class III dams, and continual observance of operating performance and structural integrity of all dams within their water administrative purview. Their vigilance is quite beneficial by extending critical observation throughout the irrigation season for the entire division.

Major repair to several dams was accomplished. Extensive outlet repairs were made on Cedar Mesa, Knox, Hotel Lake, and Fish Creek \#2 Reservoirs. New spillway design and construction was performed on Hallenbeck \#1, Beaver, Todd, and Garnet Mesa Reservoirs. Total outlet replacement occurred on Military Park and Scales \#1 Reservoirs. Two new dams were constructed this year. Shavano Valley Watershed Dams 1 and 2 were designed as flood prevention structures in Shavano Valley approximately six miles northwest of Montrose, Colorado.

Comprehensive review of plans and specification for new structures and/or major repairs was performed on nine dam structures. Mr. Norfleet's efforts are certainly appreciated. Review of the structural design in the field office results in approval of the best/safest structure within prevalent economic conditions and also dramatically lessens the review time step.

Significant progress was made in establishing a baseline dataset of seepage flows below several dams in Water District 40. The Grand Mesa Water User's Association (GMWUA)hired a seasonal employee to measure seepage accruing on the downstream slope of GMWUA dams and report the information to our office. This cooperative effort will establish a historical dataset that may be used in the future to assess changes in structural integrity and/or confirm safe operating procedures.

Several dam safety program goals were achieved. Outlet inspections utilizing the camera mounted inspection device (SLED) was continued. The Dam Safety Engineer provided technical assistance to reservoir owners seeking legal access to repair dams on United States Forest Service lands. Hydrology studies for all Class I and II dams below 7,500 feet in mean sea level elevation have been completed. Emergency action plans for all Class

I and II dams have either been completed or written notice has been tendered to the responsible owner. The dams database maintained in Division IV is both current and complete.

Groundwater

The initial review of groundwater well permit applications in the division office continues to be a successful and positive endeavor. Comments received by application "clients" is positive--both in technical assistance provided by the Division IV office and in the shortened permit turnaround time. Efforts continue to update and educate county planning personnel, real estate agents, attorneys, and the general public regarding applicable statutory laws and permitting policies. As a result of said efforts, we have built a valuable rapport with these entities that provides increased benefits in well permit understanding and other peripheral water management issues.

The pilot program initiated to observe construction of water wells for quality in conformance with promulgated rules and regulations was beneficial. The program established new and enhanced channels of communication between DWR staff and the well drilling industry on well construction well as other aspects of well permitting policy (example: new policies, statute interpretation, availability in confined aquifers, etc.). Another valued impact was the visible and enforced realization to the water well construction industry throughout the Division that the State Engineer's Office acts upon its regulatory and statutory obligations in the protection of public safety. Although the program was brief in nature, it fulfilled its purpose and provided long term benefits in mutual communication and coordination between our office and local well drillers.

Records and Information

Annual diversion records and reservoir reports for Water Year 1995 were timely completed. Assistant Division Engineer Wayne Schieldt continues to strive toward obtaining the highest quality of final records. Our program is designed to foster continual discussion with representative water commissioners to 1) identify those diversion structures necessary for inclusion in the annual report, 2) establish an observation schedule for the individual structure, 3) implement proper diversion record coding that accurately reflects actual diversion amount and use in conformance with the adjudicated water right, and 4) reclassify and adjust coding for those structures no longer active.

Significant progress was made this year in our computer/electronic capabilities. First, eleven new 486 Pentium computers were obtained and
distributed to field staff as part of CRDSS funding for water commissioner toolkits. The toolkits also included all applicable software, a high speed modem/fax, and an individual bubble-jet printer. This coming year we anticipate inclusion within the Wide Area Network (WAN) which again offers tremendous data access and service opportunities.

Special Projects

Taylor Park Reservoir Accounting Spreadsheet:

The Taylor Park Reservoir accounting spreadsheet has been completed. This accounting is on a daily time step and assigns direct streamflow and reservoir storage volumes to specific reservoir accounts in Taylor Park Reservoir and against first and second fill priorities. Anticipated benefits include accurate physical quantification of waters that may be directly applied in annual diversion records and reservoir storage reports; the ability to actively manage irrigation water exchanged/owned by the Uncompahgre Valley Water User's Association for downstream storage in Blue Mesa Reservoir; and to provide cognizant forecasting ability toward the amount and timing of Taylor Park Reservoir releases which may better satisfy downstream water rights while enhancing recreational and fishing opportunities.

Irrigated Acreage:
The irrigated acreage project during 1995 was a conclusion of the extensive effort to identify all acreage in the Division which began in 1993. Original project intent to identify irrigated lands, assign crop type, and define irrigation application method was completed in 1994. Our purpose this year was to assign each irrigated field an individual or group diversion structure ID. This will correlate the irrigated field to a canal, ditch, pipeline, or well supplying water to the unique field and quantify the total number of irrigated acres under each diversion structure. The final phase has been completed for all water districts within Division IV.

Quality Assurance/Quality Control (QA/QC)

Viability of the Colorado River Decision Support System (CRDSS) is based upon accurate historic data. Diversion records from 1975 to present have been checked, corrected when necessary, and compiled into a historic dataset deemed complete and reliable. Effort during 1995 was directed toward verification of historic reservoir information. Staffing for the project required the dedication of four full-time senior water commissioners during
the winter months. Funds allocated to the CRDSS and QA/QC projects supplemented Division time by adding four additional months filled by parttime commissioners.

Review of raw data files received from Denver historical datasets revealed all 1985 water information was missing. This information was collected from files maintained in Division IV, checked, and re-entered. The remaining years since 1975 were also checked, corrected when necessary, and compiled into a final historic reservoir information data set. Completion of the project was in March, 1996.

SIGNIFICANT WATER ISSUES

The Gunnison River basin is at the threshold of a dynamic change in the management of water resources. Agriculture related demand remains stable and protected by senior vested water rights; however, the historic margin of excess annual supply continues to narrow. Competitive demands are increasing both in number and volume. The three-reservoir Aspinall Unit retains storage in excess of one million acre feet and has a direct streamflow hydropower generation decree of
 3,000 cfs at the outlet of Crystal Reservoir. Further complicating the Aspinall demand is a Memorandum of Agreement executed August 16, 1995 which provides for the release of waters stored in Aspinall to be delivered at the confluence of the Gunnison River with the Colorado River at Grand
Junction, Colorado. These designated releases are for the benefit of endangered fish and "protected" against appropriation or diversion from any intervening water right or diversion structure. Another significant impact to Upper Gunnison River Basin water users is a recent modification in United States Bureau of Reclamation (USBR) operating policy toward the Aspinall Unit. This shift in policy is the USBR's position that they will now place a valid river administration call on the Gunnison River as necessary to satisfy the Aspinall Unit storage water rights. Said river call would require curtailment of Upper Gunnison diversions in amount and timing necessary to satisfy the vested storage water rights.

Demand of limited water supplies in the Gunnison River Basin has increased to private entities as well. In the last five years, 1,686 new water diversion or storage structures have been adjudicated by the Division IV water court. Two pending water right filings would further demand large volumes of water. Arapahoe County continues to seek adjudication of 900,000 acre feet Union Park Reservoir at the headwaters, and the

Dominguez Reservoir system would be located near its confluence with the Colorado River at the other end of the Gunnison River.

Therefore, in order to meet the increasing river management challenge and to properly administer both existing and contemplated decrees within the Colorado Doctrine of Prior Appropriation, statutory, and case law it was determined we must identify the best management practice to accomplish our water administration/management obligations. We recognize the high level of service warranted by the water using public which requires accomplishing our tasks within defined personnel and fiscal resource allocations.

Installation and repair of measuring devices was deemed the first step in the continual process of increased water administration efficiency. Accurate measuring devices allow the water commissioner to quickly observe and document a measured diversion, thus saving time previously required for each physical measurement in ditches containing no measurement structure. In October, 1995, this office sent 440 letters of request to install/repair headgates and measuring flumes to water users in the Upper Gunnison Basin alone. Intent of the letter was to first seek voluntary compliance before formal orders become necessary. We followed through by providing a comprehensive day-long seminar in Gunnison, Colorado on proper flume site selection and installation techniques. The seminar was hosted by DWR in coordination with Upper Gunnison Water Conservancy District and Gunnison County Stockgrowers Association. To date, the program has been positively received by affected water users and compliance has already begun.

These efforts to increase administrative accuracy and efficiency were equitably distributed throughout the remainder of Division IV. Over onehundred formal headgate and/or measuring flume orders were sent this fall in the remaining water districts to ensure consistency.

INVOLVEMENT WITH THE COMMUNITY

Division IV has met its resolution to become an active leader within the water user community and the general public. We routinely attend invitations to monthly, quarterly, or annual meetings scheduled for all Gunnison and San Miguel River Basin mutual ditch companies, water user associations, conservancy districts, and water related forums. Division personnel continue to meet with county commissioners and local planning departments to foster a conducive and open working relationship.

Presentations are given on specific topics to applicable forums (example: subdivision review policy to the Gunnison Realtors' Association) and will continue upon request. Individual contact and assistance by water commissioners to local water users continues to be strong and the foundation of our public assistance.

COMING WATER YEAR

KEY OBJECTIVES

Quality of effective service to the public centers upon DWR personnel. Continual effort will be made to provide new training and career opportunities to every individual member.

Development of a Ridgway Reservoir and Uncompahgre River accounting spreadsheet is scheduled for spring, 1996. This accounting will be on a daily time step and classify water according to different types of water stored in Ridgway Reservoir and against the appropriate filling priority. It will also track the municipal and industrial water exchange between UVWUA and Tri-County Water Conservation District which delivers water to Project Seven Water Authority. Anticipated benefits will include effective management of reservoir operations to balance competitive and coincidental demands from irrigation, piscatorial, flood protection, and recreational interests.

Issuance of exempt well permits in Division IV is scheduled for fall, 1996. It is anticipated we will be able to comply with all three goals related to the plan for decentralizing the well permitting program to the division office:

1. To improve the service of well permitting by placing the processing of certain types of permits at locations more convenient to the permit customers.
2. To provide no greater than seven-day turn-around on certain types of well permit applications.
3. To improve our public image by providing local and prompt response to the public.

Dedicate personnel and other Division IV resources toward assisting development of the Colorado River Decision Support System (CRDSS). Time will be allocated by the Division Engineer for the specific purpose of aiding
the project team in the design phase for the water administration tool for the Gunnison River Basin. This office will continue to provide support to the CRDSS management team in correcting erroneous data and through fostering positive public relations with local water user organizations.

Hydrographic duties will continue to expand by aiding in site selection and calibration of Parshall Flumes. Staff will continue to schedule and perform streamflow measurements throughout Division IV in order to provide the highest quality streamflow information. Discharge shifts will be timely updated and the satellite monitoring system maintained to provide continuous water administrative accuracy.

Dam Safety will continue to be service oriented. The Dam Safety Engineer has promoted reservoir owner appreciation and confidence in the State Engineer's Office by aiding individual dam owners in the preparation of Emergency Preparedness Plans, review of plans submitted for repair of dam structures or operating facilities, and the visual inspection of outlets using the SLED device.

Coordinate with technical staff in Denver to install a wide area network (WAN). We hope to utilize our new computational abilities in developing a standard method of administration and accounting of adjudicated plans for augmentation. Improved formats that transfer water use and amount data from responsible users to Division personnel will be revised and implemented.

INFLUENTIAL CASE LAW, STATUTES, PROJECTS

Union Park Reservoir Decision

The Colorado Supreme Court rendered its decision to Arapahoe County's intended appropriation to store up to 900,000 acre feet in the Union Park Project in Case 92SA68 on February 21, 1995. This project would transport Gunnison River headwaters through a tunnel to Antero Reservoir located on the opposite, or east side of the Continental Divide. Water would then be transferred through a series of tunnels, pipelines, siphons, and flumes for municipal use in Arapahoe County.

For perspective, a brief historical account is warranted. National Energy Resources Company (NECO) first proposed the Union Park Project and received a conditional storage decree of 325,000 acre feet in Case 82CW340 for in-basin non-consumptive hydro-electric power generation.

On December 31, 1986 NECO applied for conditional Storage rights to enlarge Union Park Reservoir by 575,000 acre feet to achieve a total capacity of 900,000 acre feet. In this same action (Case 86CW226) NECO also requested additional non-consumptive and new consumptive uses. The Division IV water court subsequently dismissed most of this application in reasoning the appropriation was speculative.

Arapahoe County acquired the rights to develop the Union Park Project held by NECO and in Case 88CW178 sought to preserve the claims made in 86CW226, predominantly, the right to store 900,000 acre feet of transmountain export for municipal use. Upon conclusion of a five week trial held in Gunnison, Colorado, Division IV Judge Robert Brown ruled there was not more than 20,000 acre feet available for appropriation per year. Arapahoe County appealed the October 21, 1991 decision, claiming in part, that the court erred in finding there was insufficient water to proceed toward completion of the project.

The Supreme Court affirmed the Division IV water court decision in part and reversed the dismissal of Arapahoe County's application for a conditional storage water right with a remand for further proceedings consistent with its opinion, or for a new trial. In rendering its decision the Supreme Court gave cogent guidance on several issues. The first insight pertains to the standard of speculation. The Supreme Court reaffirmed the
 established two-pronged requirement to receive a conditional water right as 1) the intent to appropriate water for a beneficial use, and 2) an open physical act. The speculation test applied to the instant case was based upon the premise that the "right to appropriate water does not include a right to speculate as to the future use and possible sale of the water" (Ref. paragraph 2, page 12). Colorado Water Conservation District v. Vidler Tunnel Water Co. was the case law most utilized in the Supreme Court's analysis for this portion of the appeal. Central to NECO's application was the mandate the "applicant must identify the property, the committed ultimate users, and the specifics of its plan to appropriate water." (Ref. Paragraph 1, page 25). At the time of application filing, NECO had only contracted for the sale and use of 1,000 acre feet of water. Review of the water court records and conclusion prompted the Supreme Court to state " $[t]$ he application was speculative when filed and the water court properly granted summary judgement in Case 86CW226, dismissing the application Arapahoe County purchased from NECO" (Ref. Paragraph 1, page 31). This affirmation of the water court's ruling appears to buttress the standards employed in the Vidler decision.

The second issue, in which the Supreme Court reversed the lower
courts ruling, involves the standard used in determining the availability of water. In determining the amount of water available for the Union Park Project, the water court concluded that existing conditional decrees would be fully developed to utilize their decreed amounts and all absolute water rights divert their maximum adjudicated quantity. In review of the water court's dismissal of Arapahoe County's 900,000 acre feet application (except for 20,000 acre feet), the Supreme Court was required to provide interpretation of CRS 37-92-305(9)(b), the "can and will statute", and to ascertain the magnitude which senior conditional and absolute decrees retain in considering water availability for new applications. The Supreme Court construed the "can and will" statute does require the analysis of water availability to be based upon river conditions at the time of application. In determining the amount of water available for appropriation, the Supreme Court stated "[c]onditional water rights under which no diversions have been made, or are being made, should not be considered, and absolute water rights should be considered to the extent of historical diversions rather than on the assumption that maximum utilization of the decreed amount is the amount used." (Ref. paragraph 1, page 21, emphasis added.) Affect of the decision will allow for new water diversion or storage projects to proceed that would otherwise not be able to prove there are waters available for appropriation on the many river systems that have conditional decrees far in excess of physical supply.

Another important, but peripheral, ruling the Supreme Court made was in answer to a multiple environmental group cross-appeal that claimed the water court erred in not considering the negative impacts the Union Park Project would have upon the natural environment. Specific allegations included the adverse affects to fisheries, wildlife, recreation, water quality, Gunnison Basin economy, and general quality of life, all of which was deemed "vitally important to the public". The argument was centered upon the first step in receipt of a water right--establishing an intent to appropriate water for beneficial use. The cross-appellant claimed an evaluation of environmental factors is inherent within offering proof of beneficial use. The Colorado Supreme Court refuted this argument by first referencing those statutory provisions and mechanisms created by the General Assembly to address protection of the environment through instream flow legislation and adoption of the Colorado Water Quality Control Act. In summation, the court recognized that any decision to incorporate environmental factors or the Public Trust Doctrine was vested to the General Assembly and not as a judicial function.

House Bill 95-1151

Last year legislation (House Bill 95-1151) was passed which addressed, in part, the spring versus well debate. Although these
structures are typically small in diversion amount and impact to a river system, the administrative requirements to ensure compliance with both applicable groundwater and surface statutes was inordinate. Previous water law classified any excavated structure which intercepted groundwater for application to beneficial use as a well. Discrepancy arose primarily in those instances in which a small natural spring exiting the ground surface was developed. This development often entailed excavation back into the earth to a) further enhance the available flow, b) provide a temporary storage vessel, or c) install a perforated collection pipe surrounded by filter cloth or sand/gravel packing to improve water quality. Often, we learned of said development during a field inspection of a pending water right application--either a new appropriation or in request to convert a conditional surface water right (spring) to absolute. At this juncture we were required to recommend denial of the pending court action through the consultation process and/or issue orders to cease diversions.

House Bill 95-1151 removed the contention between state water officials obligated to enforce statutory requirements and a private individual seeking to provide a stable and clean water supply. In essence, the Bill clarified the definition of a well to specify it is not a naturally flowing spring if it is excavated less than ten feet at the supply source. Therefore, a water user retains the option of either seeking a well permit or a surface water right dependent upon the best legal or administrative circumstances for that particular structure and the contemplated depth of excavation.
A. TRANSMOUNTAIN DIVERSION SUMMARY--INFLOWS

[^0]RESERVOIR STORAGE SUMMARY
IRRIGATION YEAR - 1995

			AMOUNT OF STORAGE					
			MINIMUM			MAXIMUM		END YR
WD	ID	RESERVOIR NAME	SOURCE STREAM	AF	DATE	AF	DATE	
28	3590	Hot Sprgs R	Hot Springs Cr	132.00	11/01/94	571.00	06/01/95	571.00
28	3591	McDonough \#1	Los Pinos Cr	235.00	11/01/94	805.00	06/01/95	805.00
28	3592	McDonough \#2	Los Pinos Cr	104.00	11/01/94	608.00	06/01/95	608.00
28	3593	Needle Creek	Needle Cr	383.00	11/01/94	776.00	06/01/95	776.00
28	3594	Upper Dome R	Cochetopa Cr	492.00	11/01/94	880.00	06/01/95	880.00
28	3595	Vouga Res :	Razor Cr	0.00	11/01/94	0.00	06/30/95	0.00
40	3412	Ault Res	Muddy Cr	2.25	10/31/94	116.00	06/28/95	0.00
40	3414	East Beckwith	Anthracite	190.00	10/31/94	368.90	07/12/95	368.90
40	3413	Bruce Park Res	Hubbard Cr	80.00	10/31/94	556.00	06/15/95	0.00
40	3399	Overland Res 1	Muddy Cr	0.00	10/31/94	6198.00	06/12/95	0.00
40	3416	Paonia Res	Muddy Cr	1346.0	10/31/94	17461.0	05/27/95	7912.00
40	3417	Spatafora Res	Muddy Cr	0.00	10/31/94	100.00	06/29/95	100.00
40	3418	Tomahawk Res	Muddy Cr	52.30	10/31/94	87.30	07/11/95	87.30
40	3419	Williams Cr R	Muddy Cr	9.30	10/31/94	100.00	07/11/95	100.00
40	3391	Bald Mt Res	Crystal Cr	0.00	10/31/94	88.80	07/30/95	0.00
40	3394	Don Meek 1	Crystal Cr	27.00	10/31/94	45.00	05/24/95	0.00

IRRIGATION YEAR - 1995

			AMOUNT OF STORAGE					
			MINIMUM			MAX IMUM		END YR
WD	ID	RESERVOIR NAME	SOURCE STREAM	AF	DATE	AF	DATE	
40	3395	Fruitland Res	Crystal Cr	27.00	10/31/94	8638.80	07/26/95	4071.00
40	3392	Bottle Stomp R	Iron Cr	0.00	10/31/94	17.00	07/31/95	0.00
40	3553	Crawford Res	Iron Cr	3795.0	10/31/94	14382.0	05/24/95	6232.00
40	3397	Meek Res	Iron Cr	0.00	10/31/94	29.30	05/31/95	0.00
40	3401	Rockwell 1 R	Iron Cr	15.00	10/31/94	50.80	05/24/95	40.00
40	3403	Tyler Res	Iron Cr	10.00	10/31/94	169.30	05/25/95	40.00
40	3400	Poison Spr Res	Gunnison R	40.00	10/31/9.4	123.00	05/24/95	70.00
40	3402	Todd Res	McDonald Cr	50.00	10/31/94	129.00	06/14/95	63.00
40	3420	Bailey Res	Leroux Cr	0.00	10/31/94	423.00	05/24/95	0.00
40	3421	Brockman 1 R	Leroux Cr	0.00	10/31/94	16.00	05/24/95	0.00
40	3422	Brockman 2 R	Leroux Cr	0.00	10/31/94	41.00	05/24/95	0.00
40	3423	Carl Smith R	Leroux Cr	316.00	10/31/94	780.00	05/31/95	316.00
40	3424	Dog Fish Res	Leroux Cr	0.00	10/31/94	243.00	06/13/95	0.00
40	3425	Dowdy Res	Leroux Cr	0.00	10/31/94	264.00	05/24/95	140.00
40	3426	Ella Res	Leroux Cr	0.00	10/31/94	98.00	05/31/95	0.00
40	3427	Elk Wallows R	Leroux Cr	0.00	10/31/94	128.00	05/31/95	0.00

			AMOUNT OF STORAGE					
			MINIMUM			MAX IMUM		END YR
WD	ID	RESERVOIR NAME	SOURCE STREAM	AF	DATE	AF	DATE	
40	3452	Battlement 1	Dirty George C	58.58	10/31/94	87.40	04/26/95	87.40
40	3453	Battlement 2	Dirty George C	4.38	10/31/94	257.30	04/26/95	0.00
40	3341	Bonita	Surface Cr	15.24	10/31/94	277.92	06/30/95	277.92
40	3304	Bull Finch 1	Kiser Cr	0.00	10/31/94	72.42	06/30/95	72.42
40	3305	Bull Finch 2	Kiser Cr	12.34	10/31/94	39.24	06/30/95	32.84
40	3303	Boulder Lake 1	Ward Cr	0.00	10/31/94	0.00	11/01/94	0.00
40	3342	Cabin Lake	Surface Cr	0.00	10/31/94	27.05	05/30/95	13.05
40	3378	Calumet	Surface Cr	0.00	10/31/94	16.84	05/30/95	0.00
40	3366	Carbonate Cmp 3	Surface Cr	0.00	10/31/94	8.30	06/30/95	0.00
40	3306	Carbonate cmp 6	Youngs Cr	0.00	10/31/94	129.58	06/30/95	0.00
40	3307	Carbonate Cmp 7	Youngs Cr	0.00	10/31/94	107.58	06/30/95	107.58
40	3343	Cedar Mesa	Surface Cr	0.00	10/31/94	919.00	06/30/95	45.52
40	3379	Cole 1	Surface Cr	0.00	10/31/94	26.70	06/30/95	0.00
40	3380	Cole 2	Surface Cr	0.00	10/31/94	59.00	06/30/95	0.00
40	3381	Cole 3 (Chy Ln)	Surface Cr	0.00	10/31/94	46.96	07/31/95	0.00
40	3344	Cole 4	Surface Cr	0.00	10/31/94	22.00	06/30/95	0.00

RESERVOIR STORAGE SUMMARY
IRRIGATION YEAR - 1995

			AMOUNT OF STORAGE					
			MINIMUM			MAXIMUM		
WD	ID	RESERVOIR NAME	SOURCE STREAM	AF	DATE	AF	DATE	END YR
40	3345	Cole 5	Surface Cr	0.00	10/31/94	116.23	05/30/95	0.00
40	3308	Daniels Sl	Kiser Cr	71.20	10/31/94	228.00	06/30/95	0.00
40	3309	Deep Slough	Ward Cr	0.00	10/31/94	498.40	06/30/95	0.00
40	3310	Deep Ward	Ward Cr	70.00	10/31/94	1700.0	07/31/95	1700.00
40	3346	Deserted Park	Surface Cr	0.00	10/31/94	35.87	06/30/95	0.00
40	3311	Donnelly Sl	Kiser Cr	114.52	10/31/94	276.95	05/31/95	91.42
40	3382	Doughty 1	Surface Cr	0.00	10/31/94	48.37	06/30/95	0.00
40	3383	Doughty 2	Surface Cr	0.00	10/31/94	18.40	06/30/95	0.00
40	3347	Dreyfus	Surface Cr	0.00	10/31/94	44.18	05/30/95	0.00
40	3312	Eggleston Lake	Kiser Cr	2054.9	10/31/94	2705.0	05/31/95	2426.05
40	3348	Elk Park	Surface Cr	96.83	10/31/94	96.83	11/01/94	96.83
40	3549	Eureka 1	Youngs Cr	0.00	10/31/94	27.10	05/30/95	0.00
40	3349	Eureka 2	Youngs Cr	0.00	10/31/94	53.47	05/30/95	0.00
40	3350	Trout Lake	Surface Cr	0.00	10/31/94	76.93	05/30/95	16.59
40	3313	Forrest	Ward Cr	0.00	10/31/94	132.94	06/30/95	0.00
40	3314	Goodenough	Kiser Cr	0.00	10/31/94	152.00	05/31/95	133.08

RESERVOIR STORAGE SUMMARY
IRRIGATION YEAR - 1995

			AMOUNT OF STORAGE					
			MINIMUM			MAXIMUM		
WD	ID	RESERVOIR NAME	SOURCE STREAM	AF	DATE	AF	DATE	END YR
40	3455	Granby 6	Dirty George C	44.43	10/31/94	45.98	04/26/95	0.00
40	3456	Granby 7	Dirty George C	56.97	10/31/94	76.08	04/26/95	35.43
40	3457	Granby 8	Dirty George C	0.00	10/31/94	13.31	06/30/95	0.00
40	3458	Granby 9	Dirty George C	0.00	10/31/94	71.97	06/30/95	66.77
40	3454	Granby 5-11	Dirty George C	124.80	10/31/94	775.00	06/30/95	502.10
40	3459	Granby 12	Dirty George C	309.28	10/31/94	523.02	06/30/95	430.75
40	3351	Greenwood	Surface Cr	0.00	10/31/94	66.01	06/30/95	16.34
40	3384	Hale	Surface Cr	0.00	10/31/94	28.30	07/31/95	0.00
40	3315	Hotel Twin L	Ward Creek	236.00	10/31/94	548.70	06/30/95	548.70
40	3316	Howard	Kiser Cr	0.00	10/31/94	72.10	07/31/95	72.10
40	3317	Island Lake	Ward Cr	322.90	10/31/94	1426.4	06/30/95	1426.36
40	3352	Kehmeier	Surface Cr	4.47	10/31/94	319.52	05/30/95	163.12
40	3319	Kiser Slough	Surface Cr	0.00	10/31/94	512.00	06/30/95	93.90
40	3318	Kennicott Sl	Kiser Cr	0.00	10/31/94	811.45	06/30/95	0.00
40	3353	Knox	Surface Cr	27.63	10/31/94	213.13	06/30/95	72.91
40	4520	Leon Lake	Leon Cr	73.18	10/31/94	2457.2	08/03/95	915.88

			AMOUNT OF STORAGE					
			MINIMUM			MAXIMUM		END YR
WD	ID	RESERVOIR NAME	SOURCE STREAM	AF	DATE	AF	DATE	
40	3385	Leon Park	Surface Cr	0.00	10/31/94	185.64	07/25/95	0.00
40	3320	Lilly Pad	Youngs Cr	0.00	10/31/94	0.00	11/01/94	0.00
40	3386	Little Giant 1	Surface Cr	0.00	10/31/94	23.61	06/30/95	0.00
40	3387	Little Giant 2	Surface Cr	0.00	10/31/94	12.13	06/30/95	0.00
40	3322	Little Grouse	Youngs Cr	0.00	10/31/94	52.50	05/31/95	52.50
40	3321	Little Gem	Ward Cr	69.24	10/31/94	219.00	06/30/95	165.16
40	3388	Marcott	Surface Cr	0.00	10/31/94	410.32	07/31/95	0.00
40	3323	McKoon	Youngs Cr	6.89	10/31/94	147.86	06/30/95	115.70
40	3354	Military	Surface Cr	0.00	10/31/94	236.60	05/30/95	0.00
40	3355	Park	Surface Cr	126.82	10/31/94	3383.4	06/30/95	0.00
40	3324	P C \& G 1	Kiser Cr	0.00	10/31/94	19.44	06/30/95	19.44
40	3325	Pedro	Youngs Cr	15.98	10/31/94	194.94	06/30/95	194.94
40	3326	Pine	Youngs Cr	0.00	10/31/94	13.70	06/30/95	0.00
40	3327	Prebble	Youngs Cr	88.71	10/31/94	193.05	06/30/95	79.59
40	3328	Rim Rock Lake	Ward Cr	0.00	10/31/94	107.90	05/31/95	0.00
40	3329	Rock Lake	Ward Cr	0.00	10/31/94	0.00	11/01/94	0.00

RESERVOIR STORAGE SUMMARY
IRRIGATION YEAR - 1995

			AMOUNT OF STORAGE					
			MINIMUM					
WD	ID	RESERVOIR NAME	SOURCE STREAM	$A F$	DATE	$A F$	DATE	END YR
40	3356	Round Lake	Surface Cr	0.00	10/31/94	18.00	06/30/95	0.00
40	3330	Ryan	Youngs Cr	0.00	$10 / 31 / 94$	40.27	05/31/95	40.27
40	3357	Sackett	Surface Cr	50.78	$10 / 31 / 94$	108.00	05/31/95	108.00
40	3331	Safety 1 \& 2	Cottonwood Cr	0.00	$10 / 31 / 94$	15.00	06/30/95	0.00
40	3332	Scotland Peak	Ward Cr	39.20	10/31/94	139.96	07/31/95	12.18
40	3333	Sheep Lake :	Ward Cr	0.00	10/31/94	154.00	$06 / 30 / 95$	154.00
40	3358	Stell	Surface Cr	26.55	10/31/94	65.00	$06 / 30 / 95$	65.00
40	3389	Trickle	Surface Cr	0.00	$10 / 31 / 94$	32.69	$05 / 30 / 95$	0.00
40	3359	Trio	Surface Cr	49.52	$10 / 31 / 94$	164.30	$06 / 30 / 95$	47.10
40	3360	Twin Lake 1	Surface Cr	0.00	$10 / 31 / 94$	117.90	07/31/95	0.00
40	3361	Twin Lake 2	Surface Cr	0.00	$10 / 31 / 94$	120.75	06/30/95	120.75
40	3334	Upper Hotel L	Ward Cr	82.43	10/31/94	105.96	06/30/95	98.11
40	3362	Vela	Surface Cr	95.45	10/31/94	436.62	$05 / 30 / 95$	122.22
40	3335	Ward Cr	Ward Cr	160.83	10/31/94	284.32	05/31/95	52.72
40	3363	Weir/Johnson 2	Surface Cr	190.83	$10 / 31 / 94$	593.93	$06 / 30 / 95$	593.93
40	3364	Weir Park	Surface Cr	0.00	10/31/94	40.73	$06 / 30 / 95$	0.00

RESERVOIR STORAGE SUMMARY
IRRIGATION YEAR - 1995

			AMOUNT OF STORAGE					
			MINIMUM			MAXIMUM		END YR
WD	ID	RESERVOIR NAME	SOURCE STREAM	AF	DATE	AF	DATE	
40	3336	Womack 1	Ward Cr	0.00	10/31/94	186.30	06/30/95	5.38
40	3337	Womack 2 \& 3	Cottonwood Cr	0.00	10/31/94	101.51	06/30/95	101.51
40	3340	Womack 5	Cottonwood Cr	0.00	10/31/94	22.96	06/30/95	0.00
40	3338	Young Cr 1 \& 2	Youngs Cr	246.07	10/31/94	796.88	06/30/95	319.73
40	3339	Youngs Cr 3	Youngs Cr	0.00	10/31/94	200.62	06/30/95	27.34
40	3390	Y \& S	Surface Cr	29.47	10/31/94	188.57	06/30/95	71.42
40	3365	Fruitgrowers	Alfallfa Run	1620.0	10/31/94	4452.0	05/10/95	36.27
40	3368	Beaver Dam	Escalante Cr	0.00	10/31/94	396.50	05/10/95	0.00
40	3370	Clark Res	Oak Cr	13.87	10/31/94	50.75	06/06/95	10.12
40	3373	Dugger Res	Oak Cr	168.90	10/31/94	212.10	07/11/95	203.50
40	3374	Morris 2	Oak Cr	16.33	10/31/94	16.33	11/01/9.4	16.33
40	3375	Pitcarin Res	Doughspoon Cr	55.00	10/31/94	75.95	06/06/95	58.99
40	3376	Porter 1	Oak Cr	163.42	10/31/94	214.77	06/06/95	214.77
40	3377.	Porter 4	Oak Cr	38.00	10/31/94	38.00	11/01/94	38.00
		-						

RESERVOIR STORAGE SUMMARY

IRRIGATION YEAR－ 1995

00＊8ع09	S6／L0／L0	0．9199	E6／0ع／TI	0．00もぁ	x，प पеuueप्र	səy e7ețun」	0Z9を	てす
$00^{\circ} 0$	S6／I0／L0	00.80 S	66／L0／0T	$00^{\circ} 0$	x，प पеuयeप्र	Z प 犭 \əəquəTTeH	6T9	ても
$00^{\circ} \mathrm{LZS}$	あ6／IE／ZT	00＊てぁ9	あ6／L0／TT	00＊6LE	x, \supset पеuueप्र	I प 犭 \＞əquəTTeH	8โ9を	てす
00．8TT	¢6／0ع／90	$00^{\circ} \mathrm{\varepsilon}$ ¢	E6／L0／TT	$00^{\circ} 0$	xว Чеuие丬	6 esəW puex．	LT9E	てб
$00 \cdot \varepsilon 9$	¢6／0ع／90	00＊6LE	E6／L0／IT	$00^{\circ} 0$	x，पеuひеप्र	8 esək puex．	9โ9を	てす
$00^{\circ} 0$	¢6／0ع／90	00＊ $21 /$	万6／I0／IT	$00^{\circ} 0$	x，पеuиеप	9 esəw puexp	¢T9を	2も
$00^{\circ} \mathrm{\varepsilon}$ ¢	¢6／0ع／90	00．09s	あ6／L0／TI	$00^{\circ} 0$	xว पеиuеצ	T esək puex9	万T9E	2才
00＊Tも	－S6／ヵて／S0	00° 乙と τ	56／92／0T	00＊工焐	x，7seg	I soy efṭnay	609ε	ても
00＊โ8ع	S6／0ع／90	00° ZLL	66／L0／TT	00．06I	x，प पеuueप्र	¢ \ \d buțMOTH	809ε	ても
$00^{\circ} 0$	¢6／0ع／90	00＊9を乙	66／I0／LT	$00^{\circ} 0$	xग Чeuueप्र	dns y x	L09E	ても
$00 \cdot 0$	¢6／0ع／90	00＊8与を	56／L0／IT	$00^{\circ} 0$	x，Чeuuer	－Z y xo dəə	909E	ても
00＊Lع9	S6／0ع／90	00＊Lع9	¢6／0ع／90	00＊Lع9	x，чeuuer	ә„et uosie？	万09E	ても
00＊ても	S6／T0／L0	00＊TLも	万6／I0／IT	00＊乙	x，чeuuer	sə¢ UəTog	ع09ع	2才
00． $\mathrm{\square} 0$ I	¢6／0ع／90	00．0ぁて	56／L0／IT	$00^{\circ} 0$	x，Чeuuer	乙 ¢ f\＃uətog	209E	てす
00＊8てI	¢6／0ع／90	00．56s	E6／L0／IT	$00^{\circ} 0$	xว Чеuиеґ	乙 ¢ uosxəput	T09E	てす
00＊「てZ	૬6／0ع／90	00．897	®6／I0／IT	00．09 I	x，पеuиeप्र	I y uosiopuz	009E	ても
	岛記	GV	¢	AV		TWFN YIOAYASSGY	GI	『M
WกWI XVW WnWINIW								
G⿹弋工二ill								

IRRIGATION YEAR - 1995

			AMOUNT OF STORAGE					
			MINIMUM			MAXIMUM		END YR
WD	ID	RESERVOIR NAME	SOURCE STREAM	AF	DATE	AF	DATE	
42	3624	Scales Res 3	Kannah Cr	N/A				
42	3625	Somerville R 1	Whitewater Cr	0.00	11/01/94	973.00	06/30/95	0.00
42	3630	Anderson R 6	Kannah Cr	0.00	11/01/94	118.00	05/24/95	
42	3610	Fruita Res. 2	East Creek	26.00	11/01/94	168.00	05/24/95	47.00
59	3666	Taylor Pk Res	Taylor River	40960.	06/02/95	106023	07/14/95	71816.00
59	3665	Spring Creek R.	Spring Creek	1375.0	10/25/94	1631.00	07/13/95	1375.00
60	3507	Gurley R	Beaver Cr	1146.0	11/01/94	9850.00	07/01/95	4031.00
60	3511	Lone Cone R	Bennet Cr	440.00	11/01/94	1600.00	05/19/95	530.00
60	3510	Lilylands	Naturita Cr	47.00	11/01/94	494.00	06/02/95	70.00
60	3512	Miramonte	W Naturita Cr	2724.0	10/31/94	6851.0	11/01/94	2724.00
60	3510	Paxton Res	Horsefly Cr	488.00	10/31/94	898.00	05/01/95	488.00
60	3509	Lake Hope Res.	Lake Fork	790.00	07/15/95	2310.00	10/10/95	2310.00
61	3551	Bicleue Res	W Paradox Cr	348.00	11/01/94	2484.00	07/03/95	1248.00
62	3552	Blue Mesa	Gunnison R	431229	05/15/95	797564.	07/31/95	729584.00
62	3578	Crystal	Gunnison R	12766.	02/09/95	19348.0	07/06/95	16797.00
62	3545	Morrow Pt	Gunnison R	107000	04/21/94	114,900	12/08/94	111,300.0

RESERVOIR STORAGE SUMMARY
IRRIGATION YEAR - 1995

			AMOUNT OF STORAGE					
			MINIMUM			MAXIMUM		
WD	ID	RESERVOIR NAME	SOURCE STREAM	AF	DATE	AF	DATE	END YR
62	3548	Silverjack	Big Cimarron	2703.0	11/01/94	14062.	06/15/95	8768.00
62	3545	Morrow Pt	Gunnison R	106143	01/31/95	117715	07/05/95	107973.00
68	3675	Ridgway	Uncompahgre R	51260.	06/02/95	81768.	08/01/95	67150.00
		.						
			.					

WATER DIVERSICN SUMIARIES

	STR	UCTURES R	EPORTING	$\begin{array}{r} \text { ALL } \\ \text { STRUC } \end{array}$	OTHER URES					TO IRRI	TION
' ${ }^{\text {d }}$	With Record (1)	No Water Avail (2)	No Water Taken (3)	No Info Avail (4)	No Record (5)	Bstimate \# Visits Structure	Total Diversions AF	Total Diversions to Storage AF	Total Diversions A.F	Number of Acres Irrigated	Average AF Per Acre
28	203	5	7	63	219	$\therefore 634$	416,050	0	414,464	23,710	17.50.
40	815	7	197	316	797	14,785	631,632	82,548	504,229	109,005	4.63
41	74	1	22	31	192	1,466	882,967	0	599,343	71,294	8.41
42	160	0	29	143	125	5,001	594,912	19,828	28,652	5,517	5.19
59	173	0	; 6	88	681	1,789	487,711	70,154	204, 102	31,527	6.47
60	268	4	58	130	698	2,237	169,754	7,957	129,052	30,774	4.19
61	49	0	22	0	7	1,296	20,420	7,963	10,647	3,383	3.15
62	129	0	36	123	617	2,660	4,479,101	461,067	98,870	12,512	7.90
63	144	2	34	30	53	1,412	30,896	2,16S	26,595	2,590	10.30
68	174	1	49	17	530	2,337	180,006	39,922	110,464	15,808	6.99
73	76	1	11	48	49	303	8,813	10	8,770	3,048	2.88
Total	2,265	21	471	989	3,968	33,920	7,902,262	691,616	2,135,188	309,138	
Defiricioas:		Count of Structures with CIO®A and NUCoBlank Count of Structures with $C I U=A$ and NUC=B Count of Seructures with $C I U=A$ and $N U C=(A, C$				$\text { D) }=C I U=I$	(4) Count of structures (5) Count of structures		$\begin{aligned} & C L U=A \text { and } N U C=(E, F) \\ & C[U=U \end{aligned}$		

WATER DIVERSION SUMMARIES TO VARIOUS USES

| WD | TRANS
 MOUNTAIN
 OUTFLOW | TRANS
 BASIN
 OUTFLOW | MUNIC-
 IPAL | COMMER-
 CIAL | INDUS-
 TRIAL | RECRE-
 ATION | FISH-
 ERY | DOMES/
 HOUSE-
 HOLD | STOCK |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |$|$

WATER DIVERSION SUMMARIES TO VARIOUS USES, continued

| WD | AUGMEN-
 TATION | EVAPO-
 RATION | GEO-
 THER-
 MAL | SNOW
 MAKING | MIN
 STREAM
 FLOW | POWER
 GENERA-
 TION | WILD-
 LIFE | RE-
 CHARG-
 ES | OTHER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$|$

WATER COURT ACTIVITIES

Applications for Decrees 232
Consultations with Referee 202
Decrees Issued by Water Court 308
Dismissals 18
Complaints 0
\#Struc. \#Cases
New Cond. \& Dil. on Cond. Rights 143
Cancellations of Cond. Rights 16
Conditional Rights Made Absolute 10
Underground Water Rights Adjudicated 162 34
Surface Water Rights Adjudicated 406 239
Water Storage Rights Adjudicated 113 58
Plans for Augmentation Adjudicated 13
Change of Water Rights/Location 8
Change of Water Rights/Use Adj. 0
Instream Flow Rights Adjudicated 1
Total 681 528

6TGZL・とLठ6T 19413.12519 11674.00000 11674.00000 13514.00000
13514.00000 13112.00000
13112.00000

 0
0
0
0
0
0
0
-
\cdots
-1
-1 North Fork Orchard
Frank Allen D.
 Crystal
Crystal Creek Crystal Creek Kiser Creek Leroux Creek Leroux Creek Leroux Creek Minnesota Cr Roatcap

Smith Fork Smith Fork Surface Cr.
 $\dot{4}$
U
0
U
0
$4-1$
H_{3}
3
U $\dot{4}$
ü
0
U
U
4
4
3
3
$~$
3
 $\dot{4}$
U
0
0
0
0
4
4
3
H
U

 $\begin{array}{ll}\text { Surface Cr. } & \text { Cook Ditch } \\ \text { Surface Cr. } & \text { Cook Ditch }\end{array}$

PERSON PLACING CALL

\section*{| DURATION |
| :---: |
| OF CALL |}

NAME	OF
CALLING STRUCTURE	

 ㄷ $\dot{4} \dot{4} \dot{4}$
 Surface
Surface 0
U
O
4
4
H
H
ひ Surface Surface N 1
0
0
4
4
H
U
u 1
0
0
H
3
ט $\begin{array}{ll}1 \\ 0 & 1 \\ 0 & \\ 4 & 4 \\ 4 & 3 \\ 3 & 3 \\ 0 & \end{array}$ $\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 4 & 4 \\ 4 & 4 \\ 3 & 3 \\ 0 & 3\end{array}$ $\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 4 & 4 \\ 4 & 1 \\ 3 & 3 \\ \text { un }\end{array}$ $\begin{array}{ll}1 & 0 \\ 0 & \ddots \\ 0 & 0 \\ 4 & 4 \\ 3 & 1 \\ 3 & 7 \\ \text { un }\end{array}$ $\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 4 & 4 \\ 1 & 4 \\ 7 & 7 \\ \text { un } & \end{array}$ $\begin{array}{ll}0 & 0 \\ 0 & U \\ 0 & 0 \\ 4 & 4 \\ -4 & 1 \\ 7 & 7 \\ \text { in } & \end{array}$ 0
U
0
4
4
4
3
3
3
un 1
U
0
0
4
4
-1
3
3
3
 $\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 4 & 4 \\ 4 & 1 \\ 7 & 3 \\ 0 & 3\end{array}$

 0
U
世
H
H
J
un 0
0
0
4
4
4
-1
7
in 0
0
0
4
4
4
7
\sim

 0
0
0
4
4
-1
7
\sim 4

DURATION
OF CALL
10／2／95

$8 / 14 / 95$
$8 / 5 / 95$
$9 / 1 / 95$
$7 / 20 / 95$
$9 / 28 / 95$
$7 / 28 / 95$

ADMIN \＃
CALL STRUC

Fawcett Ditch
Broncho／Cherokee 38
Broncho／Lookout 44
Cherokee
Childs
Santa Fe
NAME OF
CALLING STRUCTURE

DATE
OF CALI

8

STREAM AFFECTED
 Horsefly

Mardell Sanders

 E1 0 0 0 0 0 0
 ぁてらてて・エててぁて
 5／12／95 गीप्यIS TTZD $\#$ NIWबZ
 －ーマー・てマロて
 No calls

Water District 40 cont＇d

－ォว ォロォォә山

Horsefly

TABLE OF ORGANIZATION - PERSONNEL IRRIGATION DIVISION NO. IV
Division Engineer - Kenneth W. Knox Assistant Division Engineer - Wayne Schieldt Administrative Assistant - Jean Kurtz
Well Commissioner - LuAnn Beasley Dam Safety Engineer - James Norfleet Hydrographer - Jerry Thrush

Water District 28	Water District 40	Water District 41
WATER COMMISSIONER *Paul Manning	PR. WATER COMMISSIONER Jimmie Boyd	SR.WATER COMMISSIONER Crandall Howard
	SR. WATER COMMISSIONER Robert Starr	
Water District 42	Cliff Davis	Water District 59
	Merritt Denison	
SR. WATER COMMISSIONER	James Holiman	WATER COMMISSIONER
Richard Belden	Henry LeValley	George Wear
	Albert Mahannah	
WATER COMMISSIONER	Kenneth Mahannah	
Lynne Bixler	Jack McHugh	
	L. Gregg Scott	
	Charles Stein	
	Stephen Tuck	
Water District 60	Water District 61	Water District 62
SR. WATER COMMISSIONER	WATER COMMISSIONER	SR.WATER COMMISSIONER
Lyman Campbell	Clinton Oliver	C. Crandall Howard *Bud McDonald
Water District 63	Water District 68	Water District 73
SR. WATER COMMISSIONER	WATER COMMISSIONER	SR. WATER COMMISSIONER
Richard Belden	H. Roger Noble	Richard Belden

III. OFFICE ADMINISTRATION AND WORKLOAD MEASURES
B. ACTIVITY SUMMARY

```
WATER DIVISION NO. IV
1994 CALENDAR YEAR
ACTIVITY SUMMARY
```

ACTIVITY
TOTALS

Professional and Technical Staff	3
Clerical Staff	1
Water Commissioners FTE (Full/Part-Time)	23
1995 Decreed Surface Rights	238
Surface Rights Administered (visits)	33,591
1995 Decreed Wells	69
1995 Decreed Plans of Augmentation	7
Consultations with Referee	308
Water Court Appearances	61
Meetings with Water Users	238
Contacts to Give Public Assistance	
*Includes Water Commissioner Contacts	

[^0]: | B. TRANSMOUNTAIN DIVERSION SUMMARY--OUTFLOWS | | | | | | | | | | |
 | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
 | 17 | N/A | Larkspur D | Arkansas R | 135 | 80.0 | 276 | 99 | 28 | 4655 | Tomichi C |
 | 26 | N/A | Tarbeli D | Saguache Cr | 140 | 25.0 | 68 | 15 | 28 | 4656 | Cochetopa |
 | 20 | N/A | Tabor | Clear Cr | 874 | 146.0 | 1242 | 143 | 62 | 774 | Cebolla C |
 | 45 | 577 | Divide C Hi | Divide Cr | $* 1273$ | 41.0 | 442 | 24 | 40 | 4657 | Cl Fk Mud |
 | 72 | N/A | City Pipeline | Colorado R | $* 1572$ | 359.0 | 1336 | 361 | 42 | 4710 | Kannah Cr |
 | 72 | N/A | Hollenbeck R | Colorado R | $* 4193$ | 362.0 | 4463 | 355 | 42 | 3618 | Kannah Cr |
 | 72 | N/A | Redlands Can | Colorado R | 525376 | 356.0 | 537500 | 354 | 42 | 4713 | Gunnison |
 | 72 | N/A | Fruita Pl | Colorado R | 27 | | $* * *$ | $* * *$ | | 4712 | East Cr |

 Days average based on past 2 years **Previously listed as New City PL

