| COLORADO DEPARTMENT OF NATURAL RESOURCES |
| :---: | :---: |
| DIVISION OF WATER RESOURCES |

DIVISION ENGINEER'S
ANNUAL REPORT
WATER DIVISION NO. IV
1994

0

$$
0
$$

0

DIVISION OF WATER RESOURCES
WATER DIVISION FOUR
Office of the State Engineer
Department of Natural Resources
1540 E. Niagara
POO. 456
Montrose, Colorado 81402
Phone (303) 249-6622
FAX (303) 249-8895

Roy Rome Governor

James S. Lochhead Executive Director

Hal D. Simpson State Engineer
Kenneth W. Knox Division Engineer

February 9, 1995

Mr. Hal Simpson, State Engineer
Division of Water Resources
1313 Sherman, Room 818
Denver, CO 80203
Dear Hal,
On behalf of the staff of Division IV, submitted herewith is the Annual Report for 1994.

Sincere appreciation is extended to yourself, your staff in Denver, and Division IV for the support and dedication provided in fulfillment of our statutory and professional duties.
sincerely,

Kenneth W. Knox
Division Engineer
KWK: jk
Enc.

INDEX

WATER ADMINISTRATION

CURRENT WATER YEAR

Page

Water Administration
Dam Safety
1

Hydrography 3
Groundwater 3-4
Records and Information 4
Special Projects 4-5
Significant Water Issues 5-6
Involvement with Community 7-8
Personnel/Budget 8-9
COMING WATER YEAR
Key Objectives 10-11
Influential Case Law, Statutes, Projects 11-12

WATER ADMINISTRATION DATA SUMMARIES
TRANSMOUNTAIN DIVERSIONS 13
STORAGE SUMMARIES 14-26
WATER DIVERSIONS 27-29
WATER COURT ACTIVITES 30
RIVER CALL 31-35
OFFICE ADMINISTRATION AND WORKIOAD MEASURES
STAFFING 36
STATISTICS 37

WATER ADMINISTRATION

CURRENT WATER YEAR

Accomplishments

Water Administration
Early winter snowpack and accumulated precipitation forecasts induced a level of confidence in meeting water supply demands for the upcoming 1994 water administration season. However, spring snowstorms that bring the abundance of actual moisture were marginal and the combination with unseasonably dry, hot, and windy weather shifted our attention from distribution of full supplies to distribution within the priority system and curtailment of diversion structures early in the spring runoff season. Anticipated summer rains that usually bolster summer streamflows were virtually non-existent. As with most of Western Colorado, the devastating effects of the drought were punctuated by 210 forest fires which consumed 12,633 acres of land in the Gunnison, Uncompahgre, and San Miguel River Basins. ${ }^{1}$

Strict Administration and curtailment of water rights began upon receipt of the first "river call" on March 28, 1994. Natural streamflows diminished to the extent the number one priority in Water District 40, (south side of Grand Mesa) which carries a December 17, 1881 date of appropriation, was able to receive only a partial amount of its decreed allotment during most of the irrigation season. Reservoir storage releases supplemented the amount of direct flows needed to produce quality hay and fruit crops. Unfortunately, reservoir storage has been severely depleted to now retain only minimum piscatorial or conservation pools. Most irrigation reservoirs were completely drained this fall.

San Miguel River Basin water administration and hydrologic conditions were consistent with the Grand Mesa and North Fork Valley areas. Depth of administration of

[^0]the San Miguel mainstem extended to an 1894 priority. Regulation and distribution of water resources has been further complicated by Tri-State Generation now fully exercising their power generation water rights and reservoix releases within the Appropriation Doctrine.

Active curtailment of the Uncompahgre River and tributary inflows began in March and extended through the irrigation season into September. The Gunnison Tunnel, which imports Gunnison River water into the Uncompahgre Basin, was turned on approximately two weeks ahead of historic operations to meet early demands resulting from the unseasonal warm spring. Cooperation with the Uncompahgre Valley Water Users Association (UVWUA) buffered the late irrigation season shortfall to all Uncompahgre Basin water users to a significant degree. We coordinate available direct streamflows with imported Gunnison Tunnel waters and UVWUA reservoir accounts in Blue Mesa, Taylor Park, and Ridgway Reservoirs on a daily basis to supply UVWUA members a supply meeting 85-90 percent of existing demand, and thus minimizing the depth of call to remaining Uncompahgre River Basin users dependant solely upon priority water.

The mainstem of the Gunnison River was placed on "call" July 28, 1994 by Redlands Power Canal at Grand Junction, Colorado. Low streamflow conditions were induced by a parallel series of events. Natural return flows to the Gunnison River mainstem from the Uncompahgre and North Fork of the Gunnison Rivers were virtually nonexistent due to drought conditions and efficient irrigation application. Coincidental with the poor hydrologic conditions was a scheduled fifteen-day drop in Aspinall Unit releases. Hydropower generation flows were cut to minimum levels (300 cfs) to allow an aquatic study to occur within the Black Canyon of the Gunnison River National Monument. Intent of the study is to quantify the minimum streamflow necessary to encourage and support animal and vegetative biota in the Canyon. Satisfaction of the full decreed amount to Redlands (750 cfs) without "flushing" the scientists working within the canyon instigated creative water administration using all basin water supply infrustructure. Supplemental Ridgway Reservoir releases in conjunction with direct flow and exchange administration on the Gunnison and Uncompahgre Rivers provided sufficient flow to fulfill the deficiency experienced by Redlands Power Canal. Another incidental benefit achieved was to supply sufficient streamflow in the reach below Redlands diversion dam to the Colorado River confluence for protection of endangered fish occupying the critical habitat.

Quality inspections were performed on all scheduled dams prescribed in the $1-2-6$ baseline program by resident Dam Safety Engineer Jim Norfleet. Water Commissioner expertise was again utilized through direct observation and reporting of 30 additional Class III dams. Their supplemental participation is quite helpful in providing an expansion of geographic coverage and timeliness.

Comprehensive review of plans and specifications was performed on seven different dam structures. Intent of the review by the resident dam safety engineer was twofold: first to receive and approve a design for new construction or repair of an existing facility which results in the best/safest structure possible within prevalent economic conditions; and second, to provide this service in a timely manner. Through direct interaction with the dam owner and representative professional engineer, we wexe able to submit the design for final approval by the State Engineer in time to allow construction within the same limited construction season. Supplemental water administration benefits were obtained by including factors such as the amount of water in storage, timing, and quantity of releases necessary to maximize beneficial use of these waters within the design review and construction planning schedules.

Outlet inspections utilizing the camera mounted inspection device (SLED) which provides an accurate visual portrayal were continued this year. Benefits of the device were captured in the revelation of two disjointed outlets that often preclude an imminent catastrophic failure.

Several dam safety program goals were achieved. They include the completion of hydrology studies for all Class I dams below 7,500 feet in elevation; emergency action plans have been completed for all Class I dams; and the dams database maintained in Division IV is both current and complete.

Hydrography

Hydrographic records compiled in Division IV were submitted to the Denver office and were published in the state publication, Stream Flow Data for Colorado 1993 Water Year. Six records were published, three of which were used in 1994 annual diversion records by adding October and combining the $A B$ Lateral and South Canal for

Water District 41, and Redlands Canal for Water District 72.

Short water supply and the associated administration required more hydrographic measurements at streamflow gaging sites and on individual ditches and canals to calibrate measuring devices/structures. Steve Tuck from Water District 40 assisted the hydrographic program by taking responsibility for ditch measurements and maintenance of two U. S. Geological Survey (USGS) gaging stations on Surface Creek. The USGS publishes these stations and make periodic visits to measure/maintain the stations, but their schedule is not sufficient to meet the intense administration demand of Surface Creek, especially in a critically short water year.

The Surface Creek station at Cedaredge was struck by lightning. Several components of the SMS system were damaged, including both shaft encoders and the DCP which was disabled on a temprorary basis. Benefits from grounding upgrades made last year were in evidence. Efforts to further insulate instruments have been accomplished.

Approximately 70% of the satellite stations have been converted to external voltage regulators. This has increased the efficiency of the solar panels charging the 12 volt batteries. Long term benefits will be increased battery life, saved work time, and less monetary expenditures. The remaining stations will be converted at routine visits during the spring station openings.

Groundwater

The implementation of reviewing groundwater well permit applications in the division office continues to be a successful and beneficial endeavor. Efforts continue to educate county planning personnel, real estate agents, attorneys, and the general public regarding applicable statutory laws and permitting guidelines.

Records and Information
Every year progress is made on acquiring hardware and software to allow the office staff to handle their jobs more effectively. Progress in 1994 was significant due to the acquisition of two new Pentium PC's, an HP Laserjet Printer, and the installation of the Local Area Network. Increased capability from the new hardware was most noticeable when the diversion records were being processed. The new PC's have bigger hard drives and the
increased speed makes handling the larger programs much easier. Other PC's in the office are now available for additional water commissioners or staff to coincidentaly process their records which averts time conflicts. The new printer has been a pleasure to use since it is twice as fast as the old one and produces a perfect page every time.

We have been looking forward to the Local Area Network for quite some time and it has proven to be worth the wait. Each person in the office now uses a Windows capable PC tied to the network. The capability to share files from PC to PC is extremely beneficial and has saved us numerous hours not waiting for PC time. We were also able to upgrade the Cedaredge Office with a 386 PC. The Denver office has been extremely cooperative in the acquisition of the PC's and laser printer, and the installation of the LAN system. They also provided support in answering our questions and giving us training to run the system.

Special Projects

Irrigated Acreage Determination:
The irrigated acreage project during 1994 was a continuation of the extensive effort to identify all acreage in the division. Original project intent was completed in March, 1994 which quantified the irrigated acreage and classified fields according to crop type and method of application. This project was conceived in an attempt to identify the total consumptive use in the Gunnison and San Miguel River basins.

Field identification was performed using mylar maps provided from the United States Bureau of Reclamation (USBR). The mylars were overlaid on USGS topo maps and orhophotos to identify structure location, stream routes, section lines and field boundaries. The majority of irrigated acreage was visually inspected and the balance verified using extensive knowledge from the water commissioner. Once corrected, the mylars were returned to the USBR for quantification of the acreage per individual field and inclusion within their data base. Stephani Schupbach in our Denver office then utilized the ArcInfo GIS software package to convert the USBR database into the current workable version that is compatible with DWR programs and databases. The corrected version is used in conjunction with a large color plotter to produce
beautiful maps of the entire division, or customized areas, which show in detail every stream and reservoir, irrigated fields in different colors representing the various types of crops, and major diversion structures.

With this database, we are able to determine total acreage amounts in each area, totals for each type of crop, and the total potential consumptive use for Division IV. Although this is a "snapshot" of the conditions in 1992, it establishes a baseline of information and is considered very accurate and we are confident of the results.

The final phase of this project is to assign each of the irrigated fields to an individual or group diversion structure ID. This will correlate the irrigated field to a canal or ditch (or well) and will quantify the total number of acres under each structure. Anticipated completion date is March of 1996.

Quality Assurance/Quality Control (OA/QC)

An integral part of the Colorado River Decision Support System (CRDSS) is to verify and check the integrity of historic diversion data. To staff the project, dedication of Division IV time from four full time commissioners was made in conjunction with funds allocated to the CRDSS Project to add eight additional months filled by part-time division commissioners.

Period of record to be verified was 1975 to 1992. Diversion records post-1992 are deemed complete and reliable. Due to the volume of historic records, guidelines were given to only check records for structures with decreed flow greater than 10 cfs. The staff in Division IV was eager to complete the task in whole, so direction was given to verify and check all structures.

Records were checked by reviewing two different types of reports. Monthly reports were printed to check for diversion amounts that looked inconsistent, such as an obvious keypunching mistake or an amount that exceeded ditch carrying capacity. Qinfo type reports were very helpful in checking for coding inconsistencies and duplicate or conflicting records. Coding errors were the majority of problems found, due to the lack of coding standards in the past. Also, review of
staffing for an individual water district revealed there often were many different people who worked on the diversion records which had varying opinions as to coding schemes and code definitions. Required coding changes were identified, documented, and implemented to current standards.

Anticipated project completion is scheduled for February 28, 1995. The staff of Division IV has produced an historic diversion record that is both accurate and complete. Sincere appreciation and respect is extended toward their individual and collective efforts.

SIGNIFICANT WATER ISSUES

Foremost in impact to water administration and management in the Gunnison River Basin is the release of Aspinall Unit (Blue Mesa, Morrow Point, and Crystal Reservoirs) water for the protection of four endangered fish species. Authorizing language in the Colorado River Storage Project Act and supportive biological opinions quantify up to 148,000 acre feet of water in the Aspinall Unit to serve as mitigative relief for accrued depletions in the Dolores and Dallas Creek Projects. Designated storage of "endangered fish waters" will be released through the hydropower generation turbines, and subsequently protected against diversion from downstream water users for delivery below the Redlands Power Canal diversion dam located at Grand Junction, Colorado. A forum consisting of representatives from the State Engineer's Office, Colorado Water Conservation Board, United States Bureau of Reclamation, and the Fish and Wildlife Service has been coalesced to produce a five-year interim contract for furnishing water from the Aspinall Unit for the benefit of endangered fishes. specific intent and language contained within the contract serves in conjunction with the Recovery Implementation Program for Endangered Species in the Upper Colorado River Basin to protect and recover the four endangered species while allowing water development to continue in the Upper Colorado River Basin. Final contract approval is anticipated for April, 1995 which coincides with sufficient progress goals outlined in the Recovery plan timetables. The quantity of supplemental Aspinall Unit releases will be that incremental amount necessary in combination with Uncompahgre and North Fork return flows to provide 300 cfs below the Redlands diversion to the confluence with the Colorado River. As specified in the interim contract, release of Aspinall waters for endangered fish will occur during the months of July through October to alleviate natural low flow conditions.

The United States Forest Service completed a travel management plan for the Grand Mesa National Forest in December, 1994. Considerable time and effort was expended by division office and field staff to address many concerns raised by the anticipated closure of several hundred miles of improved access and roadways within forest boundaries. Preliminary planning reports indicated several roads were identified for full closure of all motorized traffic that go to or connect several intermittent reservoirs and diversion structures. The effect would directly hamper, if not preclude, the ability of water commissioners and dam safety engineers to fulfill their statutory and occupational responsibilities. Concern is also expressed by the water user community who own the reservoirs and are responsible for maintenance and repair of the dam structures. Lack of access which would not allow transportation necessary to bring in construction equipment needed to perform annual maintenance or repair work threatens public safety against catastrophic failure of a dam. Diligence of working with the forest service proved advantageous to a degree. In the final decision, state personnel are now exempt from any travel restrictions as long as identification is carried at all times in performance of their duties and they coordinate with Forest Service personnel to outline prescribed routes of travel. We continue to negotiate with the Forest Service to drop the prescribed route language. Often water distribution requires deviation from a strictly routine procedure administer Colorado's water effectively and additional routes may become necessary upon adjudication of new water rights. Reservoir/dam owners have appealed implementation of the plan for several reasons. The foremost concern is the perceived peril associated with annual renewal of a federal special use permit or operating plan.

INVOLVEMENT WITH THE COMMUNITY

Division IV resolved to implement an increased activity level with the water user community and the public in general. Individual contact and assistance by water commissioners to local water users continues to be evident and strong. The renewed emphasis was for Montrose Division Office staff to meet with water user groups and address community service organizations whenever possible. Division personnel now represent DWR at all scheduled meetings of mutual ditch companies, conservancy districts, and other water related forums. Numerous presentations have been made to local planning departments and County Commissioner meetings to provide information and revelation of DWR responsibilities on topics ranging from administration of water rights to well
permitting critexia.
In an attempt to further enhance the public's awareness and appreciation of DWR duties, Division staff constructed an exhibit at the Montrose County Fair. Several thousand fair visitors were able to view an excellent presentation of hydrology, water administration within the priority system, hydrography, and a water development history that portrayed the significance of water in development of the arid west. Congratulations are extended to Montrose staff earning blue ribbon honors in the commercial display category.

PERSONNEL/BUDGET

Appreciation is extended to Division IV personnel for their dedication and creativity in service. Although individual workload continues to increase in magnitude and complexity without the relief of additional personnel, innovative priority-task management combined with intrapersonnel cooperation has allowed us to satisfy our statutory obligations and provide quality service to the public in a timely manner.

Division IV underwent a significant change in personnel in 1994. Division Engineer Keith Kepler was reassigned to Division II on March 1st. Former Assistant Division Engineer Ken Knox succeeded Mr. Kepler in the appointment to the Division Engineer position. On October 24, 1994 Mr. Wayne Schieldt retained Assistant Division Engineer responsibilities. Wayne is a welcome addition to Division IV and brings with him a proven reputation in water resources engineering, personnel skills, and strong work ethic.

Budget allocations for general operating and travel remained stable. Effective March 1, 1994 the DWR implemented the new Colorado Department of Personnel opinion regarding compliance with the Fair Labor Standards Act (FLSA). Adoption of FLSA provisions mandate that all non-exempt employees (primarily water commissioners, technical, and clerical staff) are entitled to compensation in the time or payment at a rate calculated at one and one-half hours for every hour worked that exceeds a standard 40 hour work week. Effort by the State Engineer to convert a portion of overtime compensatory payments to fund additional FTE's will help alleviate the fiscal and time deficiencies now experienced.

COMING WATER YEAR

The quality of effective service to the public centers upon division personnel: Every effort will be made to provide new training and career enhancement opportunities.

Development of a Taylor River accounting spreadsheet is scheduled for spring, 1995. This accounting will be on a daily time step and classify water according to different types of water stored in Taylor Park Reservoir and against the first and second fill priorities. Anticipated benefits will include the ability to manage irrigation water exchanged/owned by the Uncompahgre Valley Water Users Association downstream for storage in Blue Mesa Reservoir; and to provide insight into the quantity and timing of Taylor Park Reservoir releases which may better satisfy vested downstream water rights while enhancing recreational and fishing opportunities.

Recruitment and retention of qualified personnel: Seven permanent part-time water commissioner positions will be filled by April, 1995. Three positions have been staffed by individuals on a temporary basis we hope to convert through appropriate personnel actions to the permanent status. Recruitment efforts have been targeted toward individuals exhibiting high competency, dedication, and diversity benefits through inclusion of women and minorities.

Receive authorization to issue final well permits for exempt structures in the Division IV Office. Public appreciation and knowledge of DWR activities will increase by extending an additional service provided on a local and personal basis while decreasing the amount of time necessary for final permit issuance.

Expand hydrographic coverage to include streamflow measurement and computation of an annual record at two additional locations. Two identified mainstem Gunnison River sites will be critical in the administration of waters attributed to complex exchange agreements and releases for protection of endangered species.

Dedicate personnel and other Division resources toward assisting development of the Colorado River Decision Support System (CRDSS). Conclusion of the last component in the irrigated acreage project is anticipated.

Receive and install a workstation operating under Unix programming language. The increased computational ability will allow us to integrate large volume and complex data
operations such as the CRDSS water rights planning model and the collection of site-specific river accounting spreadsheets in a more expeditious manner. Coordination with technical staff in Denver and other Division personnel will be enhanced through a wide area network (WAN).

Due to the large growth experienced in Western Colorado and also by proximate location to the resort community of Telluride, the Town of Norwood has placed a moratorium on new water taps for a lack of available supplies. The Division Engineer will serve as facilitator between the Town of Norwood and local water users in an attempt to secure a long-term physical and legal water supply for the Town.

Dam Safety program will continue to be service oriented. The dam safety engineer has validated the benefits of public appreciation and confidence in the SEO by aiding individual dam owners in the preparation of Emergency Preparedness Plans, review of plans submitted for repair of dam structures or operating facilities, and the visual inspection of outlets using the SLED device.

We hope to utilize our new computational abilities in developing a standard method of administration and accounting of adjudicated plans for augmentation. Improved formats that transfer water use and amount data from responsible users to Division personnel will be revised and implemented.

INFLUENTIAL CASE LAW, STATUTES, AND PROJECTS

Anticipated soon in the coming year is the Colorado Supreme Court decision regarding Arapahoe County's intended appropriation, in part, to store 325,000 acre feet in Union Park Reservoir (Reference Cases 82CW340, 86CW226) at the Taylor River headwaters for subsequent transmountain diversion to the Front Range. Aside from the depletive effect the appropriation would have on tributary inflow to the Gunnison River will be the Supreme Court's interpretation of Division IV Judge Robert Brown's adjudication pertaining to conditional water rights. Specifically, in the ruling which quantified the amount of water available for appropriation by Arapahoe County, Judge Brown included the amounts granted to conditional water rights in the computation of downstream demand. It is anticipated the Supreme Court's ruling will thus provide guidance as to the necessity to include conditional decrees in a future water right analysis and adjudications.

City of Grand Junction filed multiple water right
applications to expand the existing storage rights they own and operate beyond irrigation to include municipal use and allow a second fill in high runoff years. Water stored in these 1993 priorities would be available for transbasin export to the Colorado River Basin for municipal use by Grand Junction. Transbasin municipal uses will expand the time of diversion beyond traditional irrigation season April through October to year-round and will be 100% consumptive by export out of the Kannah Creek watershed.

City of Grand Junction attempts to mitigate injury to vested rights within Kannah Creek by not utilizing their senior irrigation storage rights in the reservoirs in moderate and low water supply years. In effect they will provide annual notice to this office by April lst as to what portion of the senior irrigation priority they wish to not utilize (or fill) for each reservoir. Water will then be available for appropriation by downstream Kannah Creek users that are junior to the City's senior irrigation storage rights. The City will be able to fill under the 1993 municipal priority only after all pre-December 15, 1993 rights have been fulfilled.

Opposers allege that at "face value", the administration scheme contemplated by the City will injure Kannah Creek users. The relatively junior first storage priorities (1941) owned by the City taken in conjunction with the limited time of high spring runoff in the Kannah Creek Basin will result in an effective change of water right. Succinctly, in a low water year, the City will declare on April lst the amount they wish to relinquish of their 1941 priority and then be allowed to store under the 1993. Kannah Creek users allege there will be no recognizable difference in supply to their diversions. Alleged injury will result in the storage and transport of waters from the watershed that historically has benefitted the system as return flows and that which aids in partial contribution of Kannah creek conveyance losses.

Judge Brown recently ruled in favor of Kannah Creek water users to the extent the pending application does indeed constitute a change in water right and the City of Grand Junction must ammend their application accordingly. The more restrictive analysis and protection against downstream injury to vested water rights in the change case will be necessary.
A. TRANSMOUNTAIN DIVERSION SUMMARY--INFLOWS

RECIPIENT				SOURCE						
10-YR AVERAGE CURRENT YR										
WD	ID	NAME	STREAM	AF	DAYS	AF	DAYS	WD	ID	STREAM
68	N/A	Carbon Lake D	Uncompahgre	246.2	93.1	205.0	43	30	4660	Animas R
68	N/A	Mineral Pt D	Uncompahgre	115.0	50.4	75.0	28	30	4661	Animas R
68	N/A	Red Mountain	Uncompahgre	33.0	41.1	14.1	17	30	4662	Animas R
40	N/A	Leon Lk Tunl	Surface Cr	1598.0	79.7	91.0	31	72	4520	Leon Cr

B. TRANSMOUNTAIN DIVERSION SUMMARY--OUTFLOWS

17	N/A	Larkspur D	Arkansas R	168	77.5	146	119	28	4655	Tomichi C
26	N/A	Tarbell D	Saguache Cr	158	22.7	207	81	28	4656	Cochetopa
20	N/A	Tabor	Clear Cr	830	143.5	633	157	62	774	Cebolla C
45	577	Divide C Hi	Divide Cr	*1389	42.0	1168	67	40	4657	Cl Fk Mud
72	N/A	City Pipeline	Colorado R	*1601	357.5	1608	362	42	4710	Kannah Cr
72	N/A	Hollenbeck R	Colorado R	*4075	364.5	674	365	42	3618	Kannah Cr
72	N/A	Redlands Can	Colorado R	526015	347.0	516500	353	42	4713	Gunnison
72	N/A	Fruita Pl	Colorado R			***	***		4712	East Cr

[^1]RESERVOIR STORAGE SUMMARY
IRRIGATION YEAR - 1294

			AMOUNT OF STORAGE					
			MINIMUM			MAXIMUM		END YR
WD	ID	RESERVOIR NAME	SOURCE STREAM	AF	DATE	AF	DATE	
28	3590	Hot Sprgs R	Hot Springs Cr	131.9	09/07/94	571.0	05/02/94	Unknown
28	3591	McDonough \#1	Los Pinos Cr	368.0	07/28/94	805.2	06/10/94	Unknown
28	3592	McDonough \#2	Los Pinos Cr	221.3	07/22/94	607.8	05/05/94	Unknown
28	3593	Needle Creek	Needle Cr	382.8	08/02/94	811.9	05/31/94	Unknown
28	3594	Upper Dome R	Cochetopa Cr	519.7	07/22/94	806.7	05/05/94	Unknown
28	3595	Vouga Res	Razor Cr	131.0	09/13/94	925.0	05/31/94	Unknown
40	3412	Ault Res	Muddy Cr	58.0	10/31/93	116.0	10/31/94	2.25
40	3414	East Beckwith	Anthracite	368.9	10/31/93	368.9	10/31/94	190.90
40	3413	Bruce Park Res	Hubbard Cr	0.0	10/31/93	556.0	10/31/94	80.0
40	3399	Overland Res 1	Muddy Cr	250.0	10/31/93	6198.0	10/31/94	0.0
40	3416	Paonia Res	Muddy Cr	6217.0	10/31/93	17641.0	10/31/94	1346.0
40	3417	Spatafora Res	Muddy Cr	50.0	10/31/93	75.0	10/31/94	0.0
40	3418	Tomahawk Res	Muddy Cr	87.3	10/31/93	87.3	10/31/94	52.3
40	3419	Williams Cr R	Muddy Cr	59.5	10/31/93	100.0	10/31/94	9.3
40	3391	Bald Mt Res	Crystal Cr	0.0	10/31/93	88.8	10/31/94	0.0
40	3394	Don Meek 1	Crystal Cr	0.0	10/31/93	45.0	10/31/94	0.0

RESERVOIR STORAGE SUMMARY
IRRIGATION YEAR - 1994

AMOUNT OF STORAGE								
MINIMUM MAXIMUM								
WD	ID	RESERVOIR NAME	SOURCE STREAM	AF	DATE	AF	DATE	END YR
40	3395	Fruitland Res	Crystal Cr	266.8	10/31/93	8271.7	10/31/94	27.3
40	3392	Bottle Stomp R	Iron Cr	0.0	10/31/93	17.0	10/31/94	0.0
40	3553	Crawford Res	Iron Cr	7835.0	10/31/93	141.36 .0	10/31/94	3795.0
40	3397	Meek Res	Iron Cr	0.0	10/31/93	29.3	10/31/94	0.0
40	3401	Rockwell 1 R	Iron Cr	25.0	10/31/93	50.8	10/31/94	15.0
40	3403	TYler Res	Iron Cr	70.0	10/31/93	160.0	10/31/94	10.0
40	3400	Poison Spr Res	Gunnison R	50.0	10/31/93	75.0	10/31/94	40.0
40	3402	Todd Res	McDonald Cr	60.0	10/31/93	60.0	10/31/94	50.0
40	3420	Bailey Res	Leroux Cr	95.0	10/31/93	423.0	10/31/94	0.0
40	3421	Brockman 1 R	Leroux Cr	0.0	10/31/93	16.0	10/31/94	0.0
40	3422	Brockman 2 R	Leroux Cr	0.0	10/31/93	41.0	10/31/94	0.0
40	3423	Carl Smith R	Leroux Cr	406.0	10/31/93	780.0	10/31/94	316.0
40	3424	Dog Fish Res	Leroux Cr	0.0	10/31/93	243.0	10/31/94	0.0
40	3425	Dowdy Res	Leroux Cr	49.0	10/31/93	264.0	10/31/94	0.0
40	3426	Ella Res	Leroux Cr	0.0	10/31/93	98.0	10/31/94	0.0
40	3427	Elk Wallows R	Leroux Cr	0.0	10/31/93	218.0	10/31/94	0.0

RESERVOIR STORAGE SUMMARY
IRRIGATION YEAR - 1994

			AMOUNT OF STORAGE						
			MINIMUM				MAXIMUM		
WD	ID	RESERVOIR NAME	SOURCE	STREAM	AF	DATE	AF	DATE	END YR
40	3428	Ellington Cook	Leroux		0.0	10/31/93	24.5	10/31/94	0.0
40	3429	Fairmont Park	Leroux		0.0	10/31/93	30.0	10/31/94	0.0
40	3430	Fairmont Res	Leroux		0.0	10/31/93	78.0	10/31/94	0.0
40	3431	Fisher Res	Leroux	Cr	10.0	10/31/93	10.0	10/31/94	0.0
40	3432	Goodenough Res	Leroux	Cr	491.0	10/31/93	633.0	10/31/94	0.0
40	3433	Gray Res	Leroux		56.0	10/31/93	424.0	10/31/94	0.0
40	3435	Hanson 2 Res	Leroux	Cr	0.0	10/31/93	225.0	10/31/94	0.0
40	3437	Hunt Res	Leroux		10.0	10/31/93	124.0	10/31/94	10.0
40	3438	Lucky Find Res	Leroux		0.0	10/31/93	66.0	10/31/94	0.0
40	3439	Miller Res	Leroux		0.0	10/31/93	24.4	10/31/94	0.0
40	3440	Owens Res	Leroux	Cr	0.0	10/31/93	92.0	10/31/94	0.0
40	3441	Patterson Res	Leroux		0.0	10/31/93	78.0	10/31/94	0.0
40	3442	Patterson 2 R	Leroux	Cr	151.0	10/31/93	151.0	10/31/94	151.0
40	3443	Pine Cone Res	Leroux		0.0	10/31/93	37.0	10/31/94	0.0
40	3444	Reynolds Res	Leroux	Cr	88.0	10/31/93	176.0	10/31/94	134.0
40	3446	Skim Milk	Leroux	Cr	47.0	10/31/93	90.0	10/31/94	25.0

RESERVOIR STORAGE SUMMARY
IRRIGATION YEAR - 1994

			AMOUNT OF STORAGE					
			MINIMUM			MAXIMUM		
WD	ID	RESERVOIR NAME	SOURCE STREAM	AF	DATE	AF	DATE	END YR
40	3447	Wash Tub Res	Leroux Cr	0.0	10/31/93	0.0	10/31/94	0.0
40	3448	Water Bug R	Leroux Cr	48.0	10/31/93	48.0	10/31/94	0.0
40	3449	Willow Res	Leroux Cr	128.0	10/31/93	128.0	10/31/94	40.0
40	3406	Beaver Res	Minn Cr	18.0	10/31/93	1145.0	10/31/94	0.0
40	3407	Lone Cabin R	Minn Cr	0.0	10/31/93	163.0	10/31/94	0.0
40	3408	Monument Res	Minn Cr	63.0	10/31/93	464.0	10/31/94	0.0
40	3410	Roeber 2 Res	Minn Cr	0.0	10/31/93	44.0	10/31/94	0.0
40	3411	West Res	Jay Cr	184.0	10/31/93	604.0	10/31/94	0.0
40	3714	Lucas Cline R	North Fork R	0.0	10/31/93	9.0	10/31/94	0.0
40	3409	Reynolds Res	Reynolds Cr	60.0	10/31/93	100.0	10/31/94	40.0
40	3436	Holy Terror R	Terror Cr	0.0	10/31/93	146.0	10/31/94	0.0
40	3445	Rex Res	Terror Cr	0.0	10/31/93	24.0	10/31/94	0.0
40	3300	Alexander Lake	Ward Creek	157.0	10/31/93	157.0	10/31/94	0.0
40	3302	Barren Lake	Kiser Cr	800.0	10/31/93	800.0	10/31/94	678.5
40	3450	Basin \#1	Dirty George C	31.8	10/31/93	96.0	10/31/94	0.0
40	3451	Basin \#2	Dirty George C	0.0	10/31/93	26.6	10/31/94	0.0

RESERVOIR STORAGE SUMMARY
IRRIGATION YEAR - 1994

			AMOUNT OF STORAGE					
			MINIMUM			MAXIMUM		
WD	ID	RESERVOIR NAME	SOURCE STREAM	AF	DATE	AF	DATE	END YR
40	3452	Battlement 1	Dirty George C	87.4	10/31/93	87.4	10/31/94	58.58
40	3453	Battlement 2	Dirty George C	86.7	10/31/93	257.3	10/31/94	4.38
40	3341	Bonita	Surface Cr	278.0	10/31/93	278.0	10/31/94	15.29
40	3304	Bull Finch 1	Kiser Cr	56.6	10/31/93	72.4	10/31/94	0.00
40	3305	Bull Finch 2	Kiser Cr	17.2	10/31/93	22.1	10/31/94	12.34
40	3303	Boulder Lake 1	Ward Cr	0.0	10/31/93	0.0	10/31/94	0.0
40	3342	Cabin Lake	Surface Cr	0.0	10/31/93	27.0	10/31/94	0.0
40	3378	Calumet	Surface Cr	0.0	10/31/93	16.9	10/31/94	0.0
40	3366	Carbonate Cmp 3	Surface Cr	0.0	10/31/93	4.4	10/31/94	0.0
40	3306	Carbonate Cmp 6	Youngs Cr	56.7	10/31/93	129.6	10/31/94	0.0
40	3307	Carbonate Cmp 7	Youngs Cr	0.0	10/31/93	107.6	10/31/94	0.0
40	3343	Cedar Mesa	Surface Cr	263.8	10/31/93	919.0	10/31/94	0.0
40	3379	Cole 1	Surface Cr	0.0	10/31/93	22.4	10/31/94	0.0
40	3380	Cole 2	Surface Cr	0.0	10/31/93	55.5	10/31/94	0.0
40	3381	Cole 3 (Chy Ln)	Surface Cr	0.0	10/31/93	42.2	10/31/94	0.0
40	3344	Cole 4	Surface Cr	0.0	10/31/93	20.0	10/31/94	0.0

RESERVOIR STORAGE SUMMARY
IRRIGATION YEAR - 1994

			AMOUNT OF STORAGE					
			MINIMUM			MAXIMUM		
WD	ID	RESERVOIR NAME	SOURCE STREAM	AF	DATE	AF	DATE	END YR
40	3345	Cole 5	Surface Cr	0.0	10/31/93	116.2	10/31/94	0.0
40	3308	Daniels Sl	Kiser Cr	0.0	10/31/93	228.0	10/31/94	71.2
40	3309	Deep slough	Ward Cr	56.0	10/31/93	498.4	10/31/94	0.0
40	3310	Deep Ward	Ward Cr	1700.0	10/31/93	1700.0	10/31/94	70.0
40	3346	Deserted Park	Surface Cr	0.0	10/31/93	30.7	10/31/94	0.0
40	3311	Donnelly Sl	Kiser Cr	139.2	10/31/93	277.0	10/31/94	114.5
40	3382	Doughty 1	Surface Cr	0.0	10/31/93	48.2	10/31/94	0.0
40	3383	Doughty 2	Surface Cr	0.0	10/31/93	17.3	10/31/94	0.0
40	3347	Dreyfus	Surface Cr	0.0	10/31/93	40.3	10/31/94	0.0
40	3312	Eggleston Lake	Kiser Cr	2528.0	10/31/93	2705.0	10/31/94	2054.9
40	3348	Elk Park	Surface Cr	96.8	10/31/93	96.8	10/31/94	96.8
40	3549	Eureka 1	Youngs Cr	0.0	10/31/93	27.1	10/31/94	0.0
40	3349	Eureka 2	Youngs Cr	0.0	10/31/93	53.5	10/31/94	0.0
40	3350	Trout Lake	Surface Cr	21.7	10/31/93	76.9	10/31/94	0.0
40	3313	Forrest	Ward Cr	0.0	10/31/93	64.1	10/31/94	0.0
40	3314	Goodenough	Kiser Cr	42.6	10/31/93	152.0	10/31/94	0.0

RESERVQIR STORAGE SUMMARY
IRRIGATION YEAR - 1994

			AMOUNT OF STORAGE					
			MINIMUM			MAXIMUM		
WD	ID	RESERVOIR NAME	SOURCE STREAM	AF	DATE	AF	DATE	END YR
40	3455	Granby 6	Dirty George C	46.0	10/31/93	46.0	10/31/94	44.43
40	3456	Granby 7	Dirty George C	51.3	10/31/93	76.1	10/31/94	56.97
40	3457	Granby 8	Dirty George C	0.0	10/31/93	13.3	10/31/94	0.00
40	3458	Granby 9	Dirty George C	66.3	10/31/93	72.0	10/31/94	0.00
40	3454	Granby 5-11	Dirty George C	454.2	10/31/93	775.0	10/31/94	124.80
40	3459	Granby 12	Dirty George C	358.3	10/31/93	523.0	10/31/94	309.30
40	3351	Greenwood	Surface Cr	0.0	10/31/93	56.8	10/31/94	0.00
40	3384	Hale	Surface Cr	0.0	10/31/93	32.6	10/31/94	0.00
40	3315	Hotel Twin L	Ward Creek	548.7	10/31/93	548.7	10/31/94	236.00
40	3316	Howard	Kiser Cr	64.9	10/31/93	64.9	10/31/94	0.00
40	3317	Island Lake	Ward Cr	1426.3	10/31/93	1426.4	10/31/94	322.90
40	3352	Kehmeier	Surface Cr	105.1	10/31/93	319.5	10/31/94	4.47
40	3319	Kiser Slough	Surface Cr	48.2	10/31/93	512.0	10/31/94	0.00
40	3318	Kennicott Sl	Kiser Cr	28.6	10/31/93	811.5	10/31/94	0.00
40	3353	Knox	Surface Cr	67.9	10/31/93	213.1	10/31/94	27.63
40	4520	Leon Lake	Leon Cr	882.3	10/31/93	1770.9	10/31/94	73.18

RESERVOIR STORAGE SUMMARY
IRRIGATION YEAR - 1994

			AMOUNT OF STORAGE					
			MINIMUM			MAXIMUM		END YR
WD	ID	RESERVOIR NAME	SOURCE STREAM	AF	DATE	AF	DATE	
40	3385	Leon Park	Surface Cr	0.0	10/31/93	117.9	10/31/94	117.90
40	3320	Lilly Pad	Youngs Cr	0.0	10/31/93	20.0	10/31/94	0.00
40	3386	Little Giant 1	Surface Cr	0.0	10/31/93	26.4	10/31/94	0.00
40	3387	Little Giant 2	Surface Cr	0.0	10/31/93	10.2	10/31/94	0.00
40	3322	Little Grouse	Youngs Cr	52.5	10/31/93	52.5	10/31/94	0.00
40	3321	Little Gem	Ward Cr	219.0	10/31/93	219.0	10/31/94	69.24
40	3388	Marcott	Surface Cr	67.4	10/31/93	431.2	10/31/94	0.00
40	3323	McKoon	Youngs Cr	125.8	10/31/93	125.8	10/31/94	6.89
40	3354	Military	Surface Cr	0.0	10/31/93	236.6	10/31/94	0.00
40	3355	Park	Surface Cr	1868.2	10/31/93	3383.4	10/31/94	126.82
40	3324	P C \& G 1	Kiser Cr	19.4	10/31/93	19.4	10/31/94	0.00
40	3325	Pedro	Youngs Cr	108.8	10/31/93	195.0	10/31/94	15.98
40	3326	Pine	Youngs Cr	4.2	10/31/93	11.3	10/31/94	0.00
40	3327	Prebble	Youngs Cr	122.5	10/31/93	193.1	10/31/94	88.71
40	3328	Rim Rock Lake	Ward Cr	107.9	10/31/93	107.9	10/31/94	0.00
40	3329	Rockland	Ward Cr	0.0	10/31/93	0.0	10/31/94	0.00

RESERVOIR STORAGE SUMMARY
IRRIGATION YEAR - 1994

			AMOUNT OF STORAGE					
			MINIMUM			MAXIMUM		END YR
WD	ID	RESERVOIR NAME	SOURCE STREAM	AF	DATE	AF	DATE	
40	3356	Round Lake	Surface Cr	0.0	10/31/93	17.2	10/31/94	0.00
40	3330	Ryan	Youngs Cr	40.3	10/31/93	40.3	10/31/94	0.00
40	3357	Sackett	Surface Cr	69.8	10/31/93	108.0	10/31/94	50.78
40	3331	safety 1 \& 2	Cottonwood Cr	0.0	10/31/93	20.0	10/31/94	0.00
40	3332	Scotland Peak	Ward Cr	120.5	10/31/93	120.5	10/31/94	39.20
40	3333	Sheep Lake	Ward Cr	82.0	10/31/93	154.0	10/31/94	0.00
40	3358	Stell	Surface Cr	49.5	10/31/93	65.0	10/31/94	26.55
40	3389	Trickle	Surface Cr	0.0	10/31/93	32.7	10/31/94	0.00
40	3359	Trio	Surface Cr	62.9	10/31/93	164.3	10/31/94	49.42
40	3360	Twin Lake 1	Surface Cr	0.0	10/31/93	61.3	10/31/94	0.00
40	3361	Twin Lake 2	Surface Cr	0.0	10/31/93	37.2	10/31/94	0.00
40	3334	Upper Hotel L	Ward Cr	99.7	10/31/93	106.0	10/31/94	82.43
40	3362	Vela	Surface Cr	227.3	10/31/93	436.6	10/31/94	95.45
40	3335	Ward Cr	Ward Cr	153.6	10/31/93	284.4	10/31/94	160.83
40	3363	Weir/Johnson 2	Surface Cr	473.6	10/31/93	593.9	10/31/94	190.83
40	3364	Weir Park	Surface Cr	0.0	10/31/93	40.7	10/31/94	0.00

RESERVOIR STORAGE SUMMARY
IRRIGATION YEAR - 1994

			AMOUNT OF STORAGE					
			MINIMUM			MAXIMUM		END YR
WD	ID	RESERVOIR NAME	SOURCE STREAM	AF	DATE	AF'	DATE	
40	3336	Womack 1	Ward Cr	40.7	10/31/93	202.4	10/31/94	0.00
40	3337	Womack 2 \& 3	Cottonwood Cr	101.7	10/31/93	101.5	10/31/94	0.00
40	3340	Womack 5	Cottonwood Cr	0.0	10/31/93	18.5	10/31/94	0.00
40	3338	Young Cr 1 \& 2	Youngs Cr	238.8	10/31/93	807.5	10/31/94	246.07
40	3339	Youngs Cr 3	Youngs Cr	200.6	10/31/93	200.6	10/31/94	0.00
40	3390	$Y \& S$	Surface Cr	91.6	10/31/93	189.6	10/31/94	29.47
40	3365	Fruitgrowers	Alfallfa Run	2456.0	10/31/93	5712.8	10/31/94	1620.00
40	3368	Beaver Dam	Escalante Cr	86.5	10/31/93	610.0	10/31/94	0.0
40	3370	Clark Res	Oak Cr	19.7	10/31/93	50.8	10/31/94	13.90
40	3373	Dugger Res	Oak Cr	201. 8	10/31/93	212.1	10/31/94	168.90
40	3374	Morris 2	Oak Cr	16.3	10/31/93	16.3	10/31/94	16.30
40	3375	Pitcarin Res	Doughspoon Cr	59.0	10/31/93	76.0	10/31/94	55.00
40	3376	Porter 1	Oak Cr	201.8	10/31/93	201. 8	10/31/94	163.40
40	3377	Porter 4	Oak Cr	38.0	10/31/93	38.0	10/31/94	38.0

RESERVOIR STORAGE SUMMARY
IRRIGATION YEAR - 1994

			AMOUNT OF STORAGE					
			MINIMUM			MAXIMUM		
WD	ID	RESERVOIR NAME	SOURCE STREAM	AF	DATE	AF	DATE	END YR
42	3600	Anderson R 1	Kannah Cr	301.0	10/31/93	468.0	05/31/94	160.0
42	3601	Anderson R 2	Kannah Cr	260.0	10/31/93	461.0	06/30/94	0.0
42	3602	Bolen AJ R 2	Kannah Cr	0.0	10/03/93	240.0	05/31/94	0.0
42	3603	Bolen Res	Kannah Cr	32.0	10/31/93	499.0	05/31/94	68.0
42	3604	Carson Lake	Kannah Cr	681.0	10/31/93	653.0	05/31/94	637.0
42	3606	Deep Cr R 2	Kannah Cr	0.0	10/31/93	353.0	05/31/94	0.0
42	3607	Dry Cr R Sup	Kannah Cr	0.0	10/31/93	190.0	05/31/94	0.0
42	3608	Flowing Pk R	Kannah Cr	302.0	11/30/93	768.0	05/31/94	190.0
42	3609	Fruita Res I	East Cr	80.0	10/31/93	140.0	05/31/94	60.0
42	3614	Grand Mesa 1	Kannah Cr	158.0	10/31/93	373.0	05/31/94	0.0
42	3615	Grand Mesa 6	Kannah Cr	0.0	10/31/93	195.0	05/31/94	0.0
42	3616	Grand Mesa R 8	Kannah Cr	0.0	10/31/93	379.0	05/31/94	0.0
42	3617	Grand Mesa R 9	Kannah Cr	0.0	10/31/93	126.0	05/31/94	0.0
42	3618	Hallenbeck R 1	Kannah Cr	554.0	10/31/93	741.0	05/31/94	379.0
42	3619	Hallenbeck R 2	Kannah Cr	0.0	10/31/93	459.0	05/31/94	17.0
42	3620	Juniata Res	Kannah Cr	5901.0	10/31/93	6819.0	05/31/94	5163.0

RESERVOIR STORAGE SUMMARY
IRRIGATION YEAR - 1994

			AMOUNT OF STORAGE					
			MINIMUM			MAXIMUM		
WD	ID	RESERVOIR NAME	SOURCE STREAM	AF	DATE	AF	DATE	END YR
42	3624	Scales Res 3	Kannah Cr	0.0	10/31/93	79.0	06/30/94	47.0
42	3625	Somerville R 1	Whitewater Cr	0.0	10/31/93	879.0	05/31/94	0.0
42	3630	Anderson R 6	Kannah Cr	0.0	10/31/93	83.0	05/31/94	0.0
59	3666	Taylor Pk Res	Taylor River	64472.	04/07/94	100,814	06/24/94	69,258
60	3507	Gurley R	Beaver Cr	510.0	11/01/94	8,971	06/24/94	1,1466
60	3511	Lone Cone R	Bennet Cr	215.0	11/01/94	1,840	06/01/94	365
60	3510	Lilylands	Naturita Cr	70.0	11/01/94	494	05/24/94	110
60	3512	Miramonte	W Naturita Cr	6851.0	11/01/94	6,851	06/01/94	685
60	3510	Paxton Res	Horsefly Cr	488.0	11/01/94	805	06/10/94	488
61	3551	Buckeye Res	W Paradox Cr	238.0	09/19/94	2,069	06/04/94	348
62	3552	Blue Mesa	Gunnison R	558229	04/14/94	756,586	06/27/94	601,302
62	3578	Crystal	Gunnison r	12100	02/26/94	17,000	08/01/94	17,000
62	3545	Morrow Pt	Gunnison R	107000	04/21/94	114,900	12/08/94	111,300

RESERVOIR STORAGE SUMMARY
IRRIGATION YEAR - 1994

			AMOUNT OF STORAGE					
			MINIMUM			MAXIMUM		
WD	ID	RESERVOIR NAME	SOURCE STREAM	AF	DATE	AF	DATE	END YR
62	3548	Silverjack	Big Cimarron	2,561	10/24/94	13,496	07/04/94	69,258
68	3675	Ridgway	Uncompahgre R	64,287	08/30/94	83,357	06/27/94	66,212

WATER DIVERSION SUMMARIES TO VARIOUS USES

WD	TRANS OUNTAIN OUTFLOW	TRANS BASIN OUTFLOW	MUNIC- IPAL	COMMER- CIAL	INDUS- TRIAL	RECRE- ATION	FISH- ERY	DOMES/ HOUSE- HOLD	STOCK
28	0	0	0	0	0	0	0	0	
40	1,168	0	4,533	0	367	0	10,015	118	5,969
41	0	0	7,173	0	0	0	1,448	0	1,625
42	524,232	287	0	0	0	0	1	3	1,535
59	0	0	2,781	0	0	0	92,463	0	0
60	0	0	1,409	12,329	164	385	1,400	389	367
61	0	0	46	0	0	0	0	58	1,342
62	0	0	0	0	0	0	7,286	0	
63	0	0	0	0	0	0	0		
68	0	0	850	750	0	0	200	63	7,400
73	0	0	0	0	0	0	1,820		
TOT	525,400	287	13,085	13,085	531	385	112,817	648	20,100

WATER DIVERSION SUMMARIES TO VARIOUS USES, continued

| WD | AUGMEN-
 TATION | EVAPO-
 RATION | GEO-
 THER-
 MAL | SNOW
 MAKING | MIN
 STREAM
 FLOW | POWER
 GENERA-
 TION | WILD-
 LIFE | RE-
 CHARG-
 ES | OTHER |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$|$

WATER DIVERSION SUMMARIES

	Structures reporting			ALL OTHER STRUCTURES					TO IRRIGATION		
WD	With Record (1)	No Water Avail (2)	No Water Taken (3)	No Info Avail (4)	No Record (5)	Estimate \# Visits Structure	Total Diversions AF	Total. Divexsions to Storage $A F$	$\begin{gathered} \text { Total } \\ \text { Diversions } \\ A F \end{gathered}$	Number of Acres Irrigated	Average AF Per Acre
28	249	8	8	34	207	2,126	170,201	3,716	166,199	23,710	7.01
40	768	11	138	293	797	17,274	450,344	4,006	423,469	109,005	3.88
41	78	1	16	30	193	1,550	1,143,346	0	1,133,100	71,294	15.89
42	160	2	35	131	130	2,992	565,199	17,910	18,369	5,517	3.33
59	187	0	18	81	699	2,301	341,011	36,504	205,773	31,527	6.50
60	266	2	43	95	768	2,247	131,256	7,190	98,754	30,774	3.21
61	54	2	18	2	7	2,470	14,454	4,249	8,632	3,383	2.55
62	130	0	28	126	612	1,366	3,094,245	229,500	101,214	12,512	8.09
63	141	1	35	30	51	1,216	22,775	0	20,367	2,590	7.86
68	153	1	56	16	544	1,918	146,028	26,105	108,316	15,808	6.85
73	67	1	10	49	47	226	7,176	22	7,102	3,048	2.33
								329202	2291255	309168	

[^2]
WATER CQURT ACTIVITIES

Applications for Decrees 264
Consultations with Referee 208
Decrees Issued by Water Court 191
Dismissals 5
Complaints 0
\#Struc. \#Cases
New Cond. \& Dil. on Cond. Rights 69
Cancellations of Cond. Rights 27
Conditional Rights Made Absolute 4
Underground Water Rights Adjudicated 69 30
Surface Water Rights Adjudicated 238Water Storage Rights Adjudicated 5454
Plans for Augmentation Adjudicated 7
Change of Water Rights/Location 6
Change of Water Rights/Use Adj. 2
Instream Flow Rights Adjudicated 0
Total 361 317

PERSON
PLACING

Bill Kissner
Charlie Lutje
Bud Hawkins
Harry Vaughn Harry Vaughn

Bill Kissner | n |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 1 |

Wanda Gilmore Leonard Mattive George Bertram Archie Peterson Hal Rudisaile Frost

Water District 41	
ADMIN \#	DATE
CALI STRUC	OF CALL
24221.22524	$6 / 3 / 94$
24221.22524	$3 / 28 / 94$
11628.00000	$7 / 7 / 94$
Water District 42	
ADMIN \#	DATE
CALL STRUC	OF CALL
22848.21258	$5 / 20 / 94$
12724.00000	$4 / 22 / 94$
12724.00000	$6 / 18 / 94$
22283.20300	$7 / 29 / 94$
Water District 59	

-
NAME OF
STRUCTURE

$$
\begin{aligned}
& \text { Maverick Draw } \\
& \text { BCD Ditch } \\
& \text { Highline Canal } \\
& \text { Nucla Power Pl } \\
& \text { Hankins D }
\end{aligned}
$$

	$\stackrel{H}{4}$		
			¢ ${ }_{\text {E }}$
石	0	仿	$\otimes 0$
0	\bigcirc	O	¢ ¢ ¢
\square	U	0	\bigcirc
何		${ }^{\text {a }}$	
O_{4}		Ω_{1}	
	$\stackrel{\sim}{\square}$		○日

Collier Ditch Schnecker
Johnson

TAME OF NAME OF
STRUCTURE
Mooreland Ditch
Upper Saxbury D． STREAM
AFFECTED
Paradox Cr
－

STREAM
AFFECTED
L．Cimarron 4
4
0
0
3
0
0
3
3
0
0 Trout

STREAM
AFEECTED
Horsefly
Coal Cr
Dallas
Dist． 68

STREAM
AFFECTED
Coates Cr．
Chiquita Dol．

Water District 61

10／07／94

Season $\begin{array}{ll}\text { g } \\ 0 \\ 0 \\ 0 & 0 \\ \text { N．} \\ \text { on } \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$

 Water District 73

DURATION
QF CAL．L．

 ADMIN \＃
CALI STRUC
22848.13479
22848.17806

TABLE OF ORGANIZ̈ATION - PERSONNEL IRRIGATION DIVISION NO. IV

Division Engineer - Kenneth W. Knox Assistant Division Engineer - Wayne Schieldt

Administrative Assistant - Jean Kurtz
Well Commissioner - LuAnn Beasley
Dam Safety Engineer - James Norfleet Hydrographer - Jerry Thrush

Water District 28	Water District 40	Water District 41
WATER COMMISSIONER ***Wesley Robinson	PR. WATER COMMISSIONER	WATER COMMISSIONER
	Jimmie Boyd	Crandall Howard
	SR. WATER COMMISSIONER	
	Robert Starr	
Water District 42	**Gail Brooks	Water District 59
	*Cliff Davis	
SR. WATER COMMISSIONER	Merritt Denison	WATER COMMISSIONER
Richard Belden	**Rod Hamilton	Joel Tuck
	Henry LeValley	
WATER COMMISSIONER **Jack Carter	Albert Mahannah	
	Kenneth Mahannah	
	John McHugh	
	L. Gregg Scott	
	Charles Stein	
	Stephen Tuck	
Water District 60	Water District 61	Water District 62
SR. WATER COMMISSIONER	WATER COMMISSIONER	WATER COMMISSIONER
Lyman Campbell	Clinton Oliver	C. Crandall Howard
		*Bud McDonald
Water District 63	Water District 68	Water District 73
SR. WATER COMMISSIONER COMMISSIONER	WATER COMMISSIONER	SR. WATER
Richard Belden	H. Roger Noble	Richard Belden
*Temporary **Retired		
***Relieved of Duty		

III. OFFICE ADMINISTRATION AND WORKLOAD MEASURES
B. ACTIVITY SUMMARY

WATER DIVISION NO. IV
1994 CALENDAR YEAR
ACTIVITY SUMMARY

ACTIVITY
TOTALS

Professional and Technical Staff	3
Clerical Staff	1
Water Commissioners FTE (Full/Part-Time)	24
1995 Decreed Surface Rights	238
Surface Rights Administered (visits)	19,200
1995 Decreed Wells	69
1995 Decreed Plans of Augmentation	7
Consultations with Referee	208
Water Court Appearances	58
Meetings with Water Users	520
Contacts to Give Public Assistance	$* 27,962$
*Includes Water Commissioner Contacts	

[^0]: ${ }^{1}$ Source Bureau of Land Management/Forest Service Fire Control Center, Montrose, Colorado.

[^1]: an
 *NIA for 10 year average (based on $7-10$ years)
 **Days average based on past 2 years
 ***An undetermined amount of water ta
 ****Previously listed as New City PL

[^2]: (4) Count of structures with CIU=A and $\mathrm{NUC}=(\mathrm{E}, \mathrm{F})$
 (5) Count of structures with CIU=U

