DIVISION OF WATER RESOURCES

STATE ENGINEERS OFFICE

IRRIGATION DIVISION NO. 4

ANNUAL REPORT

1973 Water Year

December 7, 1973

Mr. C. J. Kuiper, State Engineer Division of Water Resources 1845 Sherman Street Denver, Colorado 80203

Dear Mr. Kuiper:

On behalf of the staff and field personnel of Irrigation Division No. 4, I submit herewith the annual report for the water year 1972-1973, together with the reports of the district water commissioners. This report is submitted as required under the provisions of Colorado law, as stated in C.R.S. 148-12-7, 1963.

Respectfully submitted,

Ralph V. Kelling, Jr.

Division Engineer

RVK:mm

TABLE OF CONTENTS

		PAGE
LIST OF	TABLES	ii
I.	Introductory Statement	1-6
	Purpose	T
	Incation.	1
	Location Climate	2
	Industry.	2.3
	Water Resource Projects	3, 4
	Land lise Planning	4.5
	Water Usage	₽, 5 6
	-	
II.	Personnel	7-9
	Mileage	7,8
III.	Water Supply	10-17
	Chord Dack	10 11
	Breginitation	10, 11
	Flooda	10 12
	F1000S	12, 13
	Water Budget	13
		14 14
		14, 15
	Trans-mountain Diversions	10
	Reservoir Storage	17
IV.	Agriculture	19, 20
۷.	Colorado River Compacts	21
VI.	Dams	22-24
	Storago Bosomioirs	22 22
	Livertock Water Manks	22, 23
		2 3
VII.	Water Rights	24, 25
	Tabulation	24. 25
	Referees Findings & Decrees	25
VIII.	Organizations	26-29
	Water Conservation and Conservancy District	26
	Water Related Organizations	26-29
	Uncompangre Project Resume	30-33
	Uncompangre Project Manager's Report	34-36
IX.	Water Commissioners Summary	47
		· ·
х.	Division Engineer's Summary	48, 49
	Direct Flow Diversions	48
	Storage Report	49

.

i

,

LIST OF TABLES

			PAGE
TABLE	I.	Land Ownership by County	5
TABLE	II.	Regional Power Plants	6
TABLE	III.	Water Commissioners Annual Mileage Review	8
TABLE	IV.	Personnel Data Sheet	9
TABLE	v.	Selected Snow Measurements & Stream Flow Fore casts	10
TABLE	VI.	Mean Temperature, Rainfall, Snowfall, by County	12
TABLE	VII.	Trans-Mountain & Trans-Basin Diversions	16
TABLE	VIII.	Storage Report of Selected Reservoirs	17
TABLE	IX.	Recapitulation Sheet, Curecanti Unit Reservoirs - and Silverjack Reservoir, U.S.B.R	18
TABLE	х.	Livestock & Selected Crop Resume, by County	19, 20
TABLE	XI.	Reservoir Stop Storage Orders	23
TABLE	XII.	Livestock Water Tank Permits Issued & Resume	24
TABLE	XIII.	Water Rights Applications, Resume	25
TABLE	XIV.	(B1-1) Annual Mean Precipitation at Selected Sta- tions	37
TABLE	xv.	Water Supply Outlook - May 1, 1972 (prints of S.C.S. reports of portions of Division # 4)	38-41
TABLES XVIX,	INCL.	U.S.G.S. Surface Water Records (1965-1972 incl.).	42-46
TABLE TABLE TABLE TABLE TABLE	XV. XVI. XVII. XVIII. XIX.	Gunnison River near Grand Junction Gunnison River near Gunnison Surface Creek at Cedaredge Uncompangre River at Colona San Miguel River at Naturita	42 43 44 45 46
TABLE	xx.	Water Commissioners Summary	47
TABLES XXII.	XXI	Division Engineer's Summary	48, 49
TABLES TABLES	XXIII. XXIV.	Direct Flow Diversions Storage Report	48 49
TABLE	XV.	Table of Organization, Personnel	50
TABLE	XXVI.	Areas of Responsibility, Field Personnel	51
TABLE	XXVII.	Recapitulation-Hydrometeorological Data - Blue Mesa Reservoir	52

ii

ANNUAL REPORT 1973

IRRIGATION DIVISION NUMBER FOUR

INTRODUCTORY STATEMENT

Purpose:

The purpose of this report is the presentation to the state engineer of a summary of division activities for the 1973 water year, together with the reports of the district water commissioners, as required by law.

Location:

The division is located in southwestern Colorado and is defined within the following drainage basins: Gunnison River, San Miguel River, Little Dolores River, Coates Creek, and that portion of the Dolores River within Mesa and Montrose Counties. Larger cities in the area include Gunnison, Montrose, and Delta.

As defined in the 1969 Annual Report, the division boundary was modified by the Water Rights Determination and Administration Act of 1969, the so-called 'Senate Bill 81'. Thus Division 4 now encompasses a more legitimate drainage entity, being deleted of those land areas whose streams are tributary to the Colorado River within former Water District 42 - excepting the Gunnison River drainage basin. Twelve water districts are defined in the division which further refines areas of water commissioner responsibility into administrable drainage entities.

Elevations range from 4,500 feet to in excess of 14,000 feet in the San Juan Mountain range. The climate is semi-arid with precipitation varying from 10-15 inches per year. Recent precipitation minimums at Grand Junction have been less than six inches annually. In excess of 650,000 acres are irrigated annually, with major crops being hay, sugar beets, small grains, and mountain fruits. Beef cattle and sheep are the primary stock production.

Industry:

Agriculture and ranching are the mainstay of the regional economy, with fruit ranching, lumbering, and mining being important areas of employment. Uranium, coal, and silver are the major mineral resources, with oil and gas exploration activity having a surge of renewal throughout the division. The present energy crisis undoubtedly is creating greatly increased interest and exploration activities by the industry in this region of Western Colorado. This trend will likely continue for the next few years. Tourism, of great inportance to the areas economy, will no doubt be drastically reduced due to the critical shortage of gasoline. Of current interest concerning regional industrial development are the following activities:

1. Continued development of a major ski facility and associated resort complex at Telluride.

- Completion of a major plant of the Russell Stover Candy Company at Montrose. The facility has made initial production runs and will employ 600 people at full capacity.
- Continued expansion of the ski resort complex at Crested Butte.
- 4. A regional land-rush boom and associated new housing construction.
- Regional coal resource investigations, including water rights, by major coal and oil companies.
- 6. A marked increase in oil and gas exploration activity began last year on the major geological structure known as the Douglas Arch, which is northwest of Grand Junction. A proposed deep test well northwest of Nucla, seismic activity south of Norwood, and a test well northwest of Cedaredge are all indicators of future regional developments in exploration which relate to the present energy crisis. The geological environment throughout much of the division from source beds to structure, as well as a lack of drilling appear to make this region of prime importance in view of the present national shortage of oil and natural gas.

Water Resource Projects:

Operating projects within Division 4 are the Uncompangre,

which includes Taylor Park and the Gunnison Tunnel, Fruitgrowers reservoir, Paonia project, Crawford project, and the Bostwick Park project which includes the Silverjack reservoir. The Fruitland Canal portion of the Fruitland Mesa project is now completed. Blue Mesa and Morrow Point reservoirs of the Curecanti Unit are completed and have been on-line for power for several years. All of the above are Bureau of Reclamation projects; in addition the following projects are in various study phases by the Bureau: Grand Mesa, Fruitland Mesa, Dallas Creek, San Miguel, Upper Gunnison, and Uncompanding Extension. A few pages about the Uncompanding Project are included in this report, as well as a brief report of Manager Harold Anderson concerning this years operations.

Land Use Planning:

A very recent comprehensive document has been prepared by the Colorado Land Use Commission which proposes guidelines for a master state land-use plan. Goals of the plan identify conerns in the areas of environment, economic and population development, natural resources, and related social concerns. Features of the study include an attempt to retain flexibility in problem-solving and to respect local government and private sector in-put in the planning process.

Division 4 is divided into two regions, mountain and northwest, with the mountain environment deserving

special attention because of its fragility. The mountain region is dependent on recreation and tourism, and the northwest region is defined within the plateau areas, and includes small communities, orchards, and grazing land.

To date the extent of division involvement has been to act as a consultant to the in-house planning section in Denver. Initial areas of concern have been with adequate water supply related to subdivision developments in W. D. 59 (primarily Crested Butte area), W. D. 62, Blue Mesa, and W. D. 60, Telluride areas.

Among the regional planning agencies are the various boards of county commissioners or planning commissions, the Tri-County Planning Commission and the Region 10 Planning Commission.

Land ownership by county is as follows:

Ownership in Acres

County	Private	Federal	State	County and Municipal
Delta	364,580	396,264	0	2,335
Montrose	512,679	1,241,684	70,345	157
Mesa	555,531	1,497,735	0	3,556
Ouray	208,183	160,390	1,920	49
San Miguel	384,539	476,240	16,479	0
Gunnison	426,501	1,624,900	13,388	200
Hinsdale	32,577	648,683	1,218	505
Saguache	590,693	1,329,876	95,195	180

Water Usage:

The economy is agriculturally dominated, and consequently the major water usage is for irrigation. Farms and ranches are oriented to the regions drainage systems, and related water diversions are tied to the irrigable lands. Many major reservoirs are located on major rivers, and long canals and tunnels are required to transport available water to the point of use. Recently greatly increased usage of water in the division furnishes electrical power, as generated at the Curecanti Unit reservoirs of the Colorado River Storage Project. Hydropower plants of the three dams will have a combined total installed capacity of 200,000 kilowatts. The availability of water and power will undoubtedly help to promote the industrial development of the potentially vast supply of fossil fuels and mineral resources throughout the Upper Colorado River Basin.

Listed below are the various power plants in the division and water usage of each for the 1973 water year:

	•	Diversion,
Name	Owner	<u>A. F.</u>
Ouray Hydro-Electric	Western Colo. Power Co.	8,456
Oliver Electric	Colo-Ute Electric Assn.	6,222
Ames-Illium	Western Colo. Power Co.	10,150
	(Trout Lake)	12,045
Blue Mesa reservoir	U. S. Bureau of Rec.	796,190
Morrow Point reservoir	U. S. Bureau of Rec.	891,220
Nucla Power Plant	Colo-Ute Electric Assn.	18,250
Redlands Power Co.	Redlands Water & Power Co.	473,552
Div	ision 4 Total	2,216,085

PERSONNEL:

Personnel changes in Division 4 were as follows: retirement of R. E. Robinson and replacement by Richard Drexel; transfer of Ronald Blewitt and replacement by Tom Kelly; appointment of Howard Noble as well commissioner and replacement by Roger Noble; addition of new employees Paul Stockemer, David Woolley, and Grover Shaw; resignation of Bill Glendening and Robert Pearce; and the loss by death of Harold Cyphers. The overlap of personnel at the Cedaredge office, in order to phase out a retiree and also obtain a smooth transition and effective on-the-job training of the replacement, appears to have produced the desired results. The good water year relieved the new employee of some decision-making pressures of the learning process, yet general indoctrination was effective and the increasing paper work load along with the latest tabulation effort was handled efficiently.

MILEAGE:

State reimbursement for travel is now \$0.12/mile, the average price of gasoline/gallon is \$0.45, and the division is undoubtedly facing severe consumption restrictions or outright rationing along with the rest of the country. Since the divisions work function is agriculturally oriented, it is presumed that gasoline sufficient to our needs will be made available on a priority basis, and it is hoped that personnel mileage expenses will be promptly and equitably adjusted to costs. Based on recent historical averages, total annual commissioner mileage for the years 1970 through 1972 was 146,332 miles. The same average for the years 1963 through 1968 was 146,343 miles, applying a 15% reduction of division mileage due to a re-defined division boundary in

1969. Assuming 45,000 staff miles and using an average 12 MPG gives 15,944 gallons required by the division for an average water year. If a 10% reduction of demand is assumed and a 15% variable applied (depending on water year), a requirement of from 12,200 to 16,500 gallons of gasoline appears to be necessary for effective administration of the division water supply in any given year of the foreseeable future.

Water Commissioners Annual Mileage Review:

	Total	Total Mileage
Year	Annual Mileage	Through August
1063	180 550	142 786
1964	172,358	125,608
1965	168,162	123,387
1966	168,598	123,927
1967	176,164	128,407
1968	167,174	119,841
1969	149,862	117,063
1970	135,195	100,659
1971	143,852	104,829
1972	160,070	122,224
1973*	157,709	110,144

* December 1973 mileage is estimated.

Note that for mileage research purposes the division boundary was changed by legislation half way through the year 1969, or an estimated loss of 15% of historic mileage.

No distinction of terrain conditions are recognized to date in mileage expenses, be it highway travel or a 4-wheel drive requirement. Roughly 70% of commissioner personnel own 4-wheel drive equipment as a necessary means of travel. Although all travel is not 4-wheel drive, the requirement always exists and a personal investment in this type of equipment appears to be an essential part of the job.

No state vechicles are assigned to Division 4.

PERSONNEL DATA SHEET

Personnel:

		Months Worked/	
Name & Position	District	Budgeted	Mileage
Division Engineer			
(W. R. E. IV)			
Ralph V. Kelling, Jr.	Staff	Annual	12,500
Assistant Division Engineer	r		
(W. R. E. III)			
Thomas A. Kelly	Staff	Annual	12,500
Senior Clerk-Typist			
Melita Maten	Staff	Annual	
Hydrographer			
Harold Coffer	Staff	Annual	6,250
Water Commissioners:			
	- 1 3		
Howard Noble	ALL	Annual	12,000
Richard L. Drexel	WD 40	Annual	10,000
Chalmer Garber	WD 61	Jan-Dec	7,200
Ralph Glendening	WD 41	Annual	12,000
Edwin S. Hofmann	WD 59-62	Annual	9,000
Roger Noble	WD 68	Annual	9,250
William E. Rhodes	WD 28	Jan-Dec	6,500
* W. W. Saunders	WD 42,63,73,74	Annual	15,000
Elton J. Watson	WD 40	Annual	10,600
· · · · · · ·			
Deputy Water Commissioners	:		
	40		
Clifford Aldridge	WD 40	Apr 22-Oct 31	4,100
Richard Belden	WD 40	Apr 22-Oct 31	2,800
Russell Bertram	WD 40	Apr 15-Oct 31	2,600
James E. Carr	WD 40	Apr 15-Oct 31	7,000
BUCK L. Catt	WD 42	Apr /Oct 15	6,500
Lloyd Connell	WD 40	Apr 22-Oct 31	7,200
Silas A. Freshour	WD 40	Apr 22-Oct 31	1,900
Mack Gorrod	WD 40	Apr 22-Oct 31	4,300
Dwayne C. Mansker	WD 60		10,000
Jack L. McHugn	WD 40	Apr 22-Oct 31	6,700
Frank Peterson	WD 40	Apr 15-Oct 15	5,100
Grover F. Snaw	WD 23	Apr 15-Oct 15	6,300
Faul Stockemer	WD 40	Apr 15-Oct 31	7,500
Stepnen Tuck	WD 40	Apr $22-\text{Oct }31$	7,200
Chartey woolley	WD 40	Apr $1 - 0$ Ct 31	5,100
David Woolley	WD 40	Apr $22-\text{OCT}$ 31	2,600
· Doug Gilbreath	WD 42	Apr 15-Oct 31	L,500

* These personnel have transferred to Irrigation Division No. 5 but are retained on Irrigation No. 4 roster as their duties are partially herein utilized. However, salary and mileage accounting are in Division No. 5.

WATER SUPPLY

Snow Pack:

The water supply outlook as of May 1, 1973, in Division No. 4 is taken from Soil Conservation Service monthly water supply bulletins, and prints of pertinent pages are included as a reference in this report. Significant data is as follows:

Summary of Snow Measurements:

Designed Wetenshell	No. of Cour-	This Years S % of:	Snow Water as
Basin or watershed	ses averaged	Last Yr.	Average
Gunnison	12	273	160
Surface Creek	3	237	153
Uncompahgre	3	236	177

Streamflow Forecasts (1000 A. F. - Apr-Sept):

Forecast Point	Forecast	% of Avg.	Average
Gunnison River in- flow to Blue Mesa	850	111	767
Gunnison River near Grand Junction	1800	158	1137
Surface Creek near Cedaredge	22	138	16
Uncompahgre River at Colona	200	155	129

The available water supply for the irrigation season lived up to early predictions, and made one of the best water years in recent memory. Flooding threatened in several areas but significant damage was minor. The spring was very late due to an

exceptionally large snow-pack in the mountain watersheds and even on the regions desert lands. An excellent first cutting of hay was obtained in the Crawford-Maher area without an early irrigation. Due to the good year there was very little summer administration and its associated misunderstandings. Published records from five U. S. Geological Survey stream gaging stations are presented for recent years, and in general terms these records help to indicate how the administration of water rights is affected by variations in run-off. For example, the Uncompany River normally peaks twice during the spring run-off, usually in latter May and again in latter June. High stream flows seldom require administration, whereas low flows require critical management. A necessary and continual part of the water officials function appears to be in educating new water users to a management system which is complex and very often difficult to accept without argument and confrontation.

Weather Modification:

The Durango office of the Bureau of Reclamation is going into the fourth winter in conducting a cloud-seeding research project in the San Juan Mountains. Seeding operations were suspended for 6 weeks last season when snowfall reached 150% of normal. The techniques which are being developed will permit the seeding of winter snowstorms without contributing to local hardships. The Bureau expects an initial annual yield of 250,000 A. F. of water from one season of cloud-seeding.

The water year began October 1st with a series of regional storms, and the winter snow-pack wound up as one of the best on record. A cold winter with few winds and low run-off apparently combined to create these high snow-pack conditions. Precipitation at Blue Mesa reservoir from January through June was 3.58", compared to the 2.12" average of the three previous years. A hydrometeorological data sheet for Blue Mesa reservoir is supplied as a supplement to the report. No hail suppression work is being conducted in Division 4.

Figures of a general nature relating to effective water supply are as follows:

	Avg. Mean	Avg. Annual	Avg. Annual
County	Temperature, F.	Rainfall, In.	Snowfall, In.
Delta	51.0	7.75	18.5
Mesa	52.5	9.06	27.3
Montrose	49.6	9.11	28.4
Ouray	44.5	23.27	146.0
San Miguel	39.5	23.79	165.7
Gunnison	38.5	10.67	50.2
Hinsdale	36.5	20.00	145.0
Saguache	43.6	8.10	26.3

Chalmer Garber (W. D. 61) has concluded some 28 years of record keeping as observer of the Weather Bureau station at Paradox.

Floods:

Flooding threatened on the Uncompany and Dolores Rivers yet did not materialize to any serious extent. Some 8,000 cfs was recorded at the Dolores River at Bedrock in early May. A local area of flooding existed for a short period on the Gunnison River west of Delta; the problem was alleviated by a reduction of

releases through the Curecanti Unit reservoirs. This locality is in the river bottom and is plagued by high water in the spring of most normal water years. Telephone communication was maintained with the U. S. Geological Survey at Grand Junction and the River Forecast Center of the National Weather Service in Salt Lake City during the high water period. Areas subject to flash flooding vary from year to year within the division, and all are associated with locally heavy rains. In recent years three localities have been subject to minor flooding, as follows: Ouray-Ridgway area, Paradox area, and Hotchkiss-Paonia area. No flash floods of consequence occurred in 1973 in Division 4.

Water Budget:

As with several recent water years, reports of total water diversions by area are identified as including a relatively small percentage of all decreed water rights, among which may be numerous owner reports. In addition, duplications of water are unavoidable since some ditches and reservoirs account for practically the same water. For example, the Curecanti Unit reservoirs account in duplicate for practically the same water for power. Average drainage area yields from many gaging stations records are not compatible with the "common source" doctrine, nor are they compatible to district boundaries. Depletions by irrigation, municipal, domestic, and other uses are unknown variables, thus no attempt to identify the various depletions by water district has been made for purposes of this report.

Underground Water:

Aquifers of significance in the division are not well known at this time due to a paucity of ground water literature and very scattered regional drilling, much of which has been confined to alluvial valleys. A few deep water wells, including oil well dry holes, exist, in addition to shallow seismic survey drill holes, but it is probably that water logs of only very few of these holes have been retained. Potentially all formations may prove productive, with the shale sections having a minimal water content and sands, especially of the Dakota and Entrada formations, capable of containing large volumes of water. A number of good water wells in the Grand Junction area produce from Morrison sands; in the Montrose area the Dakota formation is the primary aquifer. At this time most wells are for domestic and stockwater purposes, and as such do not contribute effectively to the area economy.

Colorado Geological Survey Bulletin 33, Bibliography of Hydrogeologic Reports in Colorado, by Richard H. Pearl, published in 1971, is the most recent publication on water resources in Colorado West. This bulletin is a welcome and necessary compilation of all published literature in the field, and should serve as an excellent reference for those interested in Colorados' water resources.

Wells:

A recent problem on Surface Creek near Cedaredge in which pumps take water directly from the stream has apparently been resolved

and the solution may be of interest as it relates to well administration. The particular circumstances developed over the past three years as new owners moved in and settled on small tracts bordering the stream. Without a knowledge of state water law or an understanding of local administration, these parties took water from the stream by pump, resulting in injury to senior rights and complaints by various water interests. The parties, ten in all, now purchase reservoir storage averaging 1/2 A. F. per season, and using the stream as a carrier, divert it from the stream by pump at regulated intervals during the irrigation season for lawn and garden use. Pumps are meter-tested for accurate capacity, the electric switch boxes are locked and controlled by the water commissioner, and no decree or measuring devices is required. Protection to vested water rights is assured in that no pump is allowed to pull the full purchase order, which benefit accrues to the stream. The legality of this practice may be subject to review, yet senior vested rights are fully recognized and protected, and the public interest appears to be properly served.

Well Commissioner, Howard Noble, is performing a new function in the division under the recently enacted legislation of H. B. 1042. Involvement to date has included establishing well files and map plats, making inspections and familiarization trips, in addition to training his replacement and acting in the capacity of a floating water commissioner.

TRANS-MOUNTAIN DIVERSIONS:

		RECIPIENT AND/	ANNUAL AVG.	AMOUNT
NAME	SOURCE	OR CLAIMANT	DIVER. A.F.	A. F.
Red Mountain Ditch	Mineral Cr.	Ouray Ditch Co.		
		Montrose, Colo.	260	297
Carbon Lake Ditch	11 Ež	10 II		281
St. John Ditch	E. Fk. Animas	Charles, Gunn, &		
	River	% W. Worley Olathe, Colo.		No Diversion
Mineral Pt. Ditch	Burrows Cr.,	W. Gibbs		No Record
	tr. N. Fk.	Ouray, Colo.		
	Animas River			
Larkspur Ditch	Tr. of Tomichi	Rocky Ford High-		
	Creek	line Canal Co.	125	269*
		Rocky Ford, Colo.		
Tabor	Cebolla Cr.	Colo. Div. of		
		Wildlife	670('69 W.Y.)	465*
		Alamosa, Colorado		
Tarbell	Cochetopa	Saguache Land &		
		Water Company	410('69 W.Y.)	524*
		Saguache, Colo.		
Divide Cr. High-	Divide Cr.	F. M. Starbuck, Mgr.	2125	1301
line Feeder Ditch		Silt, Colorado		
Leon Lake	Leon Creek	Sam Oaks		
		Eckert, Colo.	1550	1730

* Published one year in arrears by USGS - Water Resources Data for Colorado, Part I - Surface Water Records 1972

TRANS-BASIN DIVERSIONS:

Leopard Cr. Ditch	Leopard Cr.	Harry McClure	1372	1233 1971 W.Y.
		Ridgway, Colo.		1000 1972 W.Y.
				1019 1973 W.Y.
N. Fk. of the	Cottonwood &	William Hofmann	30	10 1971 W.Y.
Paxton Ditch	Horsefly Creeks	Montrose, Colo.		13 1972 W.Y.
				4.41 1973 W.Y.
Cimarron Feeder of	W. Fk. of the	Unc. Valley Water	2500	2516 1971 W.Y.
the Garnet Ditch	Cimarron	Users Ass'n.		2785 1972 W.Y.
		Montrose, Colorado		2330 1973 W.Y.
Gunnison Tunnel	Gunnison River	19 OT	350,000	346,729('65-70 Avg.)
				335,850 1971
				284,546 1973
Head & Ferrier	Soap Creek	H. Head & Ferrier	146	164('65-70 Avg.)
Ditch		Delta, Colorado		200 1972 W.Y.
				180 1973 W.Y.
Lake Brennand	Lake Brennand	Town of Crested		No Record
		Butte, Colorado		
Meek Tunnel	Crystal Cr.	Carton Meek		No Record
		Maher, Colorado		
Mesa Cr. Ditch	Mesa Creek	87 F1		78

In sharp constrast to the 1972 water year, all reservoirs filled in 1973. As mentioned earlier, the late spring delayed the agricultural season, and of course the filling of reservoirs also occurred at a later than normal period of time.

Listed below are selected reservoirs and storage volumes of each on specific dates:

Name of reservoir			Storage in A. F., Nov. 1, 1973		St <u>M</u> a	orage in A. ay 1, 1973	F.,
Blue Mesa			532,700			308,600	
Morrow Point			76,590			115,300	
Silver Jack			9,630			10,660	
Taylor Park			71,390			42,470	
Paonia	Nov.	' 73	5,395	June	' 73	18,468	
Crawford	H		6,630	11		14,395	
Fruit Growers	Ħ		843	H		4,356	
Beaver			Empty	11		835	
Park	17		1,087	H		3,383	
Carson			Empty			Empty	
Gurley			1,873			4,723	
Buckeye			1,700			610	

Problems with dams, restrictions of storage, and a comprehensive storage report are covered in several other categories of this report.

RECAPITULATION SHEET

U. S. BUREAU OF RECLAMATION

CURECANTI UNIT RESERVOIRS - COLORADO RIVER STORAGE PROJECT

BLUE MESA RESERVOIR

	CUMULATIVE DIS-	PEAK STOR-	CUMULATIVE STOR- AGE A. F. (10-1-
WATER YEAR	CHARGE A. F.	AGE A. F.	<u>66 - 12-31-66)</u>
1966	50,110 (10-1-66 - 12-31-66)		
1967	473,535	574,900 (7-20-67)	360,100
1968	979,468	796,854 (8-30-68)	
1969	948,793	853, 659 (11-2-69)	
1970	1,327,822	831,700 (7-8-70)	
1971	1,077,340	647,700 (1-1-71)	
1972	807,440	542,500 (7-2-72)	
1973	796,190	829,300 (7-22,23-73)	

MORROW POINT RESERVOIR

1971	1,483,974	(12-1-71 - 9-31-71)	118,700	(12-26-70)
1972	897,210		117,600	(11-28-71)
1973	891,220		116,500	(10-5-72)

CRYSTAL RESERVOIR

Primary construction is now underway, and the river diversion tunnel has recently been completed.

BOSTWICK PARK PROJECT - SILVERJACK RESERVOIR

WATER YEAR	CUMULATIVE DIS- CHARGE, A. F.	DISCHARGE THRU OUTLET WORKS	DISCHARGE THRU SPILLWAY
1971	10,129 (July-Sept., Incl.) 6970	3159
	Reservoir filled and spilled fi	irst time on May 24, 197	1
1972	31,191 (May-Sept., Incl.)	31,101 (May-Sept	., Incl.) 90
1973	13,682 (July-Oct., Incl.) (3,986 Irrigation)	13,682 (July-Oct	., Incl.) No Record

Daily diversion records are kept at the local Power Operations office of the U.S. Bureau of Reclamation, and in turn furnished to the Division 4 office on a monthly basis.

Agriculture:

The region has been economically depressed for a number of years because it is agriculturally oriented and dominated. However, this past year has seen a dramatic reversal of form with shortages and high prices commanding attention. Beet production has consistently equaled the best in the state, hay crops in general have been quite good, and fruit yields were excellent, with the apple harvest yielding bumper crops. The farm labor force is seasonal.

		Crop	Product	Livestock**					
	Average Growing	Irr	igated La	and	Cattle-	Stock			
County	Season, Days	Barley	Beets	Corn	Calves	Sheep			
Delta	146	65	18.4	86	49 ,40 0	27,000			
Montrose	153	59.6	16.3	78	48,400	58,000			
Mesa	188	54.3	21.0	89.7	77,000	51,000			
Ouray	48	64	16.7		15,000	4,100			
San Miguel	45	52			9,500	29,000			
Gunnison	49				38,000	14,000			
Hindsdale	45				3,500	5,300			
Saguache	105	50		50	52,000	16,500			

Presented below is a brief resume by area:

* 1971 Colorado Agriculture Statistics, Published July 1973; in bu./ac. or tons/ac.

** Number of head, 1972

Fruit production includes apples, peaches, pears, and sweet and tart cherries, all highly susceptible to frost and hail damage. No record of production for the current year is available,

however, the 1973 crop year was excellent for peaches, and a record apple crop was recorded in the Delta-Cedaredge area. No recent dollar values are available, but several 1968 fruit crop farm values in dollars are as follows:

Commerical apples - 4,366,000; peaches - 1,770,000 pears - 724,000; cherries, tart - 531,000; cherries sweet - 117,000

Several crop dollar values for 1971 are as follows:

County	Corn	Sugar Beets	Barley	Hay
Delta	773,600	597,400	680,100	2,160,000
Montrose	1,428,700	674,500	1,305,500	2,419,000
Mesa	1,492,000	3,523,700	207,000	3,204,000
Ouray	24,500	15,100	24,500	704,000
San Miguel	27,500		27,200	259 ,200
Gunnison				1,247,000
Hindsdale				44,800
Saguache	13,750		1,499,000	1,854,000

The above production data have been extracted from several sources, including:

1973 Colorado Yearbook - Colorado Interstate Gas Company 1973 Colorado Agriculture Statistics - Colorado Department of Agriculture.

COLORADO RIVER COMPACTS:

The Colorado River Compact of 1922 and the Upper Colorado River Basin Compact of 1948 are the definitive documents. The Upper Basin's share of Colorado River water is 7,500,000 acre feet per year, of which Colorado is allocated 51 3/4%. The Lower Basin can put a call on the Upper Basin in any series of water short years, based on the long term average flow at Lee Ferry.

Although there apparently exists a wealth of information concerning these compacts on the Colorado River by various state, federal, and other agencies, there is not available operational criteria in the event of a "call" on the Colorado River. The fact that a call on the river has not occurred to date does not preclude than an operational plan should exist. Presumably water rights decreed prior to 1922 shall in any event not be subject to call. Undoubtedly the operational experience of numerous interstate compacts will prove valuable in establishing these criteria for the Colorado River.

It is further feasible and possible that the existence of the Curecanti reservoirs and Lake Powell may in fact preclude any future compact call from occurring in Colorado. No definitive document is available to date that speaks to this subject.

Storage Reservoirs:

- 1. Beaver reservoir on the East Fork of Minnesota Creek in W. D. 40 developed a major abutment failure within the reservoir basin and in front of the upstream face of the dam. The seepage zone apparently enlarged rapidly in early August, and upon notice to the commissioner on August 13, 1973, the two seep holes extended from gage rod elevations 57.0' to 54.0'. Prompt reaction by water commissioner Elton Watson may have averted a disaster. The company is proceeding with another major repair and storage will be of critical concern in the 1974 and future filling seasons.
- Porter No. 1 reservoir (W. D. 40) was repaired for the third season, and hopefully the lenses which created the slip conditions have been removed.
- 3. Full Moon reservoir did not fill in the 1973 water year since the owner has indicated an intent to abandon. However, the Division of Wildlife has shown an interest in the property and may rehabilitate the dam if feasible. Storage capacity is 420 A. F., and either for recreation, mining and milling, or irrigation, the property would appear to have desirable features.
- A major dam failure occurred in Division 4 on July 15, 1973, when the Hidden Treasure dam on Henson Creek above Lake City failed. A part of the log cribbing

DAMS

below the concrete dam gave way (with the dam proper remaining intact), spilling an estimated 1/2 million cubic yards of debris down Henson Creek. There is no known injury or loss of life, but Lake City's water source of supply was lost for several months. Gravels and cobbles completely filled the reservoir and V-notch canyon many years ago, which created the hazard. The water supply was used for power purposes, conditionally decreed for 215 cfs and 96.7 A. F., upon reconstruction and use.

5. The Lucky Chance Pipe Line and Water Right (undecreed) is located on the North Fork of Henson Creek 7 miles above the Hidden Treasure dam. The structure is also filled in, was also a power diversion, and in other ways is very comparable to both the Hidden Treasure and Ute-Ulay structures. An inspection did not reveal unsafe conditions. The engineering features and construction of each seem very up-to-date, although all were probably built in the mid 1880's.

Reservoir stop storage orders are in effect as follows:

Name	Water District	Order Date	Restriction
Dogfish	40	8-9-72	5' below spillway.
Lone Cabin	40	88	5' below lowest em- bankment.
Waterbug	40	F1	5' below spillway.
Weir & Johnson	40	Ŧ	5' below spillway.
Porter # 1	40	Verbal, fall 1973	2' below spillway.
Beaver	40	Verbal, fall 1973	not over 50° on gage in filled season; may fill late.
Full Moon	68	8-24-72	5' below dam crest.
Hidden Treasur	e 62	Verbal, fall 1973	enlarge channel open- ing at base of dam.

Various staff personnel from the Dam Section have made numerous inspection trips this season, including Mr. Stan Miller, under contract to the Department, and recently retired from the Colorado Water Conservation Board. Mr. Paddock's Annual Report will cover more specifically the Sections operations in Division 4.

Livestock Water Tanks - Permits Issued 1973

Name	Stream	Height	Capacity, A. F.	Permit Number
Gary Dixon #1- 73	SW27-51N-10W	11.1	1.0	14205
Paul B. Swanson #1	NE23-47N-9W	15	1.0	14379
Hostetler 73 #1	NW13-48N-3E	10	5.0	14410

Only one problem developed concerning stock water tanks, and it will be reported in the 1974 Annual Report since the issues have not been resolved at this time. The problem relative to water supply involves the taking and impoundment of 0.06 cfs of decreed direct flow into a non-permitted and undecreed pond, (W. D. 68) and subsequent removal of the control stem which is now under water.

WATER RIGHTS

A. Tabulation:

Water commissioner personnel were again involved with correcting errors and making other revisions to the tabulation after completing annual reports. Mr. Walt Knudsen met with selected personnel on several occasions to coordinate efforts in this regard. Work continued on this project throughout the winter and until

Uncompange Project

COLORADO, Delta, Gunnison, and Montrose Counties

REGION 4, Bureau of Reclamation

PROJECT HEADQUARTERS, Montrose, Colo.

The project is on the western slope of the Rocky Mountains in west-central Colorado. Project lands surround the town of Montrose and extend along both sides of the Uncompanyer River to Delta, a distance of 34 miles. Project features include the Taylor Park Dam and Reservoir, Gunnison Tunnel, 7 diversion dams, 143 miles of main canals, 425 miles of laterals, and 215 miles of drains. The system diverts water from the Uncompanyer and Gunnison Rivers to irrigate over 76,000 acres of project land.

PLAN

The project plan provides for storage in Taylor Park Reservoir on the Taylor River, which is a part of the Gunnison River Basin, and diversion of water from the Gunnison River by the Gunnison Diversion Dam through the Gunnison Tunnel and the South Canal to the Uncompangre River.

To distribute the waters of the Gunnison and Uncompanying Rivers, the South and West Canals were constructed and the more important private canals, taking water directly from the Uncompanying River were purchased, enlarged, and extended. Laterals were also constructed to take water from the South Canal.

Taylor Park Dam and Reservoir

Taylor Park Dam is on the Taylor River, a tributary of the Gunnison River. The dam is a zoned earthfill structure 206 feet high, with a crest length of 675 feet and a volume of 1,115,000 cubic yards. It creates a reservoir with a storage capacity of 106,200 acre-feet. The spillway is an overflow-type weir crest 180 feet long, with a capacity of 10,000 cubic feet per second. The outlet works is a horseshoe tunnel with a diameter of 10 feet and a capacity of 1,500 cubic feet per second.

Gunnison Diversion Dam, Tunnel, and Canal System

The Gunnison Diversion Dam on the Gunnison River about 12 miles east of Montrose is a timber-crib weir with concrete wings and a removable crest. The dam has a hydraulic height of 10 feet. It diverts releases from the Taylor Park Dam into the Gunnison Tunnel.

The Gunnison Tunnel has a rectangular section 11 feet wide and 12 feet high with an arch roof. It is

5.8 miles long and has a capacity of 1,000 cubic feet per second.

÷.

South Canal extends from the end of the Gunnison Tunnel generally southwest 11.4 miles to the Uncompahgre River. Part of the canal is concrete lined; the remainder is unlined. The canal has a diversion capacity of 1,010 cubic feet per second.

West Canal extends generally northwest about 21 miles from the Uncompany River at the confluence of the South Canal with the river. It has a diversion capacity of 172 cubic feet per second and is unlined.

Montrose and Delta Diversion Dam and Canal

The diversion dam is on the Uncompany River about 8 miles south of Montrose. The dam is a concrete gate structure with removable crest, and has a hydraulic height of 12 feet. The canal extends generally northwest about 40 miles from the diversion point and has a diversion capacity of 563 cubic feet per second. The canal is unlined. The dam and canal were privately constructed and later purchased by the Bureau.

Taylor Park Dam,

Loutzenhizer Diversion Dam and Canal

The diversion dam is on the Uncompany River about 2 miles south of Montrose. It is a pile-andtimber weir with a concrete apron. The dam has a hydraulic height of 9 feet. The canal extends generally northwest 14.5 miles from the diversion dam and has a diversion capacity of 120 cubic feet per second. The dam and canal were privately constructed and later purchased by the Bureau.

Selig Diversion Dam and Canal

Selig Diversion Dam is on the Uncompalingre River about 5 miles northwest of Mortrose. It is a pile-andtimber weir with removable crest and concrete apron. Its hydraulic height is 10 feet. The canal extends generally north about 20 miles from the diversion dam. This unlined canal has a diversion capacity of 320 cubic feet per second. The dam and canal were privately constructed and later purchased by the Bureau.

Ironstone Diversion Dam and Canal

Located on the Uncompaligre River about 8 miles northwest of Montrose, the Ironstone Diversion Dam is a concrete gate structure with a concrete wing. The hydraulic height is 8 feet. The unlined canal runs 14 miles northwest from the diversion dam. The diversion capacity is 400 cubic feet per second. The dam and canal were privately constructed and were later acquired by the Government.

East Canal Diversion Dam and Canal

Located on the Uncomp digre River about 10 miles northwest of Montrose, the East Canal Diversion Dam is a concrete weir with an earth embankment wing. The hydraulic height is 8 feet. The unlined canal extends 10.6 miles north from the diversion dam. Its diversion capacity is 165 cubic feet per second. The dam and canal were privately constructed and were later acquired by the Bureau.

Garnet Diversion Dam and Canal

The diversion dam is on the Uncompaligre River about 15 miles northwest of Montrose. The dam is a rockfill weir, concrete surfaced. It has a hydraulic height of 4 feet. Garnet Canal is unlined and extends 10.7 miles northwest from the diversion dam. Its diversion capacity is 75 cubic feet per second. The dam and canal were constructed by private interests and later acquired by the Bureau.

Lateral and Drainage Systems

There are 425 miles of laterals which distribute the water to project lands. A system of subsurface drains totaling 215 miles has been constructed in recent years.

Early History

The lands now comprising the project were formerly part of the Ute Indian Reservation. Softlement by

DEVELOPMENT

white settlers rapidly followed the cession of the lands from the Indians to the United States. By 1903, about 30,000 acres in the Uncompany Valley were irrigated by a system which included three small diversion dams on the Uncompany River. As the possibilities for greater use of irrigation water were evident, a larger development of the scheme by the State of Colorado was begun but was not completed when work by the Reclamation Service commenced.

Investigations

Active support for driving a tunnel from the Gunnison River to the Uncompangre Valley to obtain additional water was solicited as early as 1890. In 1894, the Geological Survey completed a survey and found the tunnel project feasible. The tunnel project was too expensive an undertaking for local interests, but in 1901 the State of Colorado appropriated \$25,000 for starting the work of the tunnel. Only 900 feet of tunnel were driven before the funds were exhausted. In 1901, surveys of the project were begun by the Geological Survey, and the general scheme of the project was outlined in the first report. After the passage of the Reclamation Act in 1902, the Uncompahgro Valley was selected for immediate development. The original surveys by the Geological Survey, plus the investigational work carried out by the Reclamation Service, served as a basis for authorization of the project in 1903.

Authorization

The project (originally called Gunnison project) was authorized by the Secretary of the Interior on March 14, 1903, under the provisions of the National Reclamation Act. Rehabilitation of the project and construction of Taylor Park Dam was approved by the President on November 6, 1935.

Construction

Construction began in July 1904, and the first water for irrigation was available during the season of 1908. The Gunnison Tunnel was completed in 1909 and the Gunnison Diversion Dam in January 1912 The projet was transferred to the Uncompanyire Valley Water Users' Association for operation and maintenance in 1932. Taylor Park Dam was completed or 1937, having been built from funds allotted under the National Industrial Recovery Act. Other improvements made during the same period included enlargement, lining, and smoothing portions of the Gunnison Tunnel; constructing concrete and steel structures to replace the worbout wooden structures in the irrigation system; relining portions of the canals; and constructing a drainage system to relieve and prevent waterlogging of land.

Operating Agency

The project is operated and maintained by the Uncompanyere Valley Water Users' Association.

2

BENEFITS

Irrigation

About 76,300 acres of land receive full irrigation water supply from the facilities of the project. Principal crops are alfalfa, wheat, corn, oats, potatoes, beans, barley, sugar beets, and onions.

Recreation

Free camp and picnic grounds have been provided at Taylor Park Reservoir. Cabins are available in privately owned resort developments in the area. Camping, picnicking, swimming, boating are popular activities, and fishing is good for rainbow, brown, and Loch Leven trout. Some brook and native trout are also caught.

PROJECT DATA

Land Areas (1958)

Irrigable	area (acres):	Full	irr	iga	ti	on	86	rvi	ice		76, 295
Number	of irrigated fa	rms		•		•	•		•	•	1, 940

Area lirigated and Crop Value

Year	Area irrigated (acres)	Crop value					
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1959	72, 130 72, 795 73, 427 74, 207 70, 349 73, 529 72, 526 73, 762 73, 762 73, 987 60, 345 62, 970	\$3, 960, 437 4, 016, 532 3, 724, 621 6, 076, 028 5, 557, 325 4, 389, 980 5, 743, 048 4, 990, 262 5, 671, 204 4, 382, 283 4, 692, 442					

Facilities in Operation (June 30, 1958)

Storage dams											1
Reservoir capacity	(a	CP P	-fe	et,	80	etiv	/e)				106, 200
Diversion dams											7
Canals (miles).											143
Laterals (miles).											425
Drains (miles).											215

Climatic Conditions

Annual precipita	tion	(in	che	•s).										9. 0
Temperature:														
Maximum	• •		· •		·	-			-	·	·	·	·	109°
Minimum		• •	•	·	٠	·	·	,		•		•	•	-36°
Mean .	· ·	;	•	·	•	٠	•	·	• '	٠	;		•	51.4°
Growing season (days	s) 	• •	ie.		·	·		·	•	•	·	·	150
Enevation of irrig	ganie	e ar	ea	(ie)	et)		•	•	·	•	•	•	•	4920-0400

Settlement

Number of	persons	serve	d	Wj	ith	р	roje	et	w	at	er				
Farm irrig	ation ser	vice .												7,	00
Municipal	Water ne	TVIC C					с. " ₂ .							- 6,	30
Other wat	er service	e.		·	•					•			1	10,	80
Total							,				**	.		24,	10

1 Urban and suburban, residential, commercial, and industrial lands

ENGINEERING DATA

Water Supply

UNCOMPANGRE RIVER

Drainage area at Colona, Colo. (square miles).	437
Annual discharge (acre-feet);	
Maximum (1921)	331, 200
Minimum (1934)	102, 200
Average (1903-50)	208, 300
GUNNISON RIVER	
Drainage area at Gunnison Tunnel (square miles). Annual discharge (acre-feet):	3, 980
Maximum (1948)	1,689,600
Minimum (1934)	548, 300
Average (1910-50)	1, 327, 600
Average annual diversion, 1948-55 (acre-feet)	562, 500

3

Storage Facilities

TAYLOR PARK DAM

Type: Zoned earthfill. Location: On the Taylor River, 30 miles north-	
east of Gunnison, Colo.	
Construction period: 1935-37.	
Date of closure (first storage): 1937.	
Reservoir, Taylor Park:	
Average annual inflow, 1939–50 (acre-feet)	137.050
Total capacity to elevation 9330 (acre-feet)	106.200
Surface area (acres)	2.040
Dimensions (feet):	
Structural height	206
Hydraulic height	153
Top width	3
Maximum base width	1.000
Crest length	675
Crest elevation	9314 6
Total volume (cubic vards)	115.000
Spillway: Uncontrolled concrete side-channel weir	
and concrete-lined chute in left abutment.	
Crest length (feet)	180
Crest elevation (feet)	9330. (
Capacity at elevation 9336.0 (cubic feet per	
second)	10.000
Outlet works. Concrete-lined tunnel through right	• • • • • • •
abutment, controlled by two 48-inch needle valves	
Capacity at elevation 9330.0 (cubic feet per	
second)	1 541
Foundation: Competent fine-grained phyllites and	•
granitic intrusions in left abutment and river	
channel: firm inuch-jointed warned and	
faulted sedimentary formations in right shut-	
manca is contractively too macroons in tight and	

extends through right abutment. Special treatment: Shaft every ated in fault zone beneath cutoff wall and backfilled with concrete, grout curtain beneath cutoff walls and supplementary grouting in foundation, abutnwints, and fault zone.

Diversion Facilities

GUNNISON DIVERSION DAM

Type: Timber crib weir, concrete wings, removable crest.

Location: On the Gunnison River, about 12 miles east of Montrose, Colo Year completed; 1912. Supplemental construction in 1915.

Weir crest length		•	•	•	·			•		٦Ľ	ards	Volume (cubic y
Weir crest length 2	holo a construction de la constr	•		•	·	•	÷	:	•			Crest length Crest elevation
Hydraulic height	height ann an 1999 ann an 1999. Reigth ann an 1999 ann an 1999		·	•	•	•	•	•		-	t. zth.	Hydraulic heigh Weir crest leng

-

Uncompangre project.

December 7, 1973

Uncompangre Project, Montrose, Colorado-Season 1973

"Under the terms of the contract between the Bureau of Reclamation and the Uncompany Valley Water Users' Association approved August 4, 1931, the operation and maintenance of the project was taken over by the Association on January 1, 1932.

The project irrigation system includes 575 miles of irrigation canals and 204 miles of drainage canals.

It requires 1,600 second feet of water entering the Project during periods of peak demand.

The water content of the snowfall on the Uncompany watershed on March 1, 1973, was 117% of the normal content for March 1, for the period of record. On April 1, 1973, the water content was 94% of the normal content for April 1, and 258% on May 1, 1973, for the period of record. The Taylor Park Reservoir filled and water started over the spillway at 5:30 P.M. on June 2, 1973.

The Gunnison Tunnel was shut out on June 25 at 8:00 P.M. and turned back in at 2:00 P.M. on June 26 for the annual summer inspection of the tunnel and A Canal.

The C Canal was shut out 34 times for an average time of 40 minutes to wash gravel and drift from the diversion dam forebay. The extended period of high run-off in the Uncompany River was excellent for water supply but caused considerable difficulty with heavy amounts of drift and gravel movement. The

WATER SUPPLY OUTLOOK FOR THE SOIL CONSERVATION DISTRICTS IN THE GUNNISON RIVER WATERSHED IN COLORADO

as of

May 1, 1973

AGRICULTURE SOIL CON U.S. DEPA OF COLORADO EXPERIMENT STATION, STATE ENGINEERS OF COLORADO

YOUR WATER SUPPLY

THE SNOWPACK INCREASED FANTASTICALLY DURING APRIL. SOME AREAS INCREASED AS MUCH AS 60 PERCENT. IT IS FELT THESE INCREASES MAY BE DUE IN PART TO THE COLD TEMPERATURES. THERE WAS LITTLE SNOWMELT. STREAMFLOW WAS GENERALLY BELOW NORMAL. THERE WILL BE ADEQUATE WATER OVER THE BASIN. FORECASTS WERE INCREASED IN SOME CASES AS MUCH AS 40 PERCENT. CARRY-OVER RESERVOIR STORAGE IS SIMILAR TO LAST YEAR, BUT SLIGHTLY LESS. VALLEY SOILS ARE IN GOOD CONDITION.

This report prepared to	/issued by
IALK N WASHIGHER INS ROWA, DE MORELAND	M.D. BURDICK- STATE CONSERVATIONIST B.S. PCRTER AREA. ONSERVATIONIST
SNOW SURVEY UNIT SOLL COSERVATION SERVICE	U. S. DEPARTMENT OF AGRICULTURE - SOIL CONSERVATION SERVICE
	DENVER COLORADO

STREAMFLOW FORECASTS (1000 Ac. Ft.) Apr-Sept

WATER SUPPLY UUILUUK cellent" with Respect to Usual Supply

			+		Flow Period	
FORECAST POINT	CAST	Nverage	Average	STRE AM or AREA	Spring Season Si	Late sason
Gunnison R. inflow to Blue Mesa (1)	850	111	767	Taylor	Exc. E	xc.
Gunnison nr Grand Junction (2)	1800	158	1137			
N. Fork of Gunnison(3) Surface Creek nr	370	143	258			
Cedaridge Uncompahgre at Colona	22 200	138 155	16 129			

1) Observed this plus change in storage in Taslor Reservoir. 12) Observed flow plus change in storage in Blue Mesa, Morrow Point and Taslor Reservoirs 1) Observed this plus storage in storage in Paonia Reservoir.

SUMMARY of SNOW MEASUREMENTS RISON WITH PREVIOUS YEARS)

SOIL MOISTURE

SUB-WATERSHEDAveragedLast YearAverage TStationsLast YearGunnison12273160Gunnison1126Surface Creek3237153Surface Creek1110Uncompandigre3236177Uncompandigre1110	Average #
Gunnison 12 273 160 Gunnison 1 126 Surface Creek 3 237 153 Surface Creek 1 110 Uncompandigre 3 236 177 Uncompandigre 1 110	6 126
	0 122 0 122

LINUUSANU AC. END

	lizable		Jaabie Stor	aga		Usable	U	able Store	.te
RESERVOIR	Capacity	This Year	Last Year	Average #	RESERVOIR	VOIR Capacity		Last Year	Average
Blue Mesa	830	305	319						
Morrow Point	121	115	116		,				
Taylor	106	42	77	59					
		l	1	1 1				+ 1953	 -1967 seried

Return if not delivered UNITED STATES DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SNOW SURVEY UNIT P.O. BOX 17107 DENVER, COLORADO 80217 CATICIAL BUSINESS PENALTY FOR PRIVATE USE & HX

"The Conservation of Water begins with the Snow Survey"

WATER SUPPLY OUTLOOK FOR THE SOIL CONSTRUCTS IN THE SAN MIGUEL, DOLORES, ANIMAS, AND SAN JUAN WATERSHEDS IN COLORADO AND NEW MEXICO

as of

U.S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

COOL TEMPERATURES. SNOWMELT HAS BEEN DELAYED. THE REMAINING LOW AND MEDIUM ELEVATION SNOW WOULD MELT RAPIDLY WITH WARM TEMPERATURES. HIGH WATER CAN BE EXPECTED IN THE NEW FLOOD PLAINS. TEMPERATURES AND PRECIPITATION WILL REGULATE PEAK FLOWS. SOILS ARE WET OVER MOST OF THE AREA.

	· · · · · · · · · · · · · · · · · · ·	~	1	•
	an har a dia an an an Grandah () tha an B≵ Labor In an suan suan an Tirina an An An An An An An An An	- 1	BLEDIN STATE CONSERVATIONST	ALTRU AT DESERVATIONS
	ENCR (PA)		DEPARTMENT OF A DRICHLTURE	SCIL C 2115ERVATION SERVICE win all half
1	· · · · · · · · · · · · · · · · · · ·			AN'ETT NEW MEX.'C

The Conservation of Water begins with the Snow Survey

STREAMFLOW FORECASTS (1009 Ac. Ft.) Apr-Sep

FORECAST POINT	FORE- CAST	% of Average	+ Average
Animas at Durango Dolores at Dolores La Plata at Hesperus Los Pinos at Bayfield	615 380 40	150 165 167	409 231 24 194
(1) Piedra Cr. at Piedra San Juan at Carracas Inflow to Navajo Res. (1) (Apr-Jul)	260 625 1050	160 165 170	163 379 619

	Flow Period				
STREAM OF AREA	Spring Season	Late Season			
Florida	Exc.	Exc.			
Mancos	Exc.	Exc.			
San Miguel	Exc.	Exc.			
,					

Number of Stations

3

3

3

-

THIS YEAR'S MOISTURE as PERCENT OF

Average +

88

88

.

105

Last Year

101

178

101

SOIL MOISTURE

Animas

Dolores

San Juan

RIVER BASIN

(1) Observed flow plus change in storage in balliesto Reservoir. SUMMARY OF SNOW MEASUREMENTS

(COMPARISON WITH PREVIOUS YEARS)

RIVER BASIN	Number of	THIS YEAR'S SNOW WATER AS PERCENT OF			
SUB-WATERSHED	Averaged	Last Year	Average +		
Animas Dolores San Juan	6 4 3	315 1800 301	190 271 158		

RESERVOIR STORAGE (Thousand Ac. Ft.) END OF MONTH

	lisable	Usable Storage			
RESERVOIR	Capacity	This Year	Last Year	Average	
Groundhog Lemon Narraquinnen	22 40	7 16 16	12 26	9 19	
Navajo Vallecito	1696 126	1170 58	847 79	326 59	

ESERVOIR STURAGE	(Inousand)	AG. PL. J END OF MONTH						
	Usable	U	sable Stor	• E a				
RESERVOIR	Capacity	This Year	Last Year	Average				
				T				
				1				
	/							
			+ 195	- 1967 meriod				

Return if not delivered UNITED STATES DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SNOW SURVEY UNIT P O BOX 17107 DENVER, COLORADO 80217 CREICIAL BUSINESS PENALTY FOR PRICATE USE SYR

CO-56

I

"The Conservation of Water begins with the Snow Survey"

GUNNISON RIVER NEAR GRAND JUNCTION*

WATER YEAR	TOTAL (CFS)	MEAN	MAXIMUM	WUMINIM	TOTAL (A. F.)
1965	1,318,700	3,606	15,300	650	2,611,000
1966	528,300	1,444	5,360	540	1,046,000
1967	446,961	1,125	4,520	500	886,500
1968	727,993	1,989	7,450	522	1,444,000
1969	945,294	2,590	9,460	561	1,875,000
1970	1,136,067	3,113	11,100	857	2,253,000
1971	1,121,461	3,072	6,260	923	2,224,000
1972	604,732	l,652	3,460	486	1,199,000

*Surface Water Records of Colorado - U.S.G.S. - Annual Publication in cooperation with the State of Colorado, et. al.

Water Commissioners Summary, 1973 Water Year

Water District:	28	40	41	42	59	60	61	62	63	73	74	68
Direct flow diver- sions in A. F.	305,525	451,491	568,991	520,640	299,313	200,394	66516	417 , 001	21,011	4,974	2,191	109,474
Reservoir stor- age in A. F.	2,668	66 ,004	75	2,143	27,300	22,338	060 ' T	3,755	0	0	0	224
Acres Irrigated	34,049	159,016	91,264	10,778	39,155	25,600	2,730	32,997	3,143	1,077	1, 055	25,368
Number of ditches reported	284	1,108	166	25	575	279	41	245	83	23	14	319
Number of reser- voirs reported	Q	291	ហ	62	4	76	1	23	0	Ц	0	47
Average demand in A. F./acre	0.6	2.8	6.5	3.8	7.3	7.8	3.5	4.0	6.7	4.6	2.1	4.3
Power diversions in A. F.	ο	ο	17,812	473,552	0	22,198	0	1,687,410	0	o	ο	8,416

Trans-mountain/trans-basin diversions (Name and amount, A. F.)

68	Red Mtn297 Carbon Lake- 281 St. John-0 Mineral Pt no record Leopard Cr 1019 (1972 W.Y.) Cimarron (Gar- net)-2330
62	Tabor-465 (1972 W.Y.)
61	State line ditch from Utah-11,574
60	No. Fk. of Pax- ton ditch - 4.5
59	Lake Brennand- no record
42	
41	Gunnison Tunnel- 284,546 Red Mtn 0
40	Divide Creek - 1301 Leon Lake-1730 Head & Ferrier 180 Mesa Cr78
28	Larkspur-524 (1972 w.Y.) Tarbell-269 (1972 w.Y.)

Delivered	to Compact Cmtmt. A.F.	0		0	0	0	0	0	0	0	0	0	0	o	0
No. of	Daily Ditch Rpts.	3,596		22,480	2,325	677	3,162	2,360	675	1,488	433	272	200	2,181	39,849
Total	Diversions Ac. Ft.	306,318		463,636	614,103	520,640	299,313	248,006	21,187	2,104,411	21,011	4,974	2,191	109,474	4,715,264
Trans Mtn.	Diversions Ac.Ft.	*667	(<u>tm Div.4</u>) 257-	1301 (fm Div.4)	0	0	0	0	11,574 **	465 * (fm Div.4)	0	0	0	578 (to Div. 4)	14,968
Recreation	Use Diver- sions Ac.Ft.	0	0		0	0	0	4,100	0	o	0	0	0	0	4,100
Municipal	Use Diver- sions Ac.Ft.	0	4,622		In Dist. 62	5,694	13,433	2,792	14	In Dist. 41	0	o	0	1,052	27,607
Industrial, Fish	Use Diversions Ac. Ft.	0	6,222		17,812	473,552	0	40,720	o	1,687,410	0	o	0	8,416	2,234,132
Ac. Ft.	Per Acre	0.6	2.0 %	<u></u>	6 5	3.8	7.3	7.8	3.5	4.0	6.7	4.6	2.1	4.3	
No. of	Acres Irrigated	34,049	159,016		91,264	10,778	39,155	25,600	2,730	32,997	3,143	1,077	1,055	25,368	426,232
Irrigation	Diversions Ac. Ft.	305,525	451,491		596,291	41,394	285,880	200,394	9,599	416,536	21,011	4,974	2,191	107,844	2,443,130
es	tive	NU 38	521		85	48	302	67	27	132	38	13	ŝ	186	1462
Ditch	orted Inac	en o	39		0	0	0	0	0	0	0	0	0	0	39
Total	Rept Active	246	548		81	49	143	212	14	113	45	11	6	133	1,604
	Water District	28	40		41	42	59	60	61	62	63	73	74	68	TOTALS

Colorado River Compact deliveries in 1973 - None

NA = No Water Available NU = Non Use or No Record * 1972 Figures; Record Published 1 - year in arrears by U. S. G. S. ** Imported water from La Sal Mtns., Utah

48

TABLE A

DIVISION SUMMARY - DIVISION NO. 4 Direct Flow Diversions 1973

DIVISION SUMMARY - DIVISION NO. 4 Storage Report - Acre Feet 1973

Projects 3,057 0 0 0 0 0 0 0 0 Storage 24,563 27,300 0 54,920 **д** Recreation Storage for 37,540 3,713 84,757 1,300 5,441 **1,700** 0 960,160 0 0 0 107,300 1,201,911 Use Storage for Municipal 3,265 1,301 2,500 0 500 246 0 0 0 0 45 0 7,857 Use Industrial/ Storage to Power Use 0 0 0 30,300 0 0 0 0 0 1,687,410 0 0 1,717,710 to Irrigation from Storage Delivered 2,668 64,004 2,143 27,300 22,338 3,755 1,090 224 75 0 0 0 123,597 Diverted to Storage Actual Am't of During Season 2,813 78,757 948 4,341 73,650 27,914 1,613 224 0 0 307,160 0 497,420 10-31-73 2,354 4,866 1,117 71,390 610 28,578 150 11,316 0 0 659,000 0 779,381 Amount in Storage 706,233 1,204,348 Acre Feet 2,668 3,713 84,757 5,441 37,540 1,700 960,160 650 374 107,300 45 0 6-1-73 11-1-72 9,626 6,000 1,720 1,100 006 33,650 653,000 0 0 0 150 87 District TOTALS Water 28 40 41 42 59 80 61 62 63 73 74 68

TABLE B

					Water District 63 Water Commissioner III W. W. Saunders*	Water District 68 Water Commissioner I Roger Noble*	er District 74 Commissioner III V. Saunders*	L Commissioner ward Noble *
NEL	.* * ng, Jr.	s A. Kelly	ten	* **	Water District 61 Water Commissioner I Chalmer Garber	Water District 62 Water Commissioner I Edwin S. Hofmann*	strict 73 ssioner III Wate unders* W. W.	ty Water Comm. g Gilbreath**
BLE OF ORGANIZATION - PERSON	IRRIGATION DIVISION NO. 4 * * * * * * * * on Engineer - Ralph V. Kelli	nt Division Engineer - Thoma	ior Clerk Typist - Melita Ma	ydrographer - Harold Coffer [*]	Water District 59 ater Commissioner I Edwin S. Hofmann*	Water District 60 Deputy Water Commission Dwayne C. Mansker	Water Di. Water Commi W. W. Sa	ater Commissioner Depu ver P. Shaw Doug
TA	* Divisi	Assista	Sen	H	Water District 41 Water Commissioner I Ralph Glendening*	Water District 42 Water Commissioner III W. W. Saunders(*)(**)	Deputy Water Commissioner Buck L. Catt Doug Gilbreath**	Deputy W Gro
					Water District 28 Water Commissioner I William E. Rhodes	Water District 40 Water Commissioner III Richard L. Drexel* Water Commissioner I Elton J. Watson*	Deputy Water Commissioners Gordon Aldridge Richard Belden Russell Bertram James E. Carr Lloyd E. Connell Silas A. Freshour Mack Gorrod Jack McHugh	Frank Peterson Paul Stockemer Stephen Tuck Charley Woolley David Woolley

November 15, 1973

50

* Annual
** Seasonal w/Div. 5
*** Jointly w/Div. 7

AREAS OF RESPONSIBILITY OF WATER COMMISSIONERS AND DEPUTIES

IRRIGATION DIVISION NO. 4

Well Commissioner

Howard Noble - Division Wide

Water District - 28

William E. Rhodes - Tomichi and Cochetopa Creeks Water District - 42

- W. W. Saunders Gunnison River below Mesa County line and its tributaries
 - Deputy: Buck L. Catt (same area)

Water District - 59

- E. S. Hofmann Gunnison River above Gunnison and tributaries on north side of the Gunnison River from Gunnison to Mesa Creek
 - Deputy: Grover Shaw (same area)

Water District - 60

Dwayne Mansker - San Miguel River

Water District - 61

Chalmer Garber - Dolores River below San Miguel County line to confluence with San Miguel River (Paradox Valley)

Water District - 62

E. S. Hofmann - Cimarron River, Lake Fork of the Gunnison, and Cebolla Creek

Water District - 63

W. W. Saunders - Dolores River below confluence of San Miguel River

Water District - 68

Roger Noble - Uncompanyre River above Colona

Water District - 73

W. W. Saunders - Little Dolores River

Water District - 74

W. W. Saunders - Coates Creek

Water District - 40

- Richard L. Drexel Crystal Creek; the Gunnison River from Mesa County line to Montrose County line and its tributaries except the Uncompangre River
- Elton Watson North Fork of the Gunnison River and Smith Fork

Deputies:

- Gordon Aldridge Upper Surface Creek
- Richard Belden Gunnison River and Escalante Creek
- Russell Bertram Granby and Battlement Reservoirs
- James E. Carr Leroux Creek
- Lloyd E. Connell Minnesota Creek and Stewart Mesa
- Silas A. Freshour Beaver Creek
- Mack Gorrod Ward, Kiser, & Youngs Creek Reservoirs
- Jack McHugh Youngs, Kiser, and Ward Creeks
- Paul Stockemer Muddy, Anthracite, Hubbard Creeks
- Frank Peterson Dry Creek and Alfalfa Run
- Stephen Tuck Forked Tongue
- Charley Woolley Lower Surface Cr.
- David Woolley Park Basin

Water District - 41

Ralph Glendening - Uncompanyre River from Colona to Delta

			·									
	January	February	March	April	May	June	July	August	September	October	November	December
1970												
Precip. (In.) Avg. Temp. (Max) Avg. Temp. (Min) Total Ann. Precip. Total Ann. Dischg.	.53 27.80 1.00 11.58 In. 1,237,220 A.F.	.07 39.00 6.30	.55 42.10 16.20	.23 46.90 20.10	.40 62.30 30.60	.46 70.60 40.10	1.58 82.90 47.70	2.69 82.40 48.40	2.28 (not avail.) "	1.50 54.70 26.50	.85 45.00 21.70	.44 31.20 5.50
			9	months p	recipitat:	ion sub to	tal 2.24					
1791												
Precip. (In.) Avg. Temp.(Max) Avg. Temp.(Min)	.13 34.10 6.20	.39 37.70 12.90	.16 47.10 14.10	.56 57.70 14.10	.80 65.80 23.00	.00 80.10 38.60	2.00 83.30 46.50	1.97 81.90 48.50	0.92 70.60 35.30	0.89 61.50 28.80	.11 48.50 15.70	1.56 25.90
Total Ann. Precip. Total Ann. Dischg.	9.49 In. 1,281,300 A.F.) - - -	1
			9	months pi	recipitat:	ion sub to	tal 2.04					
1972												
Precip. (In.) Avg. Max. Temp. Avg. Min. Temp. Total Ann. Precip.	1.14 23.70 -8.20 8.84 In.	.00 36.00 1.20	.09 56.00 18.00	.43 61.10 26.40	.05 69.20 29.00	.36 77.50 42.70	.36 84.50 46.10	.81 80.40 45.80	1.77 71.90 39.90	2.34 60.10 35.90	0.55 38.00 17.60	0.94 24.60 -1.30
	• • • • • • • • • • • • • • •		9	months pi	recipitati	ion sub to	tal 2.07					
1973												
Precip. (In.)	0.52	0.38	0.35	0.49	1.08	0.76	1.50	0.78	0.69	0.45		
AVG. Max. Temp. AVG. Min. Temp. Total Ann. Drecin	19.70 -8.20	28.30 .00	42.30 17.20	51.80 21.40	67.10 31.80	75 . 90 40.10	82 . 00 44.70	81.30 45.60	72.40 37.20	65.10 27.70		
Total Ann. Dischg.												
			9	months pr	ecipitati	on sub to	tal 3.58					

HYDROMETEOROLOGICAL DATA - BLUE MESA RESERVOIR (From U. S. Bureau of Reclamation, CRSP Power Operations Office, monthly reports)