John D. Vanderhoof

C. J. KUIPER State Engineer

DIVISION OF WATER RESOURCES

DEPARTMENT OF NATURAL RESOURCES W. G. WILKINSON P.E. IRRIGATION DIVISION ENGINEER ROOM 208 8th AND 8th OFFICE BLDG. GREELEY, COLORADO 80631 OFFICE: 352-8712 HOME: 484-3917

December 13, 1973

Mr. C. J. Kuiper State Engineer of Colorado 300 Columbine Building 1845 Sherman Street Denver, Colorado 80203

Dear Mr. Kuiper:

The Annual Report of the Division Engineer for Irrigation Division No. 1 of the State of Colorado for the 1973 water year is herewith submitted.

Included within this report is the Annual Report of Raymond Liesman on the distribution of water through the east slope facilities of the Colorado-Big Thompson Project.

As a result of time limitations and computer problems the diversion figures for the various water districts may be missing or preliminary in nature. The missing information will be entered and all figures verified as soon as possible.

The courtesy and assistance extended to me by you, your staff and the personnel of Division No. 1 over the past year has been greatly appreciated.

Respectfully submitted,

Chinson

W. G. Wilkinson Division Engineer

bt

ANNUAL REPORT

DIVISION NO. I

1973 IRRIGATION YEAR

NOV. 1, 1972-OCT. 31, 1973

ΒY

W. G. WILKINSON, DIVISION ENGINEER JAMES R. CLARK, ASSISTANT DIVISION ENGINEER INDEX

		PAGE
I.	Introductory Statement	1
	South Platte River	1
	Republican River	7
	Laramie River	8
II.	Personnel	9
III.	Water Supply	12
	A. Snow Pack	12
	B. Precipitation - Irrigation Season	13
	Hall Suppression	15
	C. Floods	16
	D. General	21
	Budget	22
	E. Underground water	23
	F. Transmountain Diversions	24
	Colorado-Big Thompson Project	25
	Annual Report - Ray Liesman	25
	G. Reservoir Storage	30
IV.	Agriculture	
	Crop Reports	46
v.	Compacts, Court Stipulations, and Legislation	
• •	A. Compacts	56
	B. Court Stipulations	57
	C. Legislation	58
WT	Dame	60
VT.		60
	A. RESELVOIIS D. Livestock Water Manks - Presion Control Dame	60
	B. LIVESLOCK water Tanks - Erosion Control Dams	63
VII.	Water Rights	
	A. Tabulation	64
	B. Water Court	65
	Application for Water Rights	65
	Decreed Water Rights	66
****	Organizations	
VTTT.	Organizacions	<i>.</i> .
	R. Ditch and Recorvoir Companies	67
	B. Dicch and Reservoir Companies	69
	C. Ground water management Districts	83
IX.	Water Commissioners' Summaries	-
	Introductory Statement	84
	Water Commissioner Comments on Reporting Data for Computer	85
	A. Direct Flow Diversions	93
	B. Storage Report - Diversion and Use	94
	C. 1973 Calls on South Platte River	95

•		· · · · · · · · · · · · · · · · · · ·	PAGE
	x.	Recommendations and Suggestions	96
	XI.	Miscellaneous	
		A. Water News	98
		B. Newspaper Clippings	111
۰.		C. Appendix - Population Studies	129

1973 ANNUAL REPORT

I. INTRODUCTORY STATEMENT

Division 1 covers an area of some 28,068 square miles or approximately the northeast one-fourth of the State of Colorado. Of this, approximately 19,500 square miles is in the South Platte River Basin, 8,165 square miles in the Republican River Basin, and 403 square miles in the Laramie River Basin.

SOUTH PLATTE RIVER

The South Platte River starts at the Continental Divide, flows through South Park, down mountain canyons, out onto the plains in the Denver area, thence northeasterly and into Nebraska near the northeast corner of Colorado. The flow of the South Platte is augmented by a number of tributaries in the South Park area, the principal ones being the Middle and North Forks of the South Platte and Tarryall Creek. After leaving the mountains the South Platte is further augmented by several major tributaries arising at and east of the Continental Divide and flowing to the South Platte from the north and west. These major tributaries entering the South Platte in the Denver to Greeley area are Bear, Clear, Boulder and St. Vrain Creeks, and the Big Thompson and Cache la Poudre Rivers. Only normally minor and intermittent streams supplement the river flow from the south and east. However some of these, such as Plum, Cherry, Boxelder, Kiowa, Bijou, Badger, Beaver as well as Lone Tree, Coal, Wild Cat and Pawnee Creeks from the north and west are each capable of producing a major flood due to the extent and topography of their individual watersheds when subjected to intense precipitation.

In addition to the obvious tributary streams, the South Platte River is further supplemented very extensively, as are the tributaries themselves, by what is commonly referred to as return flow. This is water from springs, waste ditches, drains, seepage, etc., resulting generally from diversions for various uses, precipitation, and high water tables. These additional sources enter the streams in relatively small amounts at extremely numerous locations along the entire reaches of the streams.

The water supply is further supplemented by a number of diversions from transmountain sources. The water from these transmountain sources is controlled and used by specific ownership entities and, as such, the first use of it is not subject to appropriation as a part of the waters of the South Platte Basin. These transmountain diversions are treated in more detail later in this report.

The elevations in the South Platte Basin vary from 14,000 feet at points along the Continental Divide to 3,400 feet at the Colorado-Nebraska line. The western one-third of the basin is mountainous in character and provides the principal source of water as the result of precipitation.

Of the 12,481,000 acres in the South Platte Basin, 8,694,000 acres are in farms and ranches. The balance of the area is owned by federal and state governments, public agencies, or included within municipalities. Within the farm areas are 852,000 irrigated acres and 7,842,000 acres of dry land according to the 1964 Agricultural Census. The principal use of water in the mountain valleys is for meadow irrigation. Large volumes of water are released on meadows adjacent to the streams and, of this volume, a major proportion returns to the stream for reuse at lower elevations. The largest area of mountain valley irrigation is in South Park at elevations up to 11,000 feet. Other uses in the mountain areas include those of small municipalities, domestic, stock, power, mining, commercial and recreation needs.

The greatest use of water, by far, in the South Platte Basin is for agricultural purposes in the plains area at elevations between 3,500 and 5,000 feet. The water here supports a well developed, diversified agricultural economy that ranks high nationally in productivity. Much of the demand for water in areas downstream some 40-50 miles from the mountains is supplied from wells and by return flow from uses further upstream.

POPULATION AND LAND USE

The continuing rapid rate of population growth portends some extensive changes in both water and land use. The Colorado General Assembly has passed laws, particularly in 1972, in an attempt to control the growth by requiring compliance with guidelines for water supply, sanitary systems, public access, fire protection and land use under the immediate supervision of the various county planning offices. These provisions have had a very obvious effect upon the theretofore exploding development of open land particularly along the front range during the past year.

The accompanying tabulations give an indication of the areas experiencing rapid growth as evidenced by the construction of single family residences and living units in apartment type construction since 1960. The 22 counties shown, being those which are wholly or partially within Irrigation Division No. 1, account for approximately 76% of the residential construction within Colorado during the 13 year period from 1960 to 1972 inclusive. The figures were taken from a study made by the Division of Planning, Colorado Department of Local Affairs.

Dr. David Monarchi, an Assistant Professor of Management Science and Research Specialist in the Business Research Division, College of Business and Administration, University of Colorado, has published a paper entitled COLORADO POPULATION TRENDS in which he projects the population of the Colorado counties for July 1, 1975 and 1980 from the census figures of 1970. For those counties lying totally or partially within Irrigation Division No. 1, Dr. Monarchi projects a population increase of 23.5% for 1975 and 49.8% for 1980 as compared with the 1970 census base. This study again verifies the concentration of population in Division 1 as being approximately 68.3% of that of the entire state with an expected increase to 69.9% in 1980. More significantly this growth will be concentrated in the nine front range counties of Adams, Arapahoe, Boulder, Clear Creek, Denver, Jefferson, Douglas, Larimer and Weld which are projected to have approximately 66.6% of total Colorado population in 1980. A copy of the Monarchi paper is included in the appendix of this report. Of significant interest is the amount of rural land going into subdivision and urban development. Insight to this particular aspect is provided in a study entitled URBANIZATION OF RURAL LANDS IN THE NORTHERN COLORADO FRONT RANGE as published by the Natural Resource Economics Division, Economic Research Service, U.S.D.A. in cooperation with Colorado State University Cooperative Extension Service.

This study was authored by Dr. Raymond L. Anderson of the Natural Resources Economics Division of E.R.S. - U.S.D.A. and covers the growth of population, subdivision activity, land use changes and acreages involved for the period 1955 to 1969 with corresponding projections to 1990 for the three county area of Boulder, Larimer and Weld Counties.

The study reveals that within the three counties over the 1953-1969 period 23.1 square miles of rural land went into urban development of some type. Of this, some 10.8 square miles was irrigated land. In the 1963 to 1969 period conversion from rural to urban use was progressing at a rate of two square miles per year. Continuing population growth between 1970 and 1990 in the area of study could occupy additional rural lands of between 25 and 75 square miles. This urbanization rate is indicative of the problems facing our area in terms of water supply, agricultural production and associated administration of water rights.

Looking forward to the needs for increased urban supplies, many municipalities are making plans for expanding their diversion treatment and distribution facilities.

After an earlier defeat of a proposed plan by the electors the Denver Water Board was successful in November of this year in getting approval from the electorate for their multimillion dollar plan for upgrading their facilities and developing more west slope water for the Denver Metropolitan area use. The Bureau of Reclamation is making progress with their plans for construction of the 975,000 acre foot Two Forks Reservoir at the confluence of the North and South Forks of the South Platte River and the 5570 acre foot Turkshead Reservoir which will serve as an afterbay for the Two Forks Power Plant. These multipurpose reservoirs are designed primarily to provide municipal water.

The Six City Group, composed of Fort Collins, Greeley, Loveland, Longmont, Estes Park and Boulder are still engaged in planning for the importation of municipal water from the Colorado River. They have formed a subdistrict to the Northern Colorado Water Conservancy District and have agreed with the Bureau of Reclamation upon a carriage contract using the facilities of the Colorado-Big Thompson project.

The Narrows Project as proposed by the Bureau of Reclamation working with the Lower South Platte Water Conservancy District advanced another slow step toward realization this year with the inclusion of \$1,000,000 in the federal budget for acquisition of lands and right of way for the Narrows Reservoir. Unfortunately the Lower South Platte Conservancy District lost the services of their most active and able secretary-manager, Eric Wendt, upon his sudden death November 25, 1973.

Chatfield Dam, a Corps of Engineers structure upstream from Denver at the confluence of the South Platte River and Plum Creek was dedicated on August 15 in a ceremony featuring an address by the then Vice-President, Spiro Agnew. Chatfield Dam and Reservoir will act principally as a flood control reservoir after its completion in 1974, furnishing much needed protection to the Denver area as well as downstream reaches.

Yielding to the temptation to invoke the privilege of editorial comment it is to be fervently hoped that the degree of operational integrity of the Chatfield structure will far exceed that alleged to be possessed by the dedicator.

Plans are also progressing for the construction of Bear Creek Reservoir by the Corps. This will be a flood control structure on Bear Creek downstream from the town of Morrison.

Generally speaking, the area served by water from the South Platte River and its tributaries enjoyed an ample water supply for the irrigation season as a result of a good spring snow pack, an extended snow melt season, good reservoir carryover and some timely precipitation. The year was also marked by a May flood on the South Platte, some reservoir failures and underground water litigation as discussed in greater detail in subsequent sections of this report.

RUCTION IN DIVISION 1 COUNTIES, 1960-1972 NUME
2 <u>1971 1970 1969 1968 1967 1966</u>
3 717 1523 857 619 564 470
7 4128 1987 1370 1305 1090 807
3 1928 1244 958 1112 1325 1266
2 1 2 2
67 44 45 31 13 26
t 1505 1570 1472 1381 1266 1090
7 402 215 225 151 91 66
) 59 26 14 10
33 26 38
3 6028 3270 2489 2682 2091 1489
L 12 15 23 21 15 22
3 1470 872 618 652 515 282
7 3 5 1 3 3 6
8 16 19 6 11 11 10
: 18 22 12 13 16 11
1 6 5 5 IO 10 4
. 1 4 1 1 2
0 35 36 11 7 7 6
2 6 2 3
730 578 424 151 286 146
16 11 10 8 2 5
17143 11481 8573 8171 7345 5713

S

SNTATINA	CONSTR	NOLION	TATO NT	T NOT	SETTINUO	, 1960-	777	NUMBER	OF APA	RTMENTS	& DUPI	EX UNI	ល់
COUNTY	1972	1971	1970	1969	1968	1967	1966	1965	1964	1963	1962	1961	1960
Adams	4199	1970	1859	1093	550	321	64	125	132	253	579	1080	311
Arapahoe	7287	4676	1789	1064	462	187	6	93	582	487	721	1442	822
Boulder	1965	2722	964	987	1579	966	680	126	190	602	397	568	235
Cheyenne													
Clear Creek	69					7							
Denver	7153	6680	4310	4573	3705	2414	3602	1777	1898	2064	2052	3787	2375
Douglas	06	7	20	25		4		4	N		7	2	
Elbert									.*				a An ¹ an A
Gilpin			-										
Jefferson	6548	3825	1595	66	782	324	194	333	164	526	1194	2845	1430
Kit Carson						2	m	Ŋ	4		7		
Larimer	1267	1113	576	527	706	423	166	1004	562	211	83	148	168
Lincoln													
Logan	58	4			4		31	56	24				Ŋ
Morgan	34			89	11	٢	14	ω		ω	7		4
Park													
Phillips													
Sedgwick		53										2	
Teller	57							14					
Washington										7			
Weld	1166	1393	507	148	26	145	31	87	158	264	30	146	131
Yuma	28	7					50		7	14			
TOTALS	29921	22440	11620	9503	7825	4795	4244	3632	3718	4431	5062	10020	5481

è

REPUBLICAN RIVER

The Republican River Basin in Eastern Colorado covers 5,226,000 acres. Of this area 4,690,000 acres are in farm and ranch land with 86,000 acres under irrigation and 4,604,000 acres of dry land as reported in the 1964 Agricultural Census.

This area is relatively dry and the surface streams, many of which are intermittent, provide only enough water for some lands adjacent thereto. The normal precipitation in this area is about 17.1 inches of which 13.6 inches or 80 percent falls during the April through September period. This year November 1972 through October 1973 the precipitation was well above normal. Precipitation at Wray, Colorado was indicative of the area. That station recorded approximately 137 percent of normal with particularly heavy amounts in July and September.

During the past two decades many wells have been drilled in the designated ground water basins in the tributary area of the Republican River. Agricultural production has been greatly expanded as a result. Since these wells are in designated ground water basins they are not subject to the regulations applicable to wells drawing their supplies from the tributary alluvium. Several farmers having had wells in the so called tributary alluvium areas have moved to the designated basin areas to escape what they feel are the over restrictive regulation on ground water use. The greatest impact of groundwater development has been in the Burlington area where there is a thriving agricultural economy based mainly on irrigated row crops. The water in this area is being mined from the Ogallala Formation at the rate of 40 percent depletion in twentyfive years. The prospect of recharging this aquifer is in considerable doubt at this time. Consequently, it is unlikely that this high plains area will experience any major industrial or population change such as that in the areas closer to the mountains.

LARAMIE RIVER

The Laramie River Basin in North Central Colorado contains 258,000 acres of which 4,800 acres are irrigated and 15,000 acres are nonirrigated ranch land according to the 1964 Agricultural Census.

This basin is a mountain valley with the principal water use being for meadow irrigation and livestock purposes. There are no municipalities or villages in this basin so the domestic uses are minimal.

Under a Supreme Court decree the water in the Laramie Basin is allocated volumetrically. The irrigated acreage of each ranch has been determined and 6.0887 day second feet per acre allotted for the season of which only .3715 day second feet may be used after July 31. Further, the above mentioned decree provides for transbasin diversions of up to 19,875 acre feet annually.

The spring snow pack on the Laramie watershed was exceptionally good and was followed by reasonably good precipitation throughout the irrigation season with a result that there was more than adequate water all season to meet the irrigation needs. The full 19,875 acre feet were diverted into Water District No. 3 under transbasin rights and the meadowlands on the Laramie within Colorado diverted 19,970 acre feet of their 29,500 acre feet allocation.

The Laramie River Basin is becoming increasingly popular as a recreation area, particularly as related to fishing. Some changes of ownership to recreation interests have occurred and more are anticipated although the water use is expected to remain quite stable. The changes in ownership appear to be more concerned with control of fishing rights and public access now than in the past. Some plans are being made for subdivision development with wells as the source of domestic water. Because of the terms of the Laramie River agreement some doubt exists as to the propriety of using either surface or underground water for municipal type use.

II. PERSONNEL

There have been quite a few changes in the division staff this year. We have three new faces in the Greeley Office, Ben, Bev and Bob. Ben Saunders joined us as a 1042 Water Commissioner in June following the vacancy left by Wes Hayman when Wes returned to Fairplay as a deputy water commissioner. Beverly Thomas came to us in August to assist in the secretarial duties. Bob Cooper came to work for Division 1 in December of '72 as an Engineering and Physical Science Trainee (E & PST) in the Denver Office. He began dividing his time between Denver and Greeley in September.

Three additional E & PST positions were filled in our Denver hydrographic section during the year. Two of these men, Steve Vandiver and Larry Sanders, worked for a short time in Denver, then were transferred to Pueblo and Alamosa respectively. The third position was filled by Doug Walcher who has worked as an engineering technician for several summers. We also had two new engineering technicians in the Denver Office this past summer. They were Richard Saterdal and Jerome Mallon. George Sievers returned to work in the Greeley Office again this summer as an engineering technician. Jay Bishop terminated his employment with the State as an engineering technician in June.

Bruce Smith, a UNC student, went to work in Water District 3 as deputy water commissioner. He will be spending most of the winter traveling in Europe.

We were all saddened by the passing away of Art Wenz, Water Commissioner in District 23, in August.

The resulting vacancy was filled by Wes Hayman. Ron Roberts then went to work as deputy water commissioner to fill the vacancy left by the promotion of Wes.

Dean Thompson retired on July 31st. We understand he is having a great time.

The water commissioner positions in Water Districts 1, 2, 4, 8 and 64 were reclassified from W.C. 11 to W.C. 111 during the year as a result of the increasing complexities of administration resulting from subdivision growth, underground and surface water integration, etc.

V	VATER DIST.	CLASSIFIC POSITION OC G	ATION t. 31, rade s	1973 Step	DATE OF LAST STEP CHANGE	MONTHS WORKED	1972 - 173 BUDGETED	MON PER. VEH	TTHS [. STATE VEH.
Wilkinson i R. Clark		WRE IV WRE III	57	6 7	7-73 10-70	12	12	1,006	21,789
:ny wankelman :t Samples Meehl	7 7	Sr.CLK.Steno. WC III WC III	35 35 35 35	م م م	3-73 4-72 1-69	111	12 12 12	14,653	24,369
Neutze 1 Blewitt 14 Dalmer	וראיליני	WC III WC III WC III	35 35 31	שטחי	7-73 12-68 12-69	1225	1 2 2 2	4,957 11,411 10,739	10,980
as Platt n Davison clavton	0 ~ 0 ~ 0	WC II WC II WC III	1 N N N N N N N N N N N N N N N N N N N	0 N O N	11-71			15,472 15,472 10,082	
n Van Gorden ur Wenz Les W. Hayman Les W. Havman	5 5 7 3 7 3 7 3	WC I WC I WC I (1042) DWC	27 - 21 21	ი 1 പ ი	7-70 8-72 -	12 2 2 4	12 0 21	12,020 10,456	
les W. Hayman iam Gleason dore Fisher rt Littler	23 48 49-65 64	WC I WC I WC I	27 27 35	ダフタフ	6-73 10-69 11-71 7-70	12 3 [.]	1 7 7 V	10,668 5,763 2,784 15,777	2,577
ld Brazelton to A. Brunelli ne C. Heit e J. Smith	, H004	WC I (1042) DWC DWC DWC DWC	221221	- 11 0 th 10 -	9-73 9-73 7-70 5-73 5-73	11 9	10 N O N O	2,210 2,210 6,942 10,558 6,022	1,165
st L. Ward T. Noonen L Roberts	1 48 39 8 6 2 4 1 48 39	DWC DWC DWC DWC	1222222	チャフュュー	6-73 6-73 5-72 9-73 4-71		9777 M	4,069 4,069 11,619 2,239 1,390	
Thompson dore Bell Liesman rt E. Cooper rly Thomas		WRE II WRE I WRE II WRE I WRE I Int.Clk.Typ.	- 43 12	I 4 0 1 1	7-64 7-73 7-73 1-73 9-73	2 1 1 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2	- - -	7,801 11,850 16,881 11,877

		MONTHS ER. VEH. STATE VEH.			6-29-73 Ouit	~~2,614			37,194	•		
		1972 - 173 BUDGETED P:	, , ,	12	ł	m	12)	12	ر ۳	Э (12	<u>ر</u>
		MONTHS WORKED	Ľ	12	ω	m	Ŋ	12	m	'n	1.5	ч
		DATE OF LAST STEP CHANGE	۲۳۳۲ ۲۳۲	7-73		7-70	2-73	7-73	6-73	6-73		
)		ON L, 1973 e Step	-	4	•	г	Ч	Ч	г	Ч	Ч	ı
		CATI ct.31 Grad	70	43	ſ	23	39	39	. 23	. 23	3 9	ı
		CLASSIF] POSITION OC	WC T (1042)	WRE I	Engr. Tech.	Engr. Tech.	Engr. & PST	Engr. & PST	Engr. Tech.	Engr. Tech.	Engr. & PST	WRE I
	(CONTINUED)	WATER DIST.	Saunders	ha		evers	iver	alcher, Jr.	erdal	llon, Jr.	rs	
	PERSONNEL	NAME	Benjamin G.;	Ahmad Andes	Jay Bishop	George E. Si	Steven Vand	Raymore O. W.	Richard Sat	Jerome A. Ma	Larry Sande	Jay Blum

III. WATER SUPPLY

A. SNOW PACK

Snow pack in the South Platte Drainage Area was generally below normal the 1st of April. The Cache la Poudre was slightly better than normal at 106 percent and the St. Vrain the poorest with only 73 percent of the 15 year average. Soil conditions were good due to an abnormal amount of low elevation snow and carryover storage in area reservoirs was good.

April precipitation continued to improve the water potential for the coming season, resulting in the figures tabulated below on May 1st.

NO.	OF COURSES	This Year's S Percenta	now Water as uge of
WATERSHED	AVERAGED	Last Year	Average+
Big Thompson	4	104	109
Boulder	3	159	132
Cache la Poudre	8	144	166
Clear Creek	6	131	106
Saint Vrain	3	183	148
South Platte	· 3	100	122

SUMMARY OF SNOW MEASUREMENTS (MAY 1st)

SUMMARY OF SOIL MOISTURE (MAY 1st)

		This Year's Soil	Moisture
	NO.OF	As Percentage	of
WATERSHED	STATIONS	Last Year	Average+
Big Thompson	2	86	83
Boulder	1	87	118
Cache la Poudr	e 2	71	75
Clear Creek	2	91	94
Saint Vrain	2	77	95
South Platte	2	87	87

+1953 - 1967

III. WATER SUPPLY

B. PRECIPITATION - SUMMER

The season started off with very heavy precipitation in early May which resulted in widespread flooding in the division and extensive damage. This is covered in more detail under "Flooding".

Among other storms during the season were the following:

- 1) June 29 1.30" rain and hail Fort Morgan Severe damage to crops.
- 2) July 19 Heavy rain and hail Fort Morgan, Brush, Hillrose - heavy crop damage.
- 3) July 21 Hail South Park.
- July 22 Heavy hail Greeley to Fort
 Morgan quite a bit standing on Highway
 34 in afternoon.
- 5) July 24 Heavy hail Brighton, Masters, Wiggins, Byers - Considerable crop damage.
- 6) September 9 Heavy rain and hail, up to 8" in some areas - Brush area - San Arroyo Reservoir filled and started causing problems; Bijou Creek flooded.
- 7) October 11 12" to 13" snow Sterling, Brush, Fort Morgan - quite a bit of tree damage.

The months of June and August were quite dry in Division I, but surface water was available to fulfill crop needs. The remaining months of the irrigation season had more than adequate precipitation as shown in the accompanying table.

	APF	II	MAY		JUNE		IUC	X	AUGUS	υT	SEPTE	MBER	
STATION	PRECIP.	\$ OF NORMAL	PRECIP.	\$ OF NORMAL	PRECIP.	& OF NORMAL	PRECIP.	S OF NORMAL	PRECI P.	\$ OF NORMAL	PRECIP.	\$ OF NORMAL	<pre>% NORMAL FOR WATER YR 10-1 9-30</pre>
BOULDER	4.42	244	4.88	155	1.75	87	1.14	58	0.32	25	2.31		
CHEESMAN	4.34	293	5.36	267	0.74	56	1.64	62	0.38	16	1.31	97	135
CHEYENNE WELLS	0.65	61	2.80		0.87		2.33	75	0.56		4.74		
DENVER WB AP	3.73	242	5.06	187	0.20	12	2.47	115	1.28	108	2.85	228	145
DENVER WB CITY	2.83	230	5.10		0.25		2.47	131	0.36		2.04		
FT. COLLINS	2.72	174	1.63	56	0.23	12	2.56	172	0.18	14	1.73	142	87
FT. MORGAN	2.32	244	2.28	86	1.22	52	1.96	81	0.56	41	4.67		
GREELEY	2.66	244	1.92		0.43	23	1.60	120	0.12	6	2.16	164	
KASSLER	4.21	231	7.96		0.39	22	1.57	87	0.10	2	3.12	205	
LAKEWOOD	3.64	226	5,88	224	2.27	132	3,82	212	0.92	72	2.01	153	184
LNOMENOL	4.76	366	4.01	155	0*06	4	0.57	42	0.18		2.49	208	
PARKER	1.19	117	6.62	293	0.14		0.85	43	1.01	65	3.46	336	
RED FEATHER LAKE	2.96	182	2.07	82	0.16	ω	4.28	179	0.97	45	2.50		
STERLING	2.12	206	2.17	73	2.17	77	2.57	81	0.29		3.88	373	
WRAY	2.10	159	1.58	56	1.96	56	8.13	275	0.47	19	3.33	243	137
* AVERAGES AR	E FOR TH	E 15 YEA	R PERIOD	1953 - 1	967 AND	ARE COMP	UTED BY 1	HE KANSA	S CITY RJ	VER FORE	CAST CENT	ER	14

₽T

PRECIPITATION

в.

WATER SUPPLY

.III.

III. WATER SUPPLY

B. HAIL SUPPRESSION

The National Hail Research Experiment with headquarters at NCAR (National Center for Atmospheric Research) Boulder, Colorado continues.

The Hail Suppression Research is of special interest. The method proposed for suppressing the occurrence of large damaging hailstones is based on a hypothesis which, though reasonable, has little direct experimental evidence at the present time to support it.

This hypothesis is that the average size of the hailstones produced by the storm depends upon the concentration of freezing nuclei in the air feeding the storm. When these are comparatively numerous, the ensuing competition for the available supercooled water ensures the production of a large number of small hailstones. When the freezing nucleus population is small, there results a small number of large hailstones. This suggests that the way to achieve the suppression of large hailstones is to augment the naturally occurring freezing nuclei by the introduction of artificial nuclei, such as silver iodide. This procedure has been followed in the 1972 and 1973 summer field operations. There have been a total of twenty-eight (28) days on which samples have been collected over these two seasons.

It is felt that the knowledge and understanding of the microphysics and dynamics of thunderstorms will be advanced, as a result of the large amount of new observatorial data being gathered. It is still too early, however, to discuss the efficiency of cloud seeding for decreasing damages caused by hail, according to NHRE personnel.

III. WATER SUPPLY

C. FLOODS

The first flood of the year resulted from the failure of the Latham Reservoir Dam on April 12th. This flood did considerable damage to the town of Kersey and surrounding farm land. It was declared a national disaster by the President. This made those who suffured damage eligible for small loans and grants which were made available through the OEP (Office of Economic Preparedness). For more information on the dam failure see section VI A and XI B of this report.

On the 6th and 7th days of May, areas tributary to the South Platte experienced very heavy precipitation. The flooding which followed this rainfall was quite general throughout Division I. The mountains west of Denver also received heavy rain, which brought down much of the low lying snow. Extensive damage was experienced along the main stem of the South Platte. A number of bridges, ditch diversion works and small dams were victims of the high water. Substantial crop damage was also sustained in the flood plain of the South Platte and its tributaries.

The following specific instances of dam failures or damage resulting from flood water were brought to the attention of Division personnel during the period of approximately May 6-10:

1) Small dam on West Creek above Deckers failed.

2) Bijou Canal and Empire Inlet damaged by waters in Lost Creek (for most part no clearly defined channel exists in Lower Lost Creek) along with a large amount of farm land.

3) Ireland No. 5 and several small dams on Boxelder Creek failed and ran down into Klug Reservoir. Klug held nicely, passing a very high flow through the spillway.

4) Horse Creek Reservoir Dam appeared to be in danger for a while, but held.

5) South Platte gaging stations washed out at Fort Lupton and Kersey.

6) Large number of structures damaged along South Platte in Weld County. Damage estimate tabulation included in Table I. Peak and annual flows are shown for some stations in Table II.

Table III shows the period above flood stage for some South Platte stations.

The South Platte remained at or near flood stage from May 6th until about June 20th. These high flows resulted in record high peak and annual flow figures at Kersey. The peak was 34,500 cubic feet per second and occurred about 4 a.m. on May 8th. This compared with a previous record peak of 31,000 cubic feet per second on June 7, 1921. The total flow this year (October 1, 1972-September 30, 1973) was 1,585,000 acre feet and compared with a total flow of 1,203,400 acre feet in the 1921 water year. A number of other stations in Division I also had record peaks and flows this year.

Flood water from Lost Creek and Bijou Creek hit the South Platte well ahead of the Denver crest. This resulted in considerably less flooding below the mouth of the Bijou than may have been true otherwise.

San Arroya Reservoir (aka Rosener or Williams and McCreery) which is normally dry was discovered with several thousand acre feet following heavy precipitation on September 8th. See November 1st <u>Water News</u> for more details. (Section XI A)

TABLE I

DAMAGE ESTIMATES FOR

DITCH AND IRRIGATION COMPANIES IN

WELD COUNTY

COUNTY	ESTIMATE	PERSON TO CALL
Bijou Irrigation Co.	\$ 22,000.00	Jim Pugh 867-2222
Empire (Part of Bijou)	25,000.00	Jim Pugh 867-2222
Jackson Lake Intake	80,000.00	Cecil Osborne 867-6586
Illinois Ditch Co.	5,000.00	George Allard 353-6187
Riverside Irrigation District	50,000.00	Cecil Osborne 867-6586
Weldon Valley Ditch Co.	25,000.00	Cecil Osborne 867-6586
Farmer's Independent Ditch Co.	5,000.00	Berle Atkinson 737-2307
Farmer's Reservoir and Irrigation Co.	20,000.00	Mel Sarchet 536-4671
Godfrey Ditch Company	9,000.00	Jerome Loeffler 284-6430
Henrylyn Irrigation Dist.	60,000.00	Ralph Rouse 536-4702
Lower Latham Ditch Company	10,000.00	Victor Klein 352-5727
Lupton Bottom Ditch Co.	75,000.00*	Ray Sarchet 785-2347
Meadow Island #1 Irrigation Co.	10,000.00	William Mayer 785-2356
Meadow Island #2 Irrigation Co.	90,000.00	Johnnie Ulrich 785-2314
Platte Valley Irrigation Co.	20,000.00	Delbert Shable 284-5486
Union Ditch Co.	50,000.00	John Sitzman 353-0307
Western Mutual Ditch Co.	15,000.00	Edward Fritzler 737-2256
Delta Ditch Co.	75,000.00	Robert Davis 353-0701
Platteville Irrigation and Milling Company	40,000.00	John Kunzman 857-2135
Beeman Ditch	200,000.00	Ben Houston 785-2408

TOTAL ESTIMATED DAMAGE

\$886,000.00

*Estimate made from aerial observation

TABLE II

C. FLOODS (CONTINUED)

TII.

The following tabulation shows the annual flows at the major control gaging stations in the Division and the highest daily flow during that period. Note that some of the flows are for the Water Year, October 1 - September 30, and others are for the Irrigation Year, November 1 - October 31. Most figures are preliminary reports and subject to revision.

INSTANTANEOUS PEAK FLOWS DATE C.F.S.		5-22 3,450	5-6 1,360	5-6 3,750	5-7 18,500	6-14 2,210	5-6 4,700	5-6 24,000		5-6 430	5-6 338	6-11 1,500	5-7 5,620	6-27 972	5-7 1,600	6-14 3,780	5-23 1,971	5-8 34,500	5-9 20,470	5-11 22,040	
IRRIGATION YEAR 373 NOV. 1,1972 to NOV. 1,1973												104,000	233,500	72,030	111,800	323,500	162,300	1,626,000	1,085,000	1,149,000	
MATER YEAR 1,1972 to OCT. 1,19	179,000	468,900	73,250	96,160	590,800	193,500	115,000	766,700		42,170	7,480	103,900	230,300	72,420	109,200	322,200	156,400	1,585,000	1,026,000	1,069,000	
STATION OCT.	North Fork at South Platte	South Platte at South Platte	Bear Creek at Morrison	Bear Creek at Sheridan	South Platte at Denver	Clear Creek at Golden	Clear Creek at Derby	South Platte at Henderson	Middle Boulder Creek at Ordell	South Boulder Creek at Eldorado	Coal Creek at Plainview	St. Vrain Creek at Lyons	St. Vrain Creek at Platteville	Big Thompson at Canyon	Big Thompson at La Salle	Cache la Poudre at Canyon	Cache la Poudre at Greeley	South Platte at Kersey	South Platte at Balsac	South Platte at Julesburg	

TABLE III

PERIOD ABOVE FLOOD STAGE SOUTH PLATTE RIVER

LOCATION	FLOOD STAGE*	<u>с</u> ,	ERIOD ABO	VEFL	0 0 D S	TAGE
		TIME	DATE		TIME	DATE
Kersey	00.6	1230	May 7 '73 May 22 '73 June 15 '73	t t t t o o o		May 16 '73 May 25 '73 June 17 '73
Weldona	8.00	1630 0500	May 7 173 June 15 173	t t 0 0	2400 2000	May 28 73 June 17 73
Balzac	00.6	1400	May 7 173	to	1800	May 11 '73
Julesburg	8.00	0100	May 10 173	to	0800	May 29 173
	רובייכאל ביול הכול ליייייט TT			•		

*Flood stage G.H. provided by Marshall Grace, U. S. Weather Service

III. WATER SUPPLY

D. GENERAL COMMENTS

The water supply was good throughout the irrigation season this year. There was some call for water from Districts 1 and 64 in July, but that demand was pulled off for the season on July 21st. After that there was a little demand from Districts 2 and 8, but generally for only short periods of time. As a result of the light demand, water pumped by wells whose effect reached the stream this year did not injure the stream significantly.

Another indication of the adequacy of the water supply was the light demand on Colorado Big Thompson Project water. The Northern Colorado Water Conservancy District authorized 70% delivery on CBT water this year. Of that amount, only 76% was actually called for and delivered.

Carry-over storage in area reservoirs was considerably above normal this fall. This is also an indication of an adequate water supply this season, however, this is a blessing that causes some concern. A fairly substantial number of the reservoirs in this area were designed for summer storage only. When a large amount of water is kept in them all year it tends to saturate and weaken the dikes.

The amount of precipitation and snow pack are covered elsewhere in this report.

D. GENERAL

A water budget is herewith submitted for the 1973 irrigation year. Due to the number of variables involved and the unavail-ability of complete and accurate data, the figures herein shown are, in many instances, estimates or approximations at best. Figures are omitted if there is no reasonable basis for making an estimate.

WATER BUDGET

RUNOFF @ STATELINE OR MOUTH	
ESTIMATED OTHER DEPLETIONS	
OTHER DIVERSIONS	
ESTIMATED DEPLETION BY MUNICI- PALITIES	
MUNICIPAL DIVERSIONS	
ESTIMATED DEPLETION BY IRRIGATION	
IRRI GATION DIVERSIONS	
TOTAL SUPPLY	
YIELD OF DRAINAGE AREA	
INFLOW INTO DISTRICT	
DIST.	8-8 8-8 64 64 65 65

DIVERSIONS USED FOR BUDGET PURPOSES INCLUDE: Diversions from Stream Sources
 Diversions from TM Sources
 Diversions from Storage Sources
 Diversions from Project Sources
 Releases from in system facili-

ties

III. WATER SUPPLY

E. UNDERGROUND WATER

The administration of tributary alluvial wells continues to be a problem that absorbs much of the time and energy of Division I and state office personnel. It is also a subject of concern to Division I well owners. Proceedings during June, October, and November, 1973 in the Greeley Water Court concerning this matter have not, as yet, served to answer the two major questions in this dilemma. These questions are:

- 1) How can senior surface divertors be protected against the stream depletions caused by well pumping?
- 2) How can the economy that has built up as a result of the digging of wells be protected?

It is the feeling of the Division of Water Resources that this conflict can only be resolved by some method of water management. This can only happen if all parties to the conflict work together toward its resolution.

Work continues on a district by district well inventory in the Ground Water Investigations Section. The inventory for Water District No. 6 has been completed. Work on Districts 5 and 7 is now in progress, with Districts 3 and 4 to follow in the next year or two. This inventory shows the formation from which water is taken and the use to which it is put. Work also continues in the Investigation Section on a study of the main stem of the South Platte. This inventory began at the state line near Julesburg and at this point in time has worked up to Morgan County. These studies will help us to determine the total amount of water in storage in the various aquifers.

		.	TRANSMO	UNTAIN DIVERSIONS		x				
		8	TOBER 1, 19	72 - SEPTEMBER 30, 1973	-					
DIVERTING STRUCTURE	SOURCE	SOURCE	RECEIVING DISTRICT	CONTROLLING OWNERSHIP	LST DAY WATER DIVERTED	LAST WATER DIVER	DAY 1	10. OF DAYS 1ATER DIVERTED	AVG.AMT. DIVERTED C.F.S.	TOTAL AMOUNT DIVERTED AC.FT.
Wilson Supply Ditch Deadman Ditch	Sand & Deadman Creek Deadman Creek	48 48	м м	Divide Canal & Res. Co. Divide Canal & Res. Co.	June 8 June 20	July July	27 27	43 38	16 6.2	1380 471
(Incl. in Wilson Supply)				-						c
Bob Creek Ditch	Nunn Creek	48	ი (City of Greeley						
Columbine Ditch	Deadman Creek	48	Γ1 (City of Greeley	06M	cont.	ſ	۶3 ع		16690
Laramie Poudre Tunnel	Laramie River	48 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	້	water Supply & Storage	Tiay oc.	Julu	2 D C	00	42	2680
Skyline Ditch	West Fork Laramie River	27 7	ົຕ	water suppry a storage water supply a storage	June 23	Aud	, o	45	4.6	407
Cameron Pass Ditch	Michican Kiver Wichican Diner	47		North Poudre Irr. Co.	June 4	Sept	9	82	12	1890
michigan Ditch Grand Biver Ditch	Colorado River	51.	ר מ ג	Water Supply & Storage	June 2	Aug	24	69	108	14760
GLANG NIVOL DICON	Colorado River	51	4	City of Loveland		NO REPO	RT-RE	CORDER NOT IN	NSTALLED	0
Alva B. Adams Tunnel	Colorado River	51	4	U.S.B.RN.C.C.D.	Oct]	Sept	30	343	339	230700
Moffat Tunnel	Fraser River	51	Q	City of Denver	Oct]	Sept	30	345	49	33170
Jones Pass Tunnel	Williams Fork	51	9	City of Denver	Oct]	Мау	ω	220	2.2	970
AKA August P. Gumlick	(Incl. in Moffat Tunne	1)	·							•
or Williams Fork Tunnel		5	2	Farmers Res. & Highline	e June 18	Sept	ი	87	4.5	784
beithoud fass ditten Widler Thinnel	Montezima Creek	30 1	7	Hebert Young	July 24	Aug	10	18	1.6	55
viutei luunei Roberts Tunnel	Blue River	36	23-8	City of Denver	Dec 7	Jan	21	52	22	2250
					Apr 11	Apr	16		•	0
Boreas Pass Ditch	Indiana Creek	36	23	City of Aurora						0
Hoosier Pass Tunnel	Blue River	36	23	City of Colo. Springs	May 21	Sept	30	123	53	01/5
Aurora Homestake	Homestake Creek	37	23	City of Aurora	Nov 16	Nov	25	109	On	6480
					Jan 3	Jan	18			
					Feb 23	Mar	20			
					Julv 6	Sept	0 M			

ANNUAL REPORT COLORADO-BIG THOMPSON PROJECT 1973

Water supply outlook was increased with above average precipitation during January in the mountain tributaries.

Carry-over reservoir storage was above normal and early forecasts indicated above average run-off.

Lower Latham Reservoir failed April 12, 1973. The following day, surveys were conducted three to four miles below the failure. The results of these surveys indicated a peak flow of 12,000 to 13,000 cubic feet per second at that point.

Normal or better runoff was experienced at all stations resulting in subnormal irrigation deliveries and much surplus water.

STREAM FLOWS (1973 Water Year)

STATION

St. Vrain at Lyons	103,900.	acre-ft.
Big Thompson at Canyon	*72,420.	
Cache La Poudre at Canyon	322,250.	
St. Vrain at Mouth	230,300.	
Big Thompson at Mouth	72,420.	
South Platte at Kersey	1,585,000.	
South Platte at Balzac	1,026,000.	
South Platte at Julesburg	1,069,000.	

Above figures are preliminary and subject to revision.

*Big Thompson "Skim" and Dille Tunnel diverted above station and returned to river below station totalled 43,590 acre feet.

	ACTIVE PROJECT STORAGE	<u> </u>	
Western Slope	<u>Nov. 1, 1972</u>	Nov. 1, 1973	Diff.
Willow Creek	8,308.	7,631.	-677.
Granby	417,363.	449,640.	+32277
Total Acre Feet	425,671.	457,271.	+31600.
Eastern Slope			
Carter	48,721.	51,367.	+2.646
Horsetooth	51,402.	86,716.	+35,314.
Boulder	2,890.	6,746.	+3,856.
Total Acre Feet	103,013.	144,829.	+41,816.

DISTRIBUTION OF PROJECT WATER

			Total
Water	District	Carrier	Acre Feet
	1	Hansen Feeder Canal via Big Thompson	3,381.0
	3	Hansen Supply Canal via Cache La Poudre	63,300.2
		Direct Delivery	13,070.0
	4	Hansen Feeder Canal via Big Thompson	38,092.7
		St. Vrain Supply Canal via Little Thompson	8,083.2
		Direct Delivery	5,197.8
	5	St. Vrain Supply Canal via St. Vrain	14,588.1
		Direct Delivery	11,743.5
	6	Boulder Cr. Supply Canal via Boulder Cr.	9,570.2
		Direct Delivery	875.1
		Total to all districts, including replacement water.	167,901.8

Quota water declared available - 70% or 217,000 acre feet Replacement water - 3,487.4 acre feet

COMPARISON BETWEEN ORDERED AND ACTUAL DELIVERIES

Stream	Ordered	Delivered	Difference
Cache La Poudre	63,300.2	63,941.7	+641.5
Big Thompson	41,473.7	*41,482.0	+8.3
Little Thompson	8,083.2	8,127.2	+44.0
St. Vrain Creek	14,550.2	14,930.0	+379.8
Boulder Creek	9,570.2	9,843.2	+273.0
Turnouts	30,908.3	31,006.5	+98.2
Total Acre Feet	167,885.8	169,330.6	+1,444.8

*Deliveries less Big Thompson "Skim", Dille Tunnel diversions during 1973 irrigation season.

PROJECT GAIN AND LOSS

ESTES PARK AREA

Inflow	Nov. 1, 1972 - Nov. 1, 1973	Total Acre Feet
Alva B. Adams Tunnel	218,507.	
Wind River	1,426.	
Big Thompson River	99,281.	
Fish Creek	2,665.	
Storage Nov. 1, 1972	2,269.	

324,148

Outflow

Total Acre Feet

Estes Park Water District	165.
Town of Estes Park	396.
Estes-Foothills Canal	263,827.
Big Thompson River	60,411.
Storage Nov. 1, 1973	2,407.

327,206.

Apparent Gain 3,058. acre feet

CARTER LAKE AREA

Inflow

Estes-Foothills Canal	263,827.
Storage Pinewood, Flatiron	2,002.
Storage Carter Nov. 1, 1972	48,721.
Dille Tunnel	28,385.

Outflow

Hansen Feeder Canal	121,785.
Big Thompson River	113,602.
St. Vrain Supply Canal	46,728.
Little Thompson Water District	2,493.
Storage Carter Nov. 1, 1973	51,367.
Storage Pinewood, Flatiron	1,980.
Measured Seeps	1,834.

342.935.

339.789.

Apparent Loss 3,146. acre feet

HORSETOOTH AREA

Inflow

Hansen Feeder Canal	119,542.
Storage Nov. 1, 1972	51,402.

Outflow

Hansen Supply Canal	89,136.
Direct Delivery	13,070.
Measured Seeps	1,113.
Storage Nov. 1, 1973	87,016.

Apparent Gain 19,391. acre feet

170,944.

190,335.

Inflow

Boulder	Feeder Canal	13,450.
Storage	Nov. 1, 1972	2,890.

16,340

Outflow

Boulder	Cr. Supply Canal	13,630.
Dry Cr.	Replacement	463.
Storage	Nov. 1, 1973	6,746.

20,839.

Apparent Gain 4,499 acre feet

Summations

+3,058.
-3,146.
+19,391.
+4,499.

Total Apparent Project Gain 23,802. acre feet

OPERATION "SKIM"

Computations are based on measured sum of Big Thompson River at Estes Park, Fish Creek and Wind River to Bureau system minus Big Thompson near Estes Park.

Big Thompson "Skim" extended from May 8, 1973 until September 19, 1973.

May	June	July	August	September	Total CFS	Total Ac. Ft.
6,057	10,828	2,305	2,481	307	21,978	43,590

RIVER OPERATION

Since the 1970 irrigation season, the operating criteria on the Big Thompson River has remained virtually unchanged. This mode of water management is of great benefit to the water users, water administrators and power production. The success of this operation is primarily due to the efforts and cooperation between the bureau personnel and state representatives. Estes Park Longmont Waterdale 15.49 inchesFt. Collins12.28 inches17.16 inchesGreeley15.11 inches15.74 inches5.74 inches15.11 inches

STREAM FLOW MEASUREMENTS - 1973 WATER YEAR DIVISION OFFICE - GREELEY

Hydrographer	Streams	Canals	Mileage
T. S. Bell	149	11	11,850
R. S. Liesman	195	24	16,887
G. E. Sievers	39	12	2,376
D. E. Thompson	68	44	8,355
Totals	451	91	37,086

On July 31, 1973, Dean Thompson retired after twenty-one years of service with the State. All this time was served in Division I as a hydrographer. During his twenty-one years Dean made over six thousand current meter measurements.

Prior to working for the State, Dean had worked with the Bureau of Reclamation during the construction of the Big Thompson Project. With this background and experience, few men have understood the operation of the Big Thompson Project as he does.

George Sievers, our summer help for the past three years, was put into service as a hydrographer until school started in the fall.

It is anticipated that the hydrographic section will be at full strength when Bob Cooper transfers from the Denver Office in October.

Respectfully submitted,

Raymond S. Liesman

Raymond S. Liesman Water Resources Engineer

G.

RESERVOIR STORAGE DISTRICT NO. 1

	SOURCE	AMOUNT - A.F.		
NAME		11-1-72	<u>5-1-73</u>	10-31-73
Empire Riverside Jackson Lake Bijou No. 2 Klug No. 1 Heart Sidwell Reservoir #1 Sidwell Reservoir #2 Snyder	South Platte South Platte South Platte South Platte Box Elder Little Crow Lone Tree Creek Lone Tree Creek South Platte	8205 25523 21703 150 0 0	33992 59925 34694 230 633 291 21 61 ESTIMATE	3554 9672 14580 3150 633 150
	TOTAL	55881	129847	31739

RESERVOIR STORAGE DISTRICT NO. 2

· · · · · · · · · · · · · · · · · · ·				
	_	AMOUNT - A.F.		
NAME	SOURCE	11-1-72_	5-1-73	10-31-73
Barr-Oasis Behrns Beulah Bowles No. 1 Bowles No. 2 Brantner No. 2 Carlin Church Lower Lake Coal Ridge (Sandhill) Fulton Waste German No. 2 German No. 3 German No. 3 German No. 4 German No. 6 German No. 6 German No. 9 German No. 12 Great Western H. A. Smith Henry Horse Creek Ireland No. 1 Ireland No. 1 Ireland No. 5 J. B. Smith Karsh L. A. Dore Loloff Lord Lower Latham Marshall Mathison Maul Meek No. 1 Meek No. 1 Meek No. 2 Milton Mose Davis Lake No. 2 North Starr Olds Parson-Holmes Prospect Standley - Kinnear Thompson	South Platte South Platte South Platte South Platte Brantner Gulch South Platte Dry Creek Little Dry Creek Big Dry Creek South Platte South Platte South Platte South Platte South Platte South Platte South Platte South Platte South Platte Big Dry Creek Big Dry Creek Big Dry Creek First Creek South Platte South Platte Big Dry Creek South Platte South Platte Big Dry Creek Big Dry Creek	$ \begin{array}{c} 12004 \\ 17 \\ 0 \\ 6 \\ 25 \\ 11 \\ 0 \\ 120 \\ 46 \\ 18 \\ 21 \\ 48 \\ 16 \\ 80 \\ 2247 \\ 20 \\ 1641 \\ 100 \\ 51 \\ 100 \\ 384 \\ 4749 \\ 32 \\ 15 \\ 338 \\ 10 \\ 13284 \\ 100 \\ 60 \\ 0 \\ 995 \\ 16167 \\ 200 \\ 5280 \\ 100 \\ 5280 \\ 100 \\ 5280 \\ 100 \\ 5280 \\ 100 \\ 5280 \\ 100 \\ 5280 \\ 100 \\ 5280 \\ 100 \\ 5280 \\ 100 \\ 5280 \\ 100 \\ 5280 \\ 100 \\ 5280 \\ 100 \\ 5280 \\ 100 \\ 5280 \\ 100 \\ 5280 \\ 100 \\ 5280 \\ 100 \\ 5280 \\ 100 \\ 5280 \\ 100 \\ 5280 \\ 100 \\ 5280 \\ 100 \\$	$\begin{array}{c} 27686\\ 40\\ 0\\ 0\\ 20\\ 11\\ 0\\ 120\\ 410\\ 400\\ 55\\ 3\\ 45\\ 16\\ 54\\ 18\\ 92\\ 2417\\ 20\\ 0\\ 14010\\ 118\\ 80\\ 135\\ 10\\ 332\\ 145\\ 737\\ 34\\ 32\\ 9\\ 332\\ 145\\ 737\\ 34\\ 32\\ 9\\ 332\\ 145\\ 737\\ 34\\ 32\\ 9\\ 332\\ 145\\ 737\\ 34\\ 32\\ 9\\ 332\\ 145\\ 737\\ 34\\ 32\\ 9\\ 332\\ 145\\ 737\\ 34\\ 32\\ 9\\ 331\\ 0\\ 18122\\ 40\\ 90\\ 0\\ 5610\\ 31049\\ 200\\ \end{array}$	$ \begin{array}{c} 20110\\ 20\\ 0\\ 0\\ 5\\ 45\\ 11\\ 0\\ 120\\ 565\\ 262\\ 72\\ 2\\ 30\\ 12\\ 54\\ 18\\ 88\\ 2686\\ 20\\ 0\\ 3234\\ 0\\ 0\\ 3234\\ 0\\ 0\\ 140\\ 374\\ 145\\ 268\\ 0\\ 324\\ 0\\ 0\\ 140\\ 374\\ 145\\ 268\\ 0\\ 32\\ 10\\ 25\\ 25\\ 5\\ 3113\\ 40\\ 110\\ 0\\ 25\\ 25\\ 5\\ 3113\\ 40\\ 110\\ 0\\ 25\\ 25\\ 5\\ 3113\\ 40\\ 110\\ 0\\ 25\\ 25\\ 5\\ 3113\\ 40\\ 110\\ 0\\ 25\\ 25\\ 5\\ 3113\\ 40\\ 110\\ 0\\ 25\\ 25\\ 5\\ 3113\\ 40\\ 110\\ 0\\ 25\\ 25\\ 5\\ 3113\\ 40\\ 110\\ 0\\ 25\\ 25\\ 5\\ 3113\\ 40\\ 110\\ 0\\ 25\\ 25\\ 5\\ 3113\\ 40\\ 110\\ 0\\ 25\\ 25\\ 5\\ 3113\\ 40\\ 110\\ 0\\ 25\\ 25\\ 5\\ 3113\\ 40\\ 110\\ 0\\ 25\\ 25\\ 5\\ 3113\\ 40\\ 110\\ 0\\ 25\\ 25\\ 5\\ 3113\\ 40\\ 110\\ 0\\ 25\\ 25\\ 5\\ 3113\\ 40\\ 110\\ 0\\ 24617\\ 200\\ 24610$
	TOTAL	53804	102203	58581

G.

.

RESERVOIR STORAGE DISTRICT NO. 3

	_	AMOUNT - A.F.		
NAME	SOURCE	11 - 1-72	<u>5-1-73</u>	10-31-73
NAME Barnes Meadow Big Beaver Black Hollow Cache la Poudre Chambers Clarks Lake Claymore Cobb Comanche Curtis Douglas Dowdy Fossil Creek Gray No. 3 Halligan Horsetooth Indian Creek Joe Wright Kluver Larimer & Weld Lindenmeir Long Draw Long Pond North Gray N. Poudre No. 2 N. Poudre No. 3 N. Poudre No. 3 N. Poudre No. 4 N. Poudre No. 4 N. Poudre No. 5 N. Poudre No. 5 N. Poudre No. 15 Park Creek Peterson Portner Res. No. 8 Res. No. 8 Annex Richards Rocky Ridge	SOURCE Barnes Meadow Big Beaver Creek Cache la Poudre Cache la Poudre Wright, Trap & Fall N Fk Cache la Poudre Cache la Poudre Cache la Poudre Big Beaver Creek Cache la Poudre Cache la Poudre Dine Creek Cache la Poudre Boxelder Creek N Fk Cache la Poudre Colo. Big Thompson N Fk Cache la Poudre Cache la Poudre Cache la Poudre Cache la Poudre Cache la Poudre Cache la Poudre Cache la Poudre N Fk Cache la Poudre	11-1-72 0 0 4171 5455 Cks 2192 690 752 21000 229 838 7970 784 5837 9 1014 59726 1339 0 810 4193 485 1174 2890 132 2286 1403 332 3054 4222 0 74 7582 2658 698 3243	5-1-73 0 4501 9342 4501 438 840 20840 430 814 8120 784 10295 121 6428 129995 126 6428 129995 1169 0 880 6420 467 1412 3009 248 3231 2513 332 4133 6224 4304 6194 26 70 8070 2783 719 3711	$ \begin{array}{r} 10-31-73 \\ 1232 \\ 0 \\ 4376 \\ 6160 \\ 1991 \\ 0 \\ 684 \\ 19450 \\ 172 \\ 886 \\ 6453 \\ 818 \\ 7307 \\ 11 \\ 0 \\ 95723 \\ 1814 \\ 0 \\ 95723 \\ 1814 \\ 0 \\ 95723 \\ 1814 \\ 0 \\ 907 \\ 3883 \\ 495 \\ 0 \\ 2814 \\ 135 \\ 2175 \\ 1033 \\ 810 \\ 4331 \\ 5013 \\ 4192 \\ 7063 \\ 0 \\ 66 \\ 8040 \\ 2855 \\ 188 \\ 3711 \end{array} $
Seeley South Gray Twin Lake	Boxelder Creek Trib of Pennock	611 165 0	996 725 0	961 237 0
warren Lake	cache la Poudre	1084 ·	900	1192
RESERVOIR STORAGE - DISTRICT NO. 3 (Continued)

	AMOUNT - A.F.		
NAME SOURCE	11-1-72	5-1-73	10-31-73
W S & S No. 3 Cache la Poudre W S & S No. 4 Cache la Poudre Windsor Lake Cache la Poudre Windsor Reservoir Cache la Poudre Wood Lake Cache la Poudre Worster Sheep Creek	3821 610 900 9805 1432 71	3920 704 917 15701 2201 500	4140 0 8852 1946 91
TOTAL	178729	284068	216522

RESERVOIR STORAGE DISTRICT NO. 4

		A	MOUNT - A.	F
NAME	SOURCE	11-1-72	5-1-73	10-31-73
Boulder-Larimer (Ish) Boyd Lake Carter Cemetary Donath Fairport Geo. Rist (Buckingham) Hertha Horseshoe Lake Loveland Lawn Lake Lone Tree Lon Hagler Loveland Lake Mariano Oklahoma Rist Benson Ryan Gulch South Side Welsh	Little Thompson Big Thompson Colo. Big Thomps Big Thompson Big Thompson Big Thompson Big Thompson Dry Creek Big Thompson Big Thompson	2425 36351 308 437 329 409 663 7170 12058 0 5994 5109 1502 3907 308 421 589 448 5240	$\begin{array}{r} 3536\\ 37682\\ 106058\\ 202\\ 1077\\ 325\\ 345\\ 1074\\ 6274\\ 11354\\ 0\\ 8869\\ 5168\\ 1545\\ 5691\\ 245\\ 394\\ 812\\ 548\\ 5322\end{array}$	2204 45619 54673 226 419 213 350 559 4422 11540 817 8139 5128 1310 2326 347 416 602 411 6328
	TOTAL	135067	196521	146049

RESERVOIR STORAGE DISTRICT NO. 5

			MOUNT - A.F	•
NAME	SOURCE	11-1-72	5-1-73	10-31-73
Allen Lake	Left Hand	700		700
Akers & Tarr	St. Vrain	143	143	162
Arbucle No. 2	M. Fk. N. St. Vrain	n 966	966	966
Arbucle No. 4	S. Fk. N. St. Vrain	n 420	420	420
Ballinger	St. Vrain	10		10
Baxter	St. Vrain	170	170	182
Beaver Park	Beaver Creek	1330	1405	1246
Bellmire	St. Vrain	27	27	27
Button Rock	N. St. Vrain	13998	13998	12622
Calkins Lake	St. Vrain	125	125	-0
Clark	St. Vrain	80	80	87
Clennon	St. Vrain	80	80	120
Clover Basin	St. Vrain	570	570	570
Copeland	N. St. Vrain	70	70	20
Crystal	St. Vrain		110	130
Culver	St. Vrain		140 045	144
DIVIDE	St. Vrain	245	245	200
Conouiouro	St. VIAIII St. Urain	2022 71	5004 71	1050
Cold Lake	Ju. Viaili Toft Hand	220	288	160
Gord Lake	St Vrain	520	500	100
Hartford	Middle St Urain	100 ルフ	120	80
Havden	St Urain	38	47 11 Juli	00 210
Hewitt	St Vrain	30	20	40 2月
Highland Lake	St. Vrain	300	300	54 ДББ
Highland No.]	St. Vrain	873	873	677
Highland No. 2	St. Vrain	2550	275年 275年	2711
Highland No. 3	St. Vrain	1324	1320	801
Hij]	St. Vrain	115	134	110
Holt	St. Vrain	120	120	148
Ide & Starbird No.1	St. Vrain	96	96	112
Ide & Starbird No.2	St. Vrain	38	38	56
Independent	St. Vrain	160	160	160
Isabelle	S. Fk. St. Vrain	NOT	r used	. —
Kistler & Holliday	St. Vrain	5		5
Knouth	St. Vrain	UNI	DER CONSTRUC	TION
Lagerman	Left Hand	DRA	INED	
Left Hand	Left Hand	176		184
Left Hand Park	Left Hand	990	990	1648
Left Hand Valley	Left Hand	2959	3783	1772
Little Gem	St. Vrain	54	54	62
Logan	St. Vrain	. 22	22	26
Marie	St. Vrain	400	400	400

RESERVOIR STORAGE DISTRICT NO. 5 (Continued)

		A	MOUNT - A.	F.
NAME	SOURCE	11-1-72	5-1-73	10-31-73
Marshall McCall McCaslin McIntosh McKay Miantenoma Minnie Moeller Mulligan Myron Isabell Oligarchy No. 1 Parmalee Pleasant Valley Sanborn Silinde Supply No. 1 Swede Thomas Union Walker Zimbeck	St. Vrain St. Vrain St. Vrain St. Vrain St. Vrain St. Vrain St. Vrain Walker Gulch St. Vrain St. Vrain St. Vrain St. Vrain St. Vrain Big Cascade Left Hand St. Vrain St. Vrain St. Vrain St. Vrain St. Vrain St. Vrain St. Vrain	$\begin{array}{c} 22\\ 475\\ 114\\ 1281\\ 42\\ 110\\ 58\\ 50\\ 44\\ 66\\ 1545\\ 40\\ 2550\\ 178\\ 88\\ 296\\ 136\\ 545\\ 10442\\ 52\\ 40\end{array}$	$\begin{array}{c} 22\\ 475\\ 114\\ 2202\\ 42\\ 110\\ 58\\ 50\\ 44\\ 66\\ 1545\\ 40\\ 2550\\ 178\\ 88\\ 136\\ 545\\ 11500\\ 52\\ 40\end{array}$	24 196 119 1281 46 130 54 48 46 60 1452 40 2428 200 296 198 545 12715 73 56
	TOTAL	50773	53759	49245

III.

G.

RESERVOIR STORAGE DISTRICT NO. 6

			AMOUNT - A.F	•
NAME	SOURCE	11-1 - 72	5-1-73	10-31-73
Albion Ballinger Hollow	Albion Creek	1111 Not	1111 ACTIVE	1111
Barker	M. Boulder Creek	9919	2831	9808
Baseline	S.& M. Boulder Creek	x 1 <u>5</u> 83	4860	3271
Boulder	Big Thompson Project	z 3686	7257	8046
Davis No. 1 & 2	Middle Boulder Ck	74	217	96
*Elmwood	South Boulder Ck	40	3/4 Full	1/8 Full
Erie Clasion Summon	South Boulder Ck	43	7/0 Full	Full
Graat Western	Clear & Coal Ckg	2157	109	220
Green Lake No.]	North Boulder Ck	2177 197	$\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}$	2001 Full
Green Lake No. 2	North Boulder Ck	777 771	1-411 27年	730 Trutt
Green Lake No. 3	North Boulder Ck	285	דן <u>-</u> רנוק	252 דנוד
Green Lake No. 4	North Boulder Ck		Full	Full
Green Lake No. 5	North Boulder Ck		Full	Full
Goose Lake	North Boulder Ck	1036	1036	1036
Gross	S. Boulder Ck & Moff	at 22540	21112	30308
Haden	Middle Boulder Ck	240	452	376
Hillcrest	S. Bldr Ck & M Bldr	Ck 1846	1834	1937
Island	North Boulder UK	334	F'ull	F'ull
Jasper Last Change No 1	Cool Crook	0	FULL	Empty 1/9 Empty
Last Chance No. 2	Coal Creek	U	「 ロエエ 下 11 7 1	1/0 Full
Last Chance No. 2	S & M Boulder Creeks	1221	130年 130年	1300
Louisville	South Boulder Creek	97	165	103
Lower Boulder Ext.	Middle Boulder Ck	308	161	372
*Marfell Lake No.1	South Boulder Ck	26	Full	1/8 Full
*Marfell Lake No.2	South Boulder Ck	19	l/2 Full	. 0
Marshall	South Boulder Ck	1649	5697	4408
McKay	South Boulder Ck	181	, 555	. 304
Mesa	Middle Boulder Ck	150	3/4 Full	3/4 Full
Mesa Park	Middle Boulder Ck	95	3/4 Full	3/4 Full
Panama NO. 1	South Boulder Ch	5207	4544 E	3426
*Prince No. 2	South Boulder Ck	61	FULL	FULL
Silver Lake	North Boulder Creek	3883	Full 1140	F UII 2577
Six Mile	Middle Boulder Creek	793	1088	ンファイ 7年2
Sky Scraper	Middle Boulder Creek	i46	146.4	146.4
Smart	Coal Creek	589	725	589
*Teller Lake No. 1	South Boulder Creek	0	3/4 Full	3/4 Full
*Teller Lake No. 5	South Boulder Creek	4	1/4 Full	1/8 Full
Thomas	South Boulder Creek		1/2_Full	1/8 Full
Valmont	S & M Boulder Creek	s 6597	6509	6807
waneka Wost Ioko	South Boulder Creek	355	1/4 Full	1/2 Full
WEST LAKE	South Boutaer Creek	NO	T IN USE	

TOTAL 65235 65449.4 81086.4

*DECREED CAPACITY ASSUMED TO BE EQUAL TO ACTUAL CAPACITY

RESERVOIR STORAGE DISTRICT NO. 7

		AM(DUNT - A.	F
NAME	SOURCE	11-1-72	5-1-73	10-31-73
Adams Beardsley Beaver Brook No.l & Enl Beaver Brook No. 2 Beaver Brook No.3 & 4	Clear Creek Clear Creek N & S Beaver N. Beaver Bro N & S Beaver	NO RESERVOIR Brook ok NO RESERVOI Brook	Full IR	Full
Beaver Brook No. 3A	S Beaver Broo	ok &		
Blackham Ponds Blackhawk Braukman Brewer	Clear Creek Fall River Clear Creek,	NOT KNOWN NO RECORD NOT BUILT Ralston		
Bright View No. 1 Bright View No. 2 Broad Broomfield	Clear Creek Clear Creek Clear Creek Clear Creek Clear Creek	Leyden	Full Full Full	Full Full Empty
Brown	Clear Creek		Full	Full
Brunel *Calkins H. D. Campbell No. 1 (Long L	Clear Creek	NO RECORD NEAR FULL	Full	Empty
Composit No. 1 (Hong Et	Ralston Creek	879	1216	1160
Campbell No. 2 *Church J.M. No. 1 & 2 Church's Lower	Raiston Creek Clear Creek Clear Creek		Full	Full
Clear Reservoir Clover Knolls Clover Knolls South	Leavenworth C Clear Creek Clear Creek	k NO RESERVOIR NO RESERVOIR	· · · ·	
Cole Copeland	Clear Creek		Full	Full
*Croke 7 Croke 12 Crosley & Westfield	Clear Creek Clear Creek Clear Creek	NO RESERVOIR	Full Full	Full Full
*Crown Hill Cemetary Currier No. 1 Currier No. 2	Clear Creek Clear Creek Clear Creek Clear Creek		Full	Full
DeVinney Dewev	Clear Creek	NO RECORD	FULL	FULL
Dierks No. 1 & 2 Downing	Clear Creek Clear Creek		Full	Full
Dumphy East East Lake No. 1 East Lake No. 2	Clear Creek Clear Creek Clear Creek	Full 80% Full NEARLY EMPTY	Full Full Full Full	Full Full Full
East Lake No. 3	Clear Creek	NEARLY EMPTY	Full	Full

*DECREED CAPACITY ASSUMED TO BE EQUAL TO ACTUAL CAPACITY

III.

G.

RESERVOIR STORAGE DISTRICT NO. 7 (Continued)

·		A <u>M</u> C	DUNT - A.F	•
NAME	SOURCE	11-1-72	5-1-73	10-31 - 73
Eppinger Reservoir	Clear Ck, Van Bibber, Rals	NO RESERVOIR ston		
Erie	Clear Créek	0	Full	Full
Fall River Group of Reservoirs	Fall River			
Funk	Clear Creek	NO RESERVOTR		
Furrer	Clear Creek		Full	Full
Gangl	Clear Creek	NOT KNOWN		
Georgetown	Leavenworth Cl	K NO RECORD		
Ginther Res. No. 1	Clear Creek		Full	Full
Ginther Res. No. 2	Clear Creek		Full	Full
Ginther Res. No.3,4,5	Clear Creek	NAR TENTALINI	F'ull	Full
Graves No. 1, 2, 3	Clear Creek	NOT KNOWN		
Green Lake	Cloop Choole	NO RECORD		
Guthrie No. 1	Clear Creek	NOT KNOWN		
Hallack (Fact North	Clear Creek	NOT KNOWN		
South)	Clear Creek	TRANS		
Hansen No. 1 & 2	Clear Creek	TIMINO	F 1177	[[נוית
Harris	Clear Creek	NOT USED	TUTT	TUTT
Hartlev	Clear Creek		Full	F 1111
Hole in the Ground	• • - • - • - • - • - • - • - •	NO RECORD	1 0121	1 0(4.1
Home No. 1	Clear Creek		Full	Full
Hyatt	Clear Creek	Full	Full	Full
Idaho Springs Res.No.l,	Soda & Chicago	C		
2 & 3 Enl.	Creeks	NO RECORD		
Johnson	Clear Creek		Full	Full
Joint	Clear Creek	NO RESERVOIR		
Kalsevic	Clear Creek		Full	Full
Kelley	Little Dry Ck			
Kingsbury	Clear Creek	NOT USED		
Koleski Helen	Clear Creek		ŀ'u⊥⊥	F'ull
Krosky	Clear Creek		FULL	FULL
Larson Loo (Honry) North &	Clear Creek	NO RESERVOIR		
South	Clear Creek	NOT KNOWN		
Levden	Clear Creek		1150	0
Linscott	Clear Creek	0	エエ <i>ンと</i> Full	ں [[[1]]
Little Typon	Clear Creek		Full	בבים ב [[נות
Loch Lomond Group	Fall River		Full	1 4 1 1
Main	Clear Creek	NEAR FULL	Full	99% Full
Maple Grove		545.91	545.91	549.82
Marshall	Clear Creek		Full	Full

RESERVOIR STORAGE DISTRICT NO. 7 (Continued)

	, <u>, , , , , , , , , , , , , , , , , , </u>	AMOUNT - A.F.		
NAME	SOURCE	11-1-72	5-1-73	10-31-73
Mary's Lake		NO RECORD		
Mayhem	Clear Ck & Seepage			
Missouri Lake				
Moir Res. & Enl.	Clear Creek	NOT KNOWN	Full	Full
Morgan No. 1	Clear Creek		F'ull	Full
Morgan No. 2	Clear Creek		Full	Full
Moxley	Clear Creek		F'ull	F'ull
*Myers No. 1, 2 & 3	Clear Creek		ŀu⊥⊥	F'ull
Neison	Clear Creek	NA DUGADD	F'ULL	Full
Newlander	Clear Creek	NO RECORD		
Nissen No. 2 & Eni.	Clear Creek			
Nissen No. 6	Clear Creek	NON EXISTENT		
*Oberon No. 1 & 2	Clear Creek		F'ull	Full
Ohio	Clear Creek	NA DEGADE	Full	Full
Patricia Lake		NO RECORD		
Pavlinic	Clear Creek	NO RESERVOIR		
Plaster	Clear Creek	NOT KNOWN		
Poitz & 1st Enl.	Clear Creek		F'ull	F'ull
Pomona No. 1 & 1st Enl.	Clear Creek			
Pomona No. 2 & 1st Enl.	Dry Creek			
Pomona No. 3	Clear Creek	NOT USED	0	
Ralston	Moffat via Gross	9917	8233	7135
Richards	Clear Creek		Full	Full
Robinson	Clear Creek	NO RESERVOIR		
*Savory Ponds	Clear Creek		Full	Full
School	Clear Creek	NO RESERVOIR		
Sea of the Storms		NO RECORD		
Sea of Tranquillity		NO RECORD		
Signal No. 1	Clear Creek	0	Full	Full
Signal No. 2	Clear Creek	0	Full	Full
Silver Lake	Silver Creek			Full
Smith J.B. (Horseshoe)	Clear Creek		Full	Full
Smith Reservoir	Clear Creek	Full	Full	96% Full
Soper No. 1,2,3& 4	Clear Creek		Full	Full
Standley	Clear Creek	15232	28046	25116
St. Mary's Lake	Chesapeake			49
Stonehouse	Clear Creek	NO RESERVOIR		
Storm	Clear Creek	NOT USED		
Susan Lake		NO RECORD	đ.	
Talbot	Clear Creek		Full	Full
Timm	Clear Creek		Full	Full

*DECREED CAPACITY ASSUMED TO BE EQUAL TO ACTUAL CAPACITY

RESERVOIR STORAGE DISTRICT NO. 7 (Continued)

		AM0	AMOUNT - A.F.		
NAME	SOURCE	11-1-72	5-1-73	_10-31-73	
Tom Frost Tucker Union No. 1 & 2	Clear Creek Ralston Clear Creek	NO RECORD 181	254	254	
Vogel Ponds Wadley No. 1 Wadley No. 2 Wadley No. 3 Wablberg	Clear Creek Clear Creek Clear Creek	NO RECORD	Full Full Full Full	Full Full = Full Full	
*Ward No. 1 & Enl. Watts No. 1 Watts Reservoir No. 2 Webster Res. & Enl.	Clear Creek Clear Creek Clear Creek Clear Creek		Full Full	Full Full Full	
Wesley Chapel Westminister Orchards Wiesel Reservoir	Clear Ck, Ral Van Bibber Clear Creek Clear Creek	NO RESERVOIR NO RESERVOIR		Full	
Zang Kes. No. 1 & 2	Clear Creek TOTAL	26754.91	38230.91	34263.82	

*DECREED CAPACITY ASSUMED TO BE EQUAL TO ACTUAL CAPACITY

RESERVOIR STORAGE DISTRICT NO. 8

		A	MOUNT - A.	<u>F</u>
NAME	SOURCE	11-1-72	5-1-73	10-31-73
Allis Reservoir	Carpenter Creek		<u>,</u>	
Aurora Rampart	South Platte	1068	1221	1261
Baird	Russellville Gulch	10650		
Derby	No. Colo. Highline	12052	16472	14771
	(South Platte)			
*Fairview & Enl.	Deèr Creek (
*Fairview No. 2	Deer Creek			
Greenwood	No. Colo. Highline			
Havstack	(South Platte) W Branch W Plum			
Lambert	Willow Creek			
Linhart No. 2	Seep & Palmer Gulch			
Lininger	Beaver Creek			
Mann	Deer Creek			and the second
Marston	South Platte	14576	16771	17025
Mitchell	Mitchell Gulch	5140	4986	5470
Platte Canon	South Platte	910	937	923
Tinker & Shaffer)=0	201	<i>J</i> <u></u>
& Enl.	Gulch			
Wakeman & Enl.	Willow Creek			
Waucundah	Bear Springs Creek			
DISTRICT NO. 23-8				
Altura R. (Duck)	Geneva	0	111	37

Cheesman Wellington	S. Fk. South Platte Buffalo Creek	51118 1610	60544 2094	37 60723 3036
	TOTAL	87082	103136	103246

*DECREED CAPACITY ASSUMED TO BE EQUAL TO ACTUAL CAPACITY

RESERVOIR STORAGE DISTRICT NO. 9

		A	MOUNT - A.	F
NAME	SOURCE	11-1-72	5-1-73	10-31-73
Bergen No. 1 (East) Bergen No. 2 (West) Bowles Carmody Deane Grant A (West) Grant B (South) Grant C (East) Harriman Harwood Henry Lake Johnston Kendrick Patrick Soda No. 1 (West) Soda No. 2 (East) Tule No. 1 (Upper) Tule No. 2 (Lower) Ward	Turkey Creek Turkey Creek Bear Creek	40 110 860 0 50 50 80 45 150 755 155 80 750 450 750 450 70 800	125 600 1760 0 315 50 80 45 0 160 185 450 75 950 240 1486 80 90 700	100 245 1650 0 310 60 125 60 365 70 125 280 70 785 240 785 240 745 85 90
•	TOTAL	3895	7391	6205

RESERVOIR STORAGE DISTRICT NO. 23

			AMOUNT - A	F.
NAME	SOURCE	11-1-72	5-1-73	10-31-73
Antero Eleven Mile Jefferson Montgomery	So. Fk. South Platte So. Fk. South Platte Jefferson Creek Md. Fk. South Platte and Hoosier Tunnel	16016 90463 Full* 4118	15878 91049 Full	15878 98768 Full 3683
Tarryall	Tarryall Creek	Full	Full	Full
	TOTAL	110597	106927	118329

*No Staff

.

RESERVOIR STORAGE DISTRICT NO. 64

		Α	MOUNT - A.	F
NAME	SOURCE	11-1-72	5-1-73	10-31-73
Julesburg R. North Sterling Prewitt	South Platte South Platte South Platte	13854 25260 7570	23109 70060 28130	19794 18240 17140
	TOTAL	46684	121299	55174

IV. AGRICULTURE

CROP REPORTS

The following crop report statistics are final for the 1971 season and preliminary for the 1972 season. They are presented as published in the 1973 Colorado Agricultural Statistics Bulletin 1-73 by the Colorado Department of Agriculture, except for counties which do not lie entirely in Division I. The figures shown for these counties is equal to the fractional portion of the county that lies in Division I.

The 1973 yields were generally good for most crops. With prices at record highs for some crops, most farmers did very well this year.

BARLEY

1971 FINAL

NON IRRIGATED

1972 PRELIMINARY

IRRIGATED

	VALUE x \$1000	× × · · ·	518 6	590.8 17.6		100.5 97.0	88 98 92	31.0 854.7	7.8	271-2 612-8	575 177		2,230.51 2,230.51	6,304.4	
	BUSHELS x 1000	× ×	345.7	393.9 393.9		67.0 64.7	59.0	569.8		180.8 408.5	0 0 0 0 0 0 0) • 1)	225.4 1,487.0 20.4	4,202.9	
	ACRES		00 700	7,800		1,200 2,485	1,200	600 10.500	130	000 000	1,400)))	5,400 30,500 600	94,405	
	TOTAL VALUE x \$1000		1,249.2	227.00		156.3	65.9	97.4 1.259.4	10,0	437.3 479.3	148.4		631.2 3,317.9 80.4	8,933.9	
	VALUE x \$1000	> > 4 	972.2	201 201 201 201 201		35.4 146.2	33.9	151.1	0.01.	348 228 8	131 - 3 206 - 3 206] •	1,335.9 60.0	4,579.3	
	YIELD bu/acre		20 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000 2017 2017 2017 2017 2017 2017 2017		20.0 29.0	35.0	0 0 % %	58.0	42•0. 31•0	000) •)	0000 32-00 32-00 32-00	541.8	
	ACRES		23,300	1,000		1,500 4,000	800	000°, 0	292	7,100	3,200 4,600)) -	12,650 33,500 1,500	115,902	
	VALUE x \$1000		277.0	446.3 2.4		10.1	01	1,108,3		250.51	17.1		71.1 1,982.0 20.4	4,354.6	<u>,</u>
	YIELD bu/acre		55.6	60 54 0		58.0	0.09	0 0 64 0	57.0	00 60 60	50.0		0.7.0 603.0 603.0	836.3	
•	ACRES		4,200	5 , 900 39		140	400	11,000	80	1,200 3,000	300	ſ	21,500 300	49,609	
	PORTION OF COUNTY COUNTY IN DIV.I		ADAMS A RADAHOF	EXALANCE BOULDER CHEYENNE 39 CLEAR CREEK	DENVER	DOUGLAS ELBERT 69 GITPIN	JEFFERSON	KLT CARSON LARIMER	LINCOLN 26.5	LOGAN MORGAN 877 1	FARA O(.4 PHILLIPS SEDGWICK	TELLER 47.5	WA.SHINGTON WELD YUMA	TOTALS	

CORN FOR GRAIN

1971 FINAL

NON IRRIGATED

1972 PRELIMINARY

IRRIGATED

	VALUE x \$1000	809.1 18.6 268.0 268.0	50. 50. 7	6,898.4	169.6 3,518.8 6,347.5	2,464.5 1,882.6	1,373.3 7,739.8 8,659.0	41,266.9	•
	BUSHELS x 1000	679.9 15.6 291.2 225.2	24.6 17.6	20.8 5,797.0 585.0	142.5 2,957.0 5,334.0	2,071.0 1,582.0	1,154.0 6,504.0 7,276.5	34,677.9	• •
	ACRES	6,500 150 2,145	300 550	50,000 50,000	27,500 27,500 44,000	21,000 14,000	10,000 56,500 71,000	313,945	
	TOTAL VALUE × \$1000	631.8 9.5 341.5 226.9	20.9 17.5	4,250.3 607.4	12.3 3,556.3 6,246.0	1,677.8 1,525.3	1,130.2 8,035.0 8,459.8	36,778.0	
	VALUE x \$1000	0.0	ч. 9. 9.	25.7	107.5 3.3	224.6 92.1	21.5 46.8 151.9	685.3	
	YIELD bu/acre	14.0	14•0 48•0	52•0	24.9 28.0	32.0 27.0	21.00 21.00	280.6	
	ACRES	20	100	1,000	3,600 100	6,000 2,800	1,500 6,000	22,400	
•	VALUE x \$1000	631.8 8.7 341.5 226.9	01 0 0	29.5 4224.6 607.4	12.3,4448.8 6,242.7	1,453.2 1,433.2	1,108.7 7,988.2 8,307.9	36,092.7	
	YIELD bu/acre	882.00 882.00 85.00		000 0000 1000 1000	103.0 103.0	92.0 105.0	103.0 87.0 109.4	1,469.6	
	ACRES	7,200 3,500 2,260	250 105	43,500 6,700	130 27,900 50,900	13,500 11,200	9,200 76,500 65,000	318,245	
	PORTION OF COUNTY COUNTY IN DIV.I (%)	ADAMS ARAPAHOE BOULDER CHEYENNE 39 CLEAR CREEK	DENVER DENVER ELBERT 69	JEFFERSON KIT CARSON LARIMER	LINCOLN 26.5 LOGAN MORGAN 87 1	PHILLIPS SEDGWICK	WASHINGTON WELD YUMA	TOTALS	

.

1971 FINAL

CORN FOR SILAGE

POTATOES

	VALUE x \$1000	1,643.0 1,220.6 1,220.6 1,320.0 1,320.0 1,320.0 1,320.0 3,017.0 3,017.0 3,017.0 3,017.0 3,017.0 1,254.0 2,396.0 2,396.0 2,298.3 30,298.3
	TONS x 1000	н С С С С С С С С С С С С С
	ACRES	19,700 180,000 180,000 180,000 180,000 19,700 10,000 10
	e x \$1000	987.2 987.2 787.7 86.4 269.9 2,158.0 2,790.0 2,480.0 2,444.2 2,480.0 2,444.2 2,480.0 2,496.9 26,496.9
	YIELD tons/acr	л 0.700 28 2.700 28 2.70 28 2.70 28 2.70 28 2.70 29 2.70 20 2.00 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2
	ACRES	7,100 6,700 3,105 3,105 11,100 18,900 14,000 14,000 14,000 76,000 76,000 174,483
-	VALUE x \$1000	19.0 2,029.2 34.2 319.0
	YIELD cwt/acre	200 240 280 280 280 280 280 280 280 280 280 28
	ACRES	5,000 10,300
	PORTION OF COUNTY COUNTY IN DIV.I	ADAMS ARAPAHOE BOULDER CHEYENNE BOULDER CLEAR CREEK DENVER DOUGLAS GILPIN JEFFERSON KIT CARSON KIT CARSON KIT CARSON KIT CARSON KIT CARSON LINCOLN ZELER MORGAN MORGAN PHILLIPS SEDGWICK TELLER WASHINGTON WELD YUMA TOTALS

НАҮ

DRY BEANS

1971 FINAL

. . NON IRRIGATED

1972 PRELIMINARY

IRRIGATED

706.7 630.8 3.0 1,465.0 3,067.7 243.2 244.0 542 0 734 6 54.8 9 VALUE 8,767.0 PRODUCTION 43,400 369,600 29,300 1,140 85,000 176,500 6,600 85,150 76,000 65,300 88,500 29,400 ,056,250 cwt ACRES 1,400 22,500 1,900 6,100 4,000 5,000 8,900 3,900 600 207 20 11,326.9 63,233 4,044.0 1,117.0 283.7 849 608 4 11,0 739 2 462 0 x \$1000 112.2 TOTAL ----I VALUE x \$1000 11.0 U N O N 116.1 112.0 165.5 - 15 - 15 2.7 lbs./acre YIELD 200 250 600 300 200 650 200 325 325 3,437 3,194 ACRES 414 100 100 100 200 200 1,700 400 VALUE \$ \$1000 283.7 10.8 733.4 1,115,1 1,048,2 510.6 3,927.9 502.0 847.1 608.4 112.2 11,161.4 × ы <u>lbs./acre</u> 2,180 1,480 1,960 2,030 1,642 2,060 22,290 1,500 1,560 1,950 1,850 1,978 2,100 YIELD ACRES 1,400 78 6,000 3,200 3,900 7,500 3,000 20,700 2,600 7,300 5,300 800 61,778 PORTION OF COUNTY COUNTY IN DIV.I (%) 87.4 47.5 26.5 69 39 CLEAR CREEK KIT CARSON VASHINGTON JEFFER SON PHILLIPS SEDGWICK CHEYENNE ARAPAHOE DOUGLAS BOULDER ARIMER LINCOLN DENVER ELBERT GILPIN FELLER **JORGAN** TOTALS LOGAN ADAMS PARK WELD YUMA

OATS

1971 FINAL

IRRIGATED

NON IRRIGATED

r							
	TOTAL VALUE × \$1000	62 62 13 11 1	ອງ 20 20 20 20 20 20 20 20 20 20 20 20 20	1 1 1 1 1 1 1 1 1 1 1 1 1 1	73.0 140.4	264.3 264.3 255.0	1,019.2
an a barranga managanan ang ang dari sa sa ta	VALUE x \$1000	0 - L - L	5.5				12.6
s.	YIELD bu/acre	22.0 15.0 15.0	14.0 22.0	000000 174.0 746.0 746.0 746.0	.0 16.0	0 50 50 50 50 50 50 50 50 50 50 50 50 50	422.1
	ACRES	200 400 39	1,850 1,860	4, 1006 4, 1006 4, 1006 4, 1006	2,200 4,100	1,100 7,600 950	24,855
	VALUE x \$1000						
	YIELD bu/acre	62.7 55.0	68.0	00 00 00 00 00 00 00 00 00 00 00 00 00	81.0 64.0	81.0 81.0	912.2
	ACRES	1,300 1,300	69	1, 100 950 1, 000	300	3,300 100	9,919
	PORTION OF COUNTY COUNTY IN DIV.I	ADAMS ARAPAHOE BOULDER CHEYENNE 39 CLEAR CREEK	DENVER DOUGLAS ELBERT 69	GILFIN JEFFERSON KIT CARSON LARIMER LINCOLN 26.5 LOGAN MORGAN	PARK PHILLIPS SEDGWICK	TELLER 4.(.) WASHINGTON WELD YUMA	TOTALS

SORGHUM FOR GRAIN 1971 FINAL

NON IRRIGATED

1972 PRELIMINARY

IRRIGATED

		1														
	VALUE x \$100		8.8 115.0	9.0 171.1		16.4		331.3	00 <u>0</u>	930.94 1.00	297.0 58.6	ר אר ר	104.5	1,591.8	3,004.6	
	BUSHELS x 1000		6.7 87.1 87.1	6.8 129.6		12.4		251.0	45.0 45.0	50.0	225 • 0 44 • 4	с СС Г	- 62 - 62	1,205.9	2,276.2	
	ACRES		1,300	100 3,700		760		5,500	1,855 1,855	1,050 050	6,000 1,200	, СОО С	1,400	26,500	55,515	
	TOTAL VALUE x \$1000		43.6 5.0	126.3	1.0	7.5		241.0	30. 00. 02.	50.0	188.1 29.1		21.12	842.1	1,646.0	. ,
•	VALUE x \$1000		5 • 0	120.0	1.0	0 0 0		119.5	-7 V Ma N		147.6 147.6	ות איז		572.7	1,101.5	
	YIELD bu/acre		12.0	55 . 0	20.0	20.0		29.0	17 05	00	30°0 38°0 38°0		00 10 10	21.3	289.6	
	ACRES		400	3,080	л О	276		4,000	1,285	200	4,100 1,000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		26,400	45,141	
	VALUE x \$1000		43.6	0 .3		1.7		121.5		15.0	40. 1. 0.0		15.7	269.4	544.5	
	YIELD bu/acre		47.0	46.0		46.0		59.0	46.0	30.0	45 40		0.64	51.8	569.8	
•	ACRES		006	84		34		2,000	146 146	200	900	С Ч С	000 000	5,100	10,408	
	PORTION OF COUNTY COUNTY IN DIV.I (%)		ADAMS ARAPAHOE	BOULDER CHEYENNE 39 CLEVENCERER	DENVER DOUGLAS	ELBERT 69	JEFFERSON	KIT CARSON	LINCOLN 26.5	MORGAN . 07	FAKN OLA PHILLIPS SEDGWICK	TELLER 47.5	WELD	YUMA	TOTALS	

. SPRING WHEAT

1971 FINAL

IRRIGATED

IRRIGATED
ION
4

<u>.</u>		· · · · · · · · · · · · · · · · · · ·	·			······	·	
TOTAL VALUE x \$1000	11.7	11.1 6.7	5.4 5.3	000 000 111	50.0 7.0	35.1	4% .0.0	231.0
VALUE x \$1000	8 • •	2.2	10 10	14.5 14.2	20.0	8.9 35.1	4.0 69.0 7.5	200.8
YIELD bu/acre	24.0	24.0 21.0	17.0 14.0	404 000	21.0	23•0 23•0	000 000 000 000	287.0
ACRES	100	250 273	70 138	900 900 1000 1000	800	, 330 1, 350	2,600 150	7,956
VALUE x \$1000	б w	б		8° •	4°0		9.6	30.2
YIELD bu/acre	38.0	33.0		33•0	34.0		40.0	178.0
ACRES	200	100		100	100		500	700
PORTION OF COUNTY COUNTY IN DIV.I (%)	ADAMS	AKAFAHOE BOULDER CHEYENNE CTEAR CREFK	DENVER DOUGLAS ELBERT 69 GILPIN	JEFFERSON KIT CARSON LARIMER LINCOLN 26.5	LOGAN MORGAN	PHILLIPS 01.44 SEDGWICK 17	WASHINGTON 4(.)	TOTALS

. . . .

1 -

SUGAR BEETS -1971 FINAL

IRRIGATED

1972 PRELIMINARY

77 A T TTE	x \$1000	·····	660.8	633.6 84.8	•			5,046.4 1,876.8	3,456.0 4,480.0	2,072.0	14,417.6 3,128.0	37,372.8
TOTAL	x 1000		41.3	6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				315.4 117.3	216.0 280.0	129.5 58.0 0	36.8 901.1 195.5	2,335.8
ں ا 4 ر	ACRED		2,500	2,400		· · · · · · · · · · · · · · · · · · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	18,000 6,700	12,000 14,000	7,400	2,300 48,000 11,500	128,050
	VALUE x \$1000		577.1	656 o 666 5				5,116.0 1,752.0	3,523.7 4,064.8	993.1 891.5	13,255.0 3,253.0	34,685.0
	YLELU cons/acre	· .	16.8	16.8 16.8		x.		17.0 16.6	19.1 .8	10°4	18.7 18.7	210.9
r F C	ACKES		2,200	2,500			•	19,200	11,800 13,800	4,750 2,950	1,900 45,300 11,000	122,400
PORTION OF COUNTY	COUNTY IN DIV.1		ADAMS	AKAFAHOE BOULDER CHEYENNE 39	DENVER CREEK	DOUGLAS FLRERT 69	NIGITS	JEFFERSON KIT CARSON LARIMER	LINCOLN 26.5 LOGAN MORGAN	PARK 87.4 PHILLIPS SEDGWICK	TELLER 47.5 WASHINGTON WELD YUMA	TOTALS

i

WINTER WHEAT

1971 FINAL

NON IRRIGATED

1972 PRELIMINARY

IRRIGATED

VALUE x \$1000		5,978.7	1,242.	228.(1,035.1	7,136.1	1,126.5	2,351.0	5,816.0	10,232.9	60,536.5	
BUSHELS * 1000		3,784.0	-195,-1 1	144.7 655.1	122.0	712.8	3,652.2 1,488.0	3,681.0 2,982.0	6,476.5 4,795.3 2,257.9	38,314.4	
ACRES		128,000	46,300 46,300	6,500 28,980	3,200	13,020	130,000	111,000 71,000	264,000 175,000 101,000	1,430,287	
TOTAL VALUE * \$1000		4,355.0	1,746.8	191.3 779.0	5,271.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5,076.0 1,939.7	4,483.0 3,181.0	7,172.0 5,492.0 4,194.0	47,675.3	
VALUE × \$1000	X X X X X X X X X X X X X X X X X X X	3,926.6	1,648.2	187.3 754.1	5,066.51	4 (1-3 862-3	5,038.1 1,723.1	4,379.9 3,181.0	6,879.6 5,226.3 4,094.7	45,716.8	
YIELD bu/acre		0.0	-00 -00 -00 -00 -00	23.0 21.0	27.6 24.0	0 0 0 0 0 0 0 0 0 0 0 0	31.0 31.0	36.0 42.0	000 100 100 100 100 100 100 100 100 100	505.9	
ACRES		110,000	50,200 50,310	6,900 30,430	180,400	31,245	124,400	103,100 64,200	197,600 146,500 110,200	1,283,685	
VALUE × \$1000	× × ×	428.4	102.4 98.6	4.0 24.9	204.5	1. 1	216.6	103.1	2652.4 2659.4	1,958.5	
YIELD bu/acre		45.0	47.0 54.0	34•0 34•0	44 3870	72°0	1010- 1010- 1010-	1-1 0.0	444 0.00	726.7	
ACRES		8,000	1,800 1,560	100 620	4,500	5000 5000	3,300 3,300	1,900	5,400 1,800	35,593	
PORTION OF COUNTY COUNTY IN DIV.I		ADAMS A RADAHOF	CHEYENNE CHEYENNE CT.FAR CREEK	DENVER DOUGLAS ELBERT GTTPTW	JEFFERSON KIT CARSON	LINCOLN	LOGAN MORGAN	FALA PHILLIPS SEDGWICK	LELLER WASHINGTON WELD YUMA	TOTALS	

COMPACTS AND COURT STIPULATIONS

A. COMPACTS

v.

No serious problems were encountered this year in the administration of the Interstate Compacts.

The South Platte River Compact, Colorado and Nebraska being the signatory states, specifies that the flow of the river at the state line between April 1st and October 15th of each year shall be at least 120 cfs. Otherwise, diversions below the Washington-Morgan County line, junior to June 14, 1897, will be curtailed sufficiently to provide said 120 cfs or such portion thereof as might be produced by suspending those diversions.

The flow at Julesburg gage fell below the 120 cfs Compact figure for approximately 39 days in the period between July 11 and September 10. The balance of the water year saw unseasonable high flows at the state line. In fact, an annual record flow of 1,069,000 acre-feet was recorded at the Julesburg station.

The decree of the United States Supreme Court, in the case of Wyoming vs. Colorado, limits Colorado allocations to 49,375 acre-feet per calendar year. Of this amount 19,875 acre-feet is allocated to the Transmountain Users. The Meadowland Users are entitled to the remaining 29,500 acre-feet, with the restriction that not more than 1,800 acre-feet shall be diverted after July 31 in any calendar year. The Meadowland Users are also entitled to use any nondiverted Transmountain water.

As mentioned in the introductory statement, the diversions from the Laramie River within Colorado were 39,945 acre-feet or approximately 81 percent of the allowable diversion under the federal court order. Although plenty of water was available, the irrigation requirements were less than normal.

The Republican River Compact allocates water to the signatory states, Colorado, Kansas and Nebraska, on the basis of beneficial consumptive use. Colorado's total allocation of 54,100 acre-feet is broken down as follows:

North Fork of the Republican River Drainage Basin	10,000 ac.ft.
Arikaree River Drainage Basin	15,400 ac.ft.
South Fork of the Republican River Drainage Basin	25,400 ac.ft.
Beaver Creek Drainage Basin	3,300 ac.ft.

and IN addition, for beneficial consumptive use in Colorado annually, the entire water supply of the Frenchman Creek (River) Drainage Basin in Colorado and the Red Willow Creek Drainage Basin in Colorado.

The computed annual consumptive use in Colorado in the Republican River Basin for the 1972 Water Year was as follows:

North Fork of Republican River	6,400 ac.ft.
South Fork of Republican River	6,490 ac.ft.
Arikaree River	2,790 ac.ft.
Beaver Creek	0 ac.ft.

The above figures were taken from preliminary sheets being prepared for the Thirteenth Annual Report for the Republican River Compact Administration for the Year 1972 as approved in June 1973.

v.

B. COURT STIPULATIONS

The court action of greatest singular interest for the 1973 water year was, as in 1972, involved with the rules and regulations governing the use of underground water.

In November of 1972, C. J. Kuiper, State Engineer, published proposed rules and regulations upon the use of underground water for the South Platte River and its tributaries. These rules were to become effective February 19, 1973 and were quite similar to those proposed in 1972 with the exception of the allowable nonregulated pumping time. The '73 rules allowed those wells for which application for adjudication had been made prior to July 1, 1972 to be used without regulation 3/7 of the time and wells not meeting the application deadline were to be regulated full time. Wells which were able to make replacements to the river in the amount of the depletion resulting from pumping during the regulation periods were to be allowed uncurtailed pumping after their replacement plans were approved by the division engineer. Some 14 plans were approved to allow either full time operation or scheduled pumping to comply with the 4/7 curtailment requirement.

Before the January 31, 1973 deadline, nine protests to the rules and regulations were filed in the water court. The protestants represented a very broad cross section of water users and included cities, small towns, surface and underground water irrigators, commercial and industrial users. At a prehearing conference in the water court on February 12, the state moved that the rules and regulations be effective and administered as proposed and a court hearing be held as soon as possible. The protestants opposed this course of action and asked the court to postpone any such regulation until an opportunity had been afforded for a full court hearing. The water court thereupon ordered the imposition of the rules and regulations be held in abeyance pending a final decision of the court.

The hearing was set for two weeks starting June 4. The time in court during those two weeks was all spent in the presentation and cross examination of a portion of the state's testimony. At the end of the period the case was continued to October 29. Upon reconvening, the state continued its presentation for nearly five and one-half days at the end of which, counsel and the court agreed to again recess to give counsel for all parties an opportunity to try to arrive at some agreeable plan for the regulation of underground water. The court would then resume at such time as necessary to consider only those items upon which there was still contention. It is expected that court will reconvene in January for this purpose.

As a result of the protests and subsequent delays no wells were regulated during the 1973 season. Providentially, with the exceptionally ample supply of surface water, there were no apparent material injuries to surface appropriators caused by the wells. Although the concept of well regulation can be technically supported even in a year such as '73, as a matter of public acceptance of the action which is such a departure from historic practice, it would be easier to support regulation in a year when there was an obvious shortage in surface flows which prompted valid calls from senior surface rights.

C. LEGISLATION

V.

New legislation passed in the 1973 session of the Colorado General Assembly included the following water-related bills.

SENATE BILL 97 - CONCERNING THE APPROPRIATION OF WATER AND PROVIDING FOR THE APPROPRIATION OF WATER BY THE STATE OF COLORADO TO PROTECT THE NATURAL ENVIRONMENT -

> Defines beneficial use to include minimum stream flows and storage levels for environmental purposes and makes provision for the State to acquire such rights in behalf of the people.

SENATE BILL 192 - CONCERNING FEES TO BE PAID IN WATER PROCEEDINGS -

Establishes a \$20 filing fee for a protest to a ruling of the referee of the Water Court.

SENATE BILL 213 - CONCERNING GROUNDWATER -Established that in issuance of a permit for a well in a nontributary acquifer, where there is no substantial artificial recharge, only the amount of water underlying the land owned by the applicant or consenting owners is unappropriated, and may be used under said permit. The minimum useful life of such an acquifer is established as one hundred years.

SENATE BILL 214 - CONCERNING THE STORAGE OF WATER BY EROSION CONTROL DAMS -

Allows for construction of erosion control dams having an ungated outlet at or below the two acrefoot level, a vertical height to spillway of fifteen feet, and a maximum capacity of ten acre feet.

SENATE BILL 313 - CONCERNING WATER RIGHTS, AND PROVIDING THAT FINDINGS OF REASONABLE DILIGENCE SHALL BE QUADRENNIAL - Changes requirements for proof of diligence on development of conditional decrees to every fourth year instead of every second year.

HOUSE BILL 1167 - CONCERNING THE TABULATION OF WATER RIGHTS AS PROVIDED FOR IN THE WATER RIGHT DETERMINATION AND ADMINISTRATION ACT OF 1969 -

> Provides for the revision of the water rights tabulation and filing thereof with the Water Clerk by October 10, 1973. Notice of revision shall be published with revised tabulations available for inspection in offices of division engineer, each water commissioner, and each county clerk and recorder with copies available from division engineer for \$5 each.

HOUSE BILL 1230 - CONCERNING WATER AND RELATING TO DOMESTIC WELLS -

Provides for late registration with State Engineer of domestic wells existing prior to May 8, 1972, upon application and payment of \$5 filing fee.

HOUSE BILL 1627 - CONCERNING THE REVISION OF STATUTES IN THE COLORADO REVISED STATUTES 1963, AS AMENDED, INCLUDING THE SESSION LAWS OF COLORADO 1972, TO AMEND OR REPEAL OBSOLETE, INCONSISTENT, AND CONFLICTING PROVISIONS OF LAW AND TO CLARIFY THE LANGUAGE AND REFLECT LEGISLATIVE INTENT OF THE LAWS -

> Declared any person interfering with or damaging any State reservoir is guilty of a misdemeanor and subject to fine, imprisonment or both.

VI.

A. DAMS

The year of 1973 was marred by an unusual incidence of critical problems with dams some of which resulted in complete failure.

On April 12, the dam on the Lower Latham Reservoir in Water District No. 2 failed unexpectedly causing several million dollars worth of damages. Water overflowed approximately 3000 acres and most of the town of Kersey. Fortunately no lives were lost. The water in the approximately 5000 acre foot reservoir had been at spillway level. Failure occurred very near the concrete overflow spillway structure and rapidly eroded an approximate 300 foot section of the sandy material in the embankment. Maximum flows out of the reservoir were estimated at 15,000 cubic feet per second. The State Engineer held a hearing in Greeley on April 25 in an attempt to determine the immediate cause of the failure. No definite conclusion was reached but it was the general opinion that the past severe winter had occasioned frost action to cause enough displacement of the concrete structure and adjoining embankment to allow some water to seep along the weakened area until it eventually eroded sufficiently to precipitate complete failure.

The flood that originated in the Denver area on May 6 caused the failure of several small dams. Two of these on a side tributary of West Creek some ten miles southeast of Deckers caused damage downstream. A court action to recover damages is pending in the Douglas County District Court.

The same precipitation generated flood flows in the plains north and east of Denver. Small channel structures on the Boxelder Creek were washed out. These included Ireland No. 1, 4 and 5 and Lott Reservoir.

Horse Creek Reservoir, on Horse Creek, a tributary of Boxelder, developed a slip on the downstream side during the flood. The water level in the reservoir was reduced enough to allow the slip to stabilize. Repair plans have been approved.

Horseshoe Reservoir Dam, northeast of Loveland, developed a critical leak through the embankment at the south outlet structure on October 3. Fortunately reservoir personnel discovered the problem early and took immediate remedial action. With the help of volunteers and heavy equipment to haul and place rock, hay, bed springs, mattresses and car bodies the flow through the developing breach was contained some twelve hours later. Maximum outflows were estimated at 600-800 cubic feet per second.

The normally dry Rosener Reservoir southwest of Fort Morgan on San Arroya Draw intercepted approximately 3000 acre feet of water resulting from exceptionally heavy precipitation in that area on September 8. Upon inspection it was determined that the cable operated flap gates on the upstream end of the outlet were closed but rusted out The gates in the water filled downstream control structure were closed. One gate was opened by our field personnel working in neck deep water to afford some relief to the reservoir. The structure was in no way endangered, however, due to the inaccessibility of the control gates, continued inflow to the reservoir would have posed serious problems. The most interesting aspect was that no one claimed ownership to the reservoir. Research by the water commissioner finally disclosed that it belonged to the Colorado State Land Board who were unaware of their ownership of that particular resource or problem. Negotiations are underway for the reservoir to be used for ground water recharge under the management of GASP, an organization of well owners.

Construction on Chatfield Dam on the South Platte River below the mouth of Plum Creek was started some five years ago by the Corps of Engineers as a flood control project. The outlet facilities were completed this summer as was most of the dam with the exception of a section left open to pass the river flows. Following the dedication ceremonies this section was dried up and the stream routed through the outlet structure. Work is progressing on completion of the embankment. Full completion is expected in 1975.

Several other dams received major maintenance or enlargement during this year.

Both Barnes Meadow Reservoir and Peterson Lake, mountain reservoirs in Water District No. 3, owned by the City of Greeley, were overhauled to meet safety standards and increase their capacities.

Long Draw Reservoir in Water District No. 3 at the headwaters of Long Draw Creek, is undergoing enlargement to increase its capacity some 6600 acre feet. Work should be completed in 1974.

Headley Reservoir, northeast of Snyder on Antelope Creek in Water District No. 1, was brought up to safety standards, as required by the State Engineer, by the construction of adequate spillway and freeboard facilities. Completion of this work made it unnecessary to press for a water court hearing upon a complaint which had been filed with the Water Clerk to force compliance with the State Engineer's orders.

Numerous orders have been issued by the Dams and Reservoir section of the State Engineer's Office requiring repairs to dams and spillways and restricting storage in many instances until the repairs have been completed. The owners are complying with the restrictions and most of them have made or are in the process of planning or completing the work necessary.

In 1972 Congress adopted legislation making the Corps of Engineers responsible for establishing a roster of dams which exceeded certain minimum measurements. The Corps contracted with the State Engineer to develop this information in Colorado. At the end of this year the field staff of Division 1 are busy collecting the necessary physical data on these reservoirs to complete the roster by April 1, 1974.

VI. DAMS

B. LIVESTOCK WATER TANKS - EROSION CONTROL DAMS

The total number of livestock water tanks and erosion control dams approved between November 1, 1972 and October 31, 1973 are presented below in tabular form by water district:

DISTRICT	NO. OF LIVESTOCK TANKS	TOTAL CAPACITY (AF)	NO. OF EROSION CONTROL DAMS	TOTAL CAPACITY (AF)
l	8	40.7	9	60.3
2				
3			1	2.5
4	2	8.5		
5	1	4.0		
6				
7				
8				
9				
23	4	8.0		
48	1	0.25		
49	2	11.0		
64				
65	2	11.0		
80				

83.45

62.8

WATER RIGHTS

A. TABULATION

VII.

The revised tabulation was published and made available for sale about the middle of October. The demand for copies has been somewhat less than overwhelming. To date (November 29, 1973) we have received a total of twenty-two (22) requests for lists.

We are now in the middle of working tabulation cards for all rights decreed under the old law since 1969, and all rights filed under Senate Bill 81.

Next year we hope to begin compiling an abandonment list pursuant to 148-21-28 Colorado Revised Statutes.

The total number of filings to date is 7,540. The total number of structures is 24,652 and a total of 22,226 wells.

APPLICATIONS	
COURT	
WATER	
н	
NOISIVID	

.

1972	FILINGS	AMENDED	TOTAL # OF STRUCTURES	WELLS	SPRINGS	STORAGE	SURFACE	SUMPS	CHANGE OF WATER RIGHTS	BIENNIALS	OTHER
July	61	œ	116	84	24	Ċ	ñ	7	0	0	ч
August	63	4	84	57	æ	Ŋ	τt	0	ß	0	0
September	. 51	Ŋ	11	54	7	ũ	4	н	0	г	Ч
October	63	9	135	59	60	٢	8	0	, T	0	Ч
November	26	Ĺ	68	27	17	14	10	0	0	0	0
December	72	٢	180	80	34	33	29	0	1	0	10
1973											
January	36	6	106	50	18	30	Q	0	0	o	4
February	26	ω	94	53	24	Ю	ġ	ß	4	0	0
March	26	10	60	25 /16_2	15	N	. 0	0	0	4	2
April	26	7	30	18 18	[<u>6</u>]	N	4	Ч	m	0	7
Мау	20	٢	5335	16 15200-21	0	11	0	. 0	ω	e	т
June	24	ω	51	(12-Auc	4 (5)	`N`	 1		Ω	0	п
July	28	12	1881	11 (1842-An	8	ſ	ω	0	6	г	4
August	28	4	340	23 (300-Au	(j) (j) (j) (j) (j) (j) (j) (j) (j) (j)	N	г	0	Q	0	щ
September	20	0	75	22 (31-Au	a) 2	ũ	0	0	13	0	0
October	Û.	ი	112	18 (54-Au	g) 5	თ	Ω	0	-	ч	1 19-alt
TOTAL	603	106	8738	8174	239	134	100	5	64	10	50
											65

WATER DIVISION I - CASES DECREED

1972	DECREES	STRUCTURES
Tulv	20	34
bury	ll dismissals	11
August	3	4
September	11	17
-	32 dismissals	32
	18 transfers	18
October	195	455
	2 dismissals	2
November	53	123
December	225	370
	3 dismissals	3
197 3		
January	115	199
February	119	211
March	39	91
April	129	379
Мау	112	244
June	91	140
July	147	238
	l dismissal	1
August	151	262
	l dismissal	1
September	153	279
	3 dismissal	3
October	161	365
****	1 dismissal	1
Total	1724 decrees	3411
	54 dismissals	54
	18 transfers	18

VIII.

A. CONSERVANCY DISTRICTS

As mentioned in the introductory statements, a subdistrict has been formed under the Northern Colorado Water Conservancy District for the purpose of developing and supplying Colorado River water to the Six City Group for metropolitan uses. The water would be transported to the east slope through the Colorado-Big Thompson project facilities as authorized by a carriage contract between the subdistrict and the Bureau of Reclamation.

A ground water subdistrict to the Central Colorado Water Conservancy District has petitioned for and received approval from the Water Court in 1973. The subdistrict boundaries lie wholly within the parent district boundaries but do not include the entire district. The subdistrict was formed for the benefit of the wells included therein and will endeavor to provide replacement water to the stream through implementation of an augmentation plan should such become necessary by the imposition of rules and regulations on the use of underground water.

VIII.

A. ORGANIZATIONS

CONSERVANCY DISTRICTS

Upper South Platte Water Conservancy District	James Settele	Pres.	Fairplay
Central Colorado Water Conservancy District	David J. Miller	Attorney	1004 9th Avenue Greeley
Northern Colorado Water Conservancy District	J. R. Barkley	Manager	P.O. Box 679 Loveland
Lower South Platte Water Conservancy District	Eric Wendt	Secretary- Treasurer	P.O. Box 1725 Sterling
St. Vrain & Left Hand Water Conservancy District	David J. Miller	Attorney	1004 9th Avenue Greeley
VIII

B. ORGANIZATIONS

WATER DISTRICT NO. I

DITCH AND RESERVOIR COMPANIES

A. A. Smith Irrigating Canal Dave Spencer Pres. Snyder Reservoir, Milling and Pipeline Company Beaver Creek Ditch Company John Higgins Secy. Brush Beaver Ditch Company Charles Henry Pres. Brush Bijou Irrigation Company John Samples Secy. 104 West Beaver Ft. Morgan Bijou Irrigation District John Samples 104 West Beaver Secy. Ft. Morgan Corona Ditch Company R. L. Twist Owner Masters Duel and Snyder E. L. Caneva Pres. Rt. 1 Ft. Morgan Fort Morgan Canal Company Lindy Crumley Supt. 111 East Railroad Avenue Ft. Morgan Gill & Stevens Ditch Company Harold Hansen Rt. 1 Pres. Brush Roy Boyles Hillrose Irrigation District Secy. Hillrose Hoover Ditch Company Mrs. Pat Peterson secy. Kersey Adam Koehler Iliff Irrigation District Secy. Sterling Illinois Ditch Company George Allard Pres. Kersey Jackson Lake Reservoir Company Lindy Crumley 111 East Railroad Supt. Avenue Ft. Morgan Johnson & Edwards Ditch Company William Tramp Pres. Hillrose Lower Platte & Beaver Irrigation Roy Boyles secy. Hillrose Company Logan Irrigation District John Elsenach Pres. Sterling Morgan, Prewitt Reservoir Co. John Samples Secy. 104 West Beaver Ft. Morgan North Sterling Irrigation Alex Michel Supt. Foote Building District Sterling Putnam Ditch Company Harlan Snider Pres. Masters Riverside Irrigation Company Cecil Osborne Supt. Box 455 Ft. Morgan **Riverside Irrigation District** Cecil Osborne Supt. Box 455 Ft. Morgan Snyder Ditch & Reservoir Co. Gene Peterson Pres. Snyder Tetsel Ditch Company Bob Meisner Pres. Snyder Trowell Ditch Company Willis Elson Pres. Hillrose Upper Platte & Beaver Canal Co. John Higgins Secy. Farmers State Bank Brush Union Ditch Company B. B. Peterson Pres. Snyder Weldon Valley Ditch Company Maurice Jones Pres. Weldona

Kiowa-Bijou Groundwater Basin

Donald F. McClary

231 Main Street Ft. Morgan

WATER DISTRICT NO. 2

Big Dry Creek Ditch & Reservoir Company	Mrs. G. R. Norden	Secy.	Rt. 1 Ft. Lupton
Burlington Ditch Reservoir and Land Company	Joseph Zajonckowski	Supt.	Brighton
Brighton Ditch Company	George Stieber	Pres.	Rt. 1 Box 104 Ft. Lupton
Coal Ridge Ditch Company	Ray Sarchet	Pres.	Ft. Lupton
Delta Ditch Company	Robert Davis	Pres.	712 10th Street Greeley
Denver Water Board	James Ogilvie	Manager	144 W. Colfax Denver
Farmers Independent Ditch Co.	John Henderson	Secy.	lst National Bank Greeley
Farmers Reservoir & Irrigation Co.	Mel Sarchet	Pres.	Hudson
Fulton Ditch Company	W. W. Gaunt	Secy.	25 South 4th Avenue Brighton
Gardners Ditch Company	Sylvester DiGiacomo	Pres.	6820 York
German Ditch Company	Albert Sack	Pres	Brighton
Godfrey Ditch Company	Jerome Loeffler	Dree	Jacallo
Henrylyn Irrigation District	Ralph Pouse	Managor	LaSaile Dour 141
non-jujn iniugation bibbliot	Raiph Rouse	Manager	BOX 141
Highland Ditch Company	Marry Niv	Com	Hudson
intgritana Dicon company	Mary NIX	secy.	P.U. BOX 15
Little Burlington Ditch Company	Mel Carchet	Dese	Lucerne
Lower Latham Ditch Company	Mer Salchet	pres.	Huason
Lunton Bottom Ditch Company	Victor R. Klein	pres.	Kersey
Macanna Ditch & Decemberry	Ray Sarchet	pres.	Ft. Lupton
Mecanne Diten & Reservoir Co.	Joim Stewart	secy.	Great Western Suga Company Brighton
Meadow Island No.l Irrigation Co.	Wm. Mayer	secy.	Rt. 2 Box 74 Platteville
Meadow Island Irrigation Co.	Ruben Gustafson	Secy.	Rt. 2 Box 145
New Brantner Ditch Company	W. W. Gaunt	secy.	25 South 4th Ave. Brighton
North Star Reservoir Company	G. R. Norden	Pres.	Rt. 1 Ft. Lupton
Platte Valley Irrigation Company	E. D. Bruntz	Pres.	Lagalle
Platteville Irr. & Milling Co.	John Kunzman	Secy.	Rt. 2 Box 120
Slate Ditch Company	George Breikler	Dres	Et Lupton
Union Ditch Company	Mrs. Frances Hill	Secv	Lacalle
Walter & Roberts Ditch Company	Roy Lunvall	Dres	
Western Mutual Ditch Company	Ed. Fritzler	Dree	Greerey
Wellington Reservoir Company	Bernice McConnell		JUJ C Not-
		pert.	Brighton
Thompson Ditch Company	G. R. Norden	Secy.	Rt. 1 Box 196 Ft. Lupton

WATER DISTRICT NO. 3

Arthur Irrigation Company	Ronald Strahle	Secy.	United Bank Building Ft. Collins
B. H. Eaton Ditch Company	Mrs. Carol Schmidt	Secy.	P.O. Box 98 Windsor
Boxelder Ditch Company	Wm. Stover	Secy.	United Bank Building Greelev
Boyd Irrigation Company	Rodger Houtchens	Secy.	1007 9th Avenue Greeley
Cache la Poudre Irrigation Co.	Cecil Elliott	Pres.	Ft. Collins
Divide Canal & Reservoir Co.	Don E. Engel	Secy.	106 Elm Eaton
Dixon Canyon Ditch & Reservoir Co.	Ronald Strahle	Secy.	United Bank Building Ft. Collins
Greeley Irrigation Company	Edgar Bartels	Secy.	1227 8th Avenue Greeley
Jackson Ditch Company	Vivienne Woodward	Secy.	2319 E. Mulberry Et Collins
Kern Reservoir & Ditch Company	C. W. Kirby	Pres.	P.O. Box 220 Windsor
Kitchell Reservoir Company	Alice Fisher	Secy.	Rt. 4
Lake Canal Company	John Hartman	Secy.	United Bank Building
Lake Canal Reservoir Company	John Hartman	Secy.	United Bank Building
Larimer County Canal No. 2 Irrigation Company	Ronald Strahle	secy.	United Bank Building Ft. Collins
Larimer & Weld Irr. Company	Don E. Engel	Secy.	106 Elm Eaton
Larimer & Weld Reservoir Co.	Don E. Engel	Secy.	106 Elm Faton
Mail Creek Ditch Company	Ronald Strahle	Secy.	United Bank Building
New Cache la Poudre Irr. Co.	Jim Muroya	Secy.	708 8th Street
New Mercer Ditch Company	Ronald Strahle	Secy.	United Bank Building
North Poudre Irrigating Co.	Lawrence Cox	Mgr.	North Poudre Irr. Office
No. 10 Ditch Company	Alden Hill	Secy.	160 W. Mountain Ave.
Ogilvy Land & Irr. Company	Mrs. Shirley Wayman	Secy.	1007 9th Avenue
Pleasant Valley & Lake Canal Co.	Ward Fischer	Secy.	Ist National Bank Bldc Ft. Collins
Taylor & Gill Canal Company	Wm. Seaworth	Pres.	Rt. 3
Tunnel Water Company	Vivienne Woodward	secy.	2319 E. Mulberry Ft. Collins

WATER DISTRICT NO. 3 (continued)

Warren Lake Reservoir Company	Ronald Strahle	Secy.	United Bank Building Ft. Collins
Water Supply & Storage Company	Vivienne Woodward	Secy.	2319 E. Mulberry Ft. Collins
Whitney Irrigation Company	Mrs. Carol Schmidt	Secy.	P.O. Box 98 Windsor
Wm. Jones Irrigation Company	Geo. Firestien	Pres.	Farmers Spur Greeley
Windsor Reservoir & Canal Co.	Don Engel	Secy.	106 Elm Eaton

Arkins Water Association	Mrs. Joy Cross	Secy.	P.O. Box 6 Masonville
Bald Mountain Water Association	Charles McAfee	Secy.	Rt. 2 Box 319N Loveland
Beeline Ditch Company	Guy A. Shable	Secy.	Rt. l Box 65 Milliken
Big Thompson Manufacturing Ditch Company	Robert Christensen	Secy.	P.O. Box 642 Loveland
Big Thompson & Platte River Ditch Company	Guy A. Shable	Secy.	Rt. l Box 65 Milliken
Blower Ditch Company	Henry Pope, Jr.	Supt.	Rt. 1 Box 138 Longmont
Boulder & Larimer County Irri- gation & Manufacturing Ditch Company (Ish)	L. V. French	Secy.	Rt. 2 Box 23 Berthoud
Buckhorn Highline Ditch Co.	Mrs.Zella R. Soderburg	g Secy.	Star Route Box 317 Loveland
Buckhorn Water Users Association	Mrs. Helen L. Mettlen	secy.	Masonville
Central Weld County Water District	Dale D. Olhausen	Secy.	115 18th Street Greeley
Consolidated Hillsborough Ditch Company	Don Davis	Secy.	lst National Bank Bldg. Johnstown
Consolidated Home Supply Ditch & Reservoir Company	W. R. Keirnes	Secy.	Star Route Box 450 Loveland
Culver Irrigation Company	George Landers	Secy.	P.O. Box 209 Longmont
Diagonal Water & Sanitation District	Jim Hudson	Secy.	1200 28th Street Boulder
Eagle Ditch Company	Mrs.Donald H. Lemmon	Secy.	Rt. 2 Box 120 Berthoud
Eglin Ditch Company	Wayne Hicks	Secy.	Rt. 2 Box 127 Berthoud
Evans Ditch Company	Town Clerk of Evans	Secy.	Evans
Fairport Reservoir Company	Nellie Ver Straten	Secy.	Rt. 1 Ft. Collins
Farmers Irrigation Ditch & Reservoir Company	F. Ray DeGood	Secy.	P.O. Box 657 Loveland
Greeley-Loveland Irrigation Co.	Carroll E. Flack	Secy.	803 23rd Avenue Greeley
George Rist Ditch Company	W. R. Kiernes	Secy.	Star Route Box 450 Loveland
Handy Ditch Company	Louis Bein	Secy.	Box 460 Berthoud
Hill & Brush Ditch Company	Jim Nelson	Secy.	Rt. 1 Milliken
Kershner Ditch Company	Harry Soderberg	Secy.	Star Rt. Box 317 Loveland
Little Thompson Valley Water District	Lovilo Fagan	Mgr.	307 Welch Avenue Berthoud
Longs Peak Water Users Assn.	Mrs. Joanne Macy	Secy.	P.O. Box 714 Longmont

WATER DISTRICT NO. 4 (continued)

Louden Irrigation Reservoir and Canal Company	Ralph Benson		925 West 29th Loveland
Loveland & Greeley Reservoir Company	Carroll E. Flack	Secy.	808 23rd Avenue Greeley
Mariana Water District	Lovilo Fagan	Secy.	307 Welch Avenue Berthoud
Masonville Union Ditch & Reservoir Company	Ben Milner	Secy.	Star Route Loveland
Minor Longdon Ditch Company	Elmer Rutt		Rt. 1 Box 3 Johnstown
New Ish Ditch & Reservoir Co.	Horace G. McCarty	Secy.	P.O. Box 658 Longmont
North Carter Lake Water District	Lovilo Fagan	Secy.	307 Welch Avenue Berthoud
Osborn & Caywood Ditch Company	Donald J. Befus	Secy.	716 S. County Rd. 15 Berthoud
Perkins Ditch Company	Arnold Friend	Owner	Star Route Loveland
Rist & Benson Reservoir Co.	Ralph Benson	Supt.	925 West 29th Loveland
Rockwell Ditch Company	Max H. Schaal	secy.	Rt. 1 Box 50 Berthoud
Ryan Gulch Reservoir Co.	Lavilo Fagan	Secy.	307 Welch Avenue Berthoud
Seven Lakes Reservoir Co.	Carroll Flack	Secy.	808 23rd Avenue Greeley
South Side Irrigation and Reservoir Company	Robert Ausenhus	Secy.	203 East 5th Street Loveland
Victory Irrigating Canal Co.	Cal Carter	Secy.	Star Route Loveland
Wind Cliff Water Association Inc.	Mrs.Vivien Wylene Buser	Secy.	62 Elmhurst Lane, Riverdale Bettendorf, Iowa

Allen Lake Reservoir Company	Frank Gould	Supt.	Foothills Highway Boulder
Beckwith Ditch & Reservoir Co.	Mark Benson	Secy.	1500 Florida Avenue Longmont
Bonus Ditch Company	Fred Page	secy.	Rt. 2 Longmont
Boulder & Left Hand Irrigation Company	Nels Jensen	Secy.	436 Coffman Street Longmont
Clover Basin Ditch & Reservoir Company	Wayne Jurgens	secy.	Longmont
Davis & Downing Ditch Company	Gordon Kennedy	secy.	Rt. 3 Longmont
Denio & Taylor Ditch Company	Harold Dawson	Secy.	Longmont
Highland Ditch Company	George Landers	Secy.	lst National Bank Longmont
Highland Lake Reservoir Co.	George Landers	Secy.	lst National Bank Longmont
Ide & Starbird Reservoir Co.	L. A. Biddle	Secy.	Mead
Independent Reservoir Co.	George Reynolds	Secy.	Longmont
James Ditch Company	Don Andrews	Secy.	Rt. 3 Box 171 Longmont
Last Chance Ditch Company	Al Kurtz	Pres.	2
	Harold Nelson	Secy.	Rt. 4 Longmont
Left Hand Ditch Company	Frank Gould	Supt.	Foothills Highway Boulder
Longmont Supply Ditch Company	George Landers	Secy.	P.O. Box 209 Longmont
Lower Baldwin Ditch Company	Franklin Murphy	Secv.	Walden
Niwot Irrigation Ditch Company	Robert Sewald	Secy.	Rt. 2 Longmont
Oligarchy Irrigating Company	George Landers	Secy.	P.O. Box 209 Longmont
Peck Ditch Company	George Wagner	Secy.	Rt. 3 Longmont
Pella Ditch Company	Rueben Fredstrom	Secy.	Rt. 3 Longmont
Palmerton Consolidated Ditch Co.	James Goss	Secy.	Rt. 3 Longmont
Pleasant Valley Reservoir & Ditch Company	Harold Dawson	Secy.	lst National Bank Longmont
Rough & Ready Ditch Company	Harold Dawson	Secy.	lst National Bank Longmont
Smead Ditch Company	Warren Bashor	Secy.	Rt. 3 Longmont
South Flat Ditch Company	David Wagner	Secy.	Rt. 3 Longmont
South Ledge Ditch Company	Reinhold Loukonen	Secy.	Lyons
Supply Ditch Company	George Landers	Secy.	lst National Bank Longmont

WATER DISTRICT NO. 5 (continued)

Swede	Ditch Company	Ed Sanderson	Secy.	Rt. 3
				Longmont
Upper	Baldwin Ditch Company	Franklin Murphy	secy.	Walden
Union	Ditch Company	Frances Hill	Secy.	LaSalle
Union	Reservoir Company	Frances Hill	Secy.	LaSalle
Zweck	& Turner Ditch Company	Russel Zweck	Secy.	Rt. 3
				Longmont

Andrews & Farwell Ditch Co.	Forest White	secy.	Rt. 3 Boulder
Autrev Eggleston	Glen Murphy		Ames. Towa
Baseline Land & Reservoir Co.	Mrs. Margaret Nelson	Secy.	Rt. 1 Box 218 Erie
Boulder Ditch (Town of)	City of Boulder	Owner	City Hall Boulder
Boulder & Left Hand Irrigation Company	Niels Jensen	Secy.	Longmont National Bank
Boulder & Weld County Ditch Co.	Geo. Landers	Secy.	P.O. Box 209
Boulder & White Rock Ditch & Reservoir Company	Frank F. Flanders	Secy.	P.O. Box 209
Butte Irrigation & Milling Co.	Cliff Hodgson	Pres.	7996 Valmont Drive Roulder
Carr & Tyler Ditch Company	Milton Nelson	Pres.	2040 W. Longs Peak
Church Ditch Company	Marcus Church	Pres.	Broomfield
City of Lafavette	City Manager	1-0.00	Lafavette
City of Louisville	City Manager		Louisville
Coal Ridge Ditch	Mrs. Mildred Sarchet	Secv.	Bt_2 Box 162
			Ft. Lupton
Community Ditch	M. L. Sarchet	Pres.	402 Cochran Building 1031 15th Street
Consolidated Lower Boulder	Mrs. Ray Nelson	Secv.	Rt. 1 Box 218
Reservoir & Ditch Co.		***1*	Erie
Davidson Ditch & Reservoir Co.	Mrs.J.D. Mayhoffer	Secv.	Rt. 1
	-	- 1	Lafayette
Dry Creek Davidson	Ralph Bixler	Pres.	Lafavette
Dry Creek No. 2 Ditch Company	C. B. Beitelshees	Secy.	Rt. 1 Box 322
		-	Boulder
East Boulder Ditch Company	Public Service Co. of Colorado (%Leonard Reich- wein)		P.O. Box 840 Denver
Eggleston No. 1	Glen Murphy		Ames. Towa
Eggleston No. 2	Glen Murphy		Ames, Towa
Enterprise Irrigation Ditch Co.	Leonard Reichwein		P.O. Box 840
Erie Coal Creek Ditch & Reser-	Dave Oscarson	Pres.	Rt. 1
voir Company			Erie
Farmers Ditch Company	H. O. Dilsaver	Secy.	Woolworth Building Boulder
Goodhue Ditch & Reservoir Co.	Mrs. Gale Harmon	Secy.	Lafayette
Godding Daily & Plumb Ditch	Niels Jensen	Secy.	384 Main Street
-		4	Boulder
Godding Ditch Co. Highland South Side	Niels Jensen	Secy.	Longmont National Bank Longmont

WATER DISTRICT NO. 6 (continued)

Green Ditch Company Harden Harris	Roger Fell L.W.Van Fleet Fred Neshitt	Secy. Owner	Boulder Denver Donvor
Houck No. 2 Ditch Co.	Milton Nelson	Owner	2040 W. Longs Peak Longmont
Howard Ditch Company	Bill Suittes	Secy.	65 Manhattan Drive Boulder
Jones & Donnelly Ditch Company	Harley Keeter, Jr.	Secy.	Boulder
Kerr No. 1 and 2	Mrs.J.D.Mayhoffer	Owner	Lafayette
Kinnear Ditch & Reservoir	M. L. Sarchet	Pres.	Denver
Last Chance Ditch Co.	City of Westminster	P.Owner	Westminster
Leggett Ditch & Reservoir Co.	Niels Jensen	Secy.	Longmont National Ban Longmont
Lyner-Cottonwood Consolidated Ditch Company	Walter Wise	Secy.	11587 Jasper Road Canfield Erie
Lower Boulder Ditch Company	Mrs. Margaret Nelson	Secy.	Rt. 1 Box 218 Erie
Martha M. Mathews	A.S.Bailey	P.Owner	Broomfield
Marshall Reservoir	M. L. Sarchet	Pres.	402 Cochran Building
			1031 15th Street Denver
Marshallville Ditch Co.	Ewalt Anderson	Secy.	Rt. 3 Box 325 Boulder
McGinn Ditch Company	Mrs.W.A. Thomas	Secy.	1232 Grand View Avenue Boulder
McKay Reservoir	M. L. Sarchet	Pres.	402 Cochran Building 1031 15th Street Denver
N. K. Smith & Tyler Ditch	Serafina	Owner	Rt. 4 Longmont
New Anderson Ditch Company	Grovner L. Ketterman	Secy.	3055 25th Street Boulder
North Boulder Farmers Ditch Co.	John Reich	Secy.	P.O. Box 227 Boulder
Original Cottonwood No. 2 Ditch Company	Albert Kolb	Secy.	Rt. 3 Box 316 Boulder
Rural Ditch Company	Catherine C. Owen	Secy.	1020 Emery Street Longmont
Silver Lake Ditch Company	Everette Long	Secy.	3240 Broadway Boulder
Schearer Ditch Company	L. W. Van Fleet	Owner	Denver
Smith & Emmons Ditch Co.	Ward Burrett	Secy.	Rt. 4 Box 54 Longmont
Smith and Goss Ditch Co.	City of Boulder	P.Owner	Boulder
South Boulder Canon Ditch Co.	Joe Beauprez	Pres.	Lafayette
South Boulder & Bear Creek Ditch	Tim Shanahan	Secy.	Marshall Boulder
South Boulder & Coal Creek Irrigating Ditch Co.	Richard Viella	Secy.	Louisville
Tom Delahant Ditch	Milton Nelson	Pres.	2040 W. Longs Peak
William C. Hake	Mrs. J.D. Mayhoffer	Owner	Lafayette

WATER DISTRICT NO. 7

DITCH AND RESERVOIR COMPANIES

Bayou Association of Ditches	Earnest R. Schultz	Secy.	4315 Xenon Street Wheatridge
Boyle	A. T. DeBell		3951 W. 56 Way Denver
Church (Golden City & Ralston Cr.) and Croke Canal	G. A. Pelz	Secy.	Farmers Reservoir & Irrigation Company Denham Building 1845 California Denver
Colorado Agricultural	Louis Rullo	Secy.	Rt. 1 Box 043 Denver
Cort Graves & Hughes	Sam Spano		6640 W. 52 Avenue Arvada
Denver View Water Company	Wayne Harkness	Secy.	Rt. 1 Box 590 Golden
Farmers Highline	Mrs.Virginia Collins	Secy.	Farmers Highline Canal & Reservoir Company 8889 Washington Avenue Denver
Fisher	John DiTirro, Jr.	Secy.	4400 Wynkoop Denver
Kershaw	Jack Calabrese		5801 Lowell
Lee Stewart & Eskins	Albert F. Ervin	Secy.	12703 W. 52nd Avenu Arvada
Lower Clear Creek Company (Clear Creek & Platte River Ditch)	Frank Wooley	Secy.	Rt. 1 Box 515 Denver
Manhart	George Ditolla		6030 Wolff Arvada
Ouelette	Ira Fox		4298 Kipling Wheatridge
Reno Juchem & Swadley Longan	Mrs.Ernest Delva	Secy.	Consolidated Juchem Ditch & Reservoir Co. 6501 W. 60th Avenue Arvada
Rocky Mountain, Miles & Eskins and South Side	W. F. Moses	Secy.	Adolph Coors Co. Golden
United Water Company	Henry J. Johnson	secy.	Box 840 Denver
Wannemaker	Ernie Bergman	secy.	10285 Ridge Road Wheatridge
Welch and Agricultural	Wilson B. Roup	Secy.	Agricultural Ditch & Reservoir Company 10080 W. 27th Avenu Lakewood

79

DITCH AND RESERVOIR COMPANIES

City & County of Denver	Wm. Schuler		Board of Water Commissioners 144 West Colfax
F. L. Green Ditch Company	Edith Jurgens	Secy.	5480 West Arizona Place
Last Chance Ditch Company	Wm. Schuler		Board of Water Commissioners 144 West Colfax Denver
Nevada Ditch Holding Company Northern Colorado Irrigation Co.	Wm. Schuler " "		8 11 11 11 13 13 14 18
Tri City Trust	11 11		17 11 17 11
WATER DISTRICT NO. 9			
Bergen Ditch & Reservoir Co.	Wm. Grant	Owner	Western Federal Savings Building Denver
Bowles Ditch Company	Wm. Grant	Owner	11 H H
Colorado Central Power Co.	Leonard Reichwein	Engr.	Evergreen
Hodgson Ditch Operating Ass'n	B. F. Lowell	Pres.	Mt. Morrison
Independent Highline Ditch Co.	Stan Harwood	Owner	Mt. Morrison
Pioneer Union Ditch Company	Jack McCoy	Pres.	Mt. Morrison
Ward Ditch Company	Wm. V. Hodges, Jr.	Secy.	Denver Club Bldg. Denver
Warrior Ditch Company	Earl Maddox	Pres.	Mt. Morrison
WATER DISTRICT NO. 23			
Jefferson Lake Ditch Company	Paul Anschutz	Pres.	Jefferson
WATER DISTRICT NO. 48			
Tunnel Water Company	Viviene Woodward	Secy.	2319 East Mulberry Fort Collins
Water Supply & Storage Co.	Viviene Woodward	Secy.	2319 East Mulberry Fort Collins
WATER DISTRICT NO. 49			

Hale Ditch Company

Hale

WATER DISTRICT NO. 64

Batton Ditch Company	Clifford Sherwin	Owner	P.O. Box 63
			Sterling
Bravo Ditch Company	Ivan Barden	Secy.	Iliff
Carlson Ditch Company	Hulbert Reichelt	Secy.	Julesburg
Chambers Ditch Company	Wm. Condon	Owner	916 Fairhurst Street
			Sterling
Davis Brothers Ditch Co.	Paris Oaccomasso	Secy.	Atwood
Farmers Pawnee Ditch Co.	Robert Roberts	secy.	P.O. Box 70
			Sterling
Harmony Ditch Co. No. 1	Mrs. Howard Hamilton	Secy.	P.O. Box 205
			Crook
Henderson & Smith Ditch Co.	Scalva Brothers	Owner	R. R.
			Sterling
Iliff & Platte Valley Ditch Co.	Earl E. Reynolds	Secy.	205½ Main Street
			Sterling
J. B. Ditch Company	Frank Manuello	Owner	Iliff
Liddle Ditch Company	Don Liddle	Pres.	Ovid
Lone Tree Ditch Company	Kent L. Reynolds	Secy.	P.O. Box 111
			Sterling
Low Line Ditch Company	Earl E. Reynolds	Secy.	205½ Main Street
			Sterling
Peoples Ditch Company	Sam Carg	Secy.	Rt. 2
			Sterling
Peterson Canal & Reservoir Co.	Jacob Sanger	Pres.	Ovid
Proctor Water Company	Kent L. Reynolds	Secy.	P.O. Box 1111
			Sterling
Ramsey Ditch Company	Don DeMers	Secy.	708 Elm Street
			Sterling
Red Lion Ditch Company	Maynard Sonnenberg	Secy.	P.O. Box 1271
			Sterling
Schneider Ditch Company	James Williamson	Secy.	Atwood
South Platte Ditch Company	Melvin Bartlett	Secy.	Merino
South Reservation Ditch Co.	James Parker	Secy.	Ovid
Springdale Ditch Company	Robert Roberts	Secy.	P.O. Box 70
			Sterling
Sterling Irrigation Company	Lawrence Giacomini	Secy.	P.O. Box 1013
			Sterling
Sterling No. 2 Ditch Company	Lester Garner	Secy.	327 Taylor
			Sterling
Upper Harmony Ditch Company	Garold Merick	Secy.	Crook
Julesburg Irrigation District	Herbert Bonesteel	Secy.	Julesburg
North Sterling Irrigation Dist.	Alex Michel	Secy.	205 ¹ 2 Main Street
		_	Sterling
Prewitt Reservoir Company	Alex Michel	Secy.	205 ¹ 2 Main Street
			Sterling

.

Laird Ditch Company	Warren Noffsinger	Secy.	Laird
Pioneer Ditch Company	Paul Wiley	Pres.	Laird
Wray Ditch Company	Henry Wiltfang	Pres.	Vernon

VIII.

C. GROUND WATER MANAGEMENT DISTRICTS

Although some consideration was given to forming management districts under the Basin Authority Bill adopted in 1969, no such districts were formed. There is still much opposition to the concept of underground water regulation and indecision as to how best to cope with the whole situtation on the part of water users taking water from the alluvium tributary to the South Platte River.

The ground water management districts in the non-tributary areas continue to function as they have in the past. These districts are shown in the following tabulation:

GROUND WATER MANAGEMENT DISTRICTS

Arikaree Management District	Dave Idler	Secy.	Kirk
Central Yuma Management District	Elbert Zion	Secy.	Rt. 1 Vernon
Frenchman Management District	Doyle Neiman	Secy.	Holyoke
Plains Management District	Cliff Hawthorne		1454 Martin Avenue Burlingtor
Sandhills Management District	Richard Wisdom	Secy.	Holyoke Route Wray
W-Y Management District	Roy L. Mekelburg	Secy.	Rt. 1 Box 19 Yuma

The Division of Water Resources has entered into a program to computerize all its records. Irrigation Division No. 1 was chosen to make the initial effort of entering current diversion data into the program because of its proximity to the State Office in Denver and to Colorado State University in Fort Collins with whom the State had contracted for computer service. It was further felt that if computer records could be generated that adequately reflected the diversions and distribution of water with all the complexities inherent in administration of water rights on the South Platte River and its tributaries, then the system could be adapted to any other part of the State. Consequently, five water districts were designated for that purpose. These were Districts No. 1, 2, 3, 8, and 64 and included all of the main stem of the South Platte below Cheesman Reservoir as well as the Cache la Poudre watershed which is generally conceded to have the most complex supply, distribution, reservoir and exchange system in Colorado.

Needless to say, many problems have been encountered in trying to adapt to this modern method of record keeping. Procedures had to be analyzed, definitions standardized, report forms developed, communications maintained and meetings held for periodic discussions. Definite, and perhaps an unexpected measure of success has been achieved. This has been largely due to the spirit of cooperation, interest and extra efforts extended by the participating water commissioners in the above mentioned districts. Certainly they are to be commended for their outstanding efforts.

As of mid-December 1973 the records generated by the computer are still being checked for accuracy and completeness. To the extent that those records are used in this annual report, any figures herein shown are subject to revision pending final certification.

The above mentioned water commissioners were asked to comment at the end of the year upon their experience with the computer program and to express their ideas upon its usefulness, adaptability and the work requirements, both in time and effort.

The written replies received to date are those from Robert Samples, Jack Neutze and Robert Littler, water commissioners in Districts 1, 3 and 64 respectively. These gentlemen are intelligent, deeply concerned and very capable employees. Copies of their comments follow.

December 10, 1973

Division of Water Resources W. G. Wilkinson, Division Engineer Room 208, 8th & 8th Office Building Greeley, Colorado 80631

TO: W. G. Wilkinson, Division Engineer

FROM: Robert Samples

SUBJECT: Computer Comments

In my estimation, this was one of the best water years to start a new project on the computers. Due to the abundance of irrigation water, everything ran very steady and did not require as many daily changes to keep records of. This project is like any other change and you have to adapt a pattern of operation as time progresses. My pattern was this:

My first objective was to have the Annual Report state the same as it did in 1972, then I looked at a method of reporting that would allow anyone to make an analysis of the total water diverted for use by the many methods. I felt that I needed a method that would enable me to predict the amount of water that is available for re-use. In the previous record keeping there was no method to analyze this amount of water lost in transportation except by averages and that is only a guess. This I did by including all reservoir releases to the streams. I did not try to make many changes all at once, but hope to be able to work out more improvements in reporting as time goes on.

My main problems with the computer scan sheets were as follows:

- 1. Computer does not think as I do.
- 2. I finally understand the computer, it only prints what it is told.
- 3. I have to change my translator thinker from a number to a # 2 dark lead pencil line.
- 4. I am very discouraged to find that I will have to buy eye glasses to read the small numbers on the scan sheets.
- 5. Also very discouraged to find that I must be color blind, some of the colors on the scan sheet caused me to make more errors than others.

.

86

- 6. I found that in correcting the final print-out of the year that in most cases the errors were my own, the most frequent being the following.
 - Neglect of decimal point a.
 - b. Forgetting to 0 out from one week to next.
 - c. Remembering the correct ident number.
 - d. Keeping same kind of ident and type from week to week.
 - e. Would make a correction on one print out and the same error would show up again.
 - 7. I kept my records the old way in order to have a daily check on the print out. This caused extra work but seems necessary at this time.
 - 8. Some scan sheets never did show up in the print-outs. (lost)
 - 9. When reading a carbon scan sheet they would often have a scratch on the top scan or the lines did not line up, which made them of no value.

Questions I have:

- 1. Can errors be corrected readily.
- 2. Can I retrieve material when needed or will I have to " wait in line ".
- 3. What will be the cost, (not to me, but to water users.)
- 4. May I change my reporting method as need and demand change.

Summary:

I am always willing to change if it makes my work more meaningful, easier, more accurate, beneficial or more economical.

Respectfully submitted,

obset Samples

Robert Samples Water Commissioner District 1

Dugan Wilkinson Division Engineer 208 8th & 8th Office Bldg. Greeley, Colo.

Dear Dugan: Going on the computer has not been a rewarding experience for me. I have found that it has taken about 20 extra hours a week of office time to accomodate the amount of detail necessary to get the information on the opscan sheets. This time has to be taken from the time for field observations thus reducing the effective administration of the district.

To illustrate:

Prior to the computer program we had five basic sources; Foreign [transmountain], river, storage, project, and exchange. The individual structures were totaled collectively into these sources and reported in the weekly reports as daily averages and in the annual report as daily amounts. There is no provision for this in the computer program so that instead of one foreign source there are now six, instead of one source from storage there are now twenty and for exchange there are now about twenty. Also prior to the computer program we had water going to direct use and water going to storage; with the computer this has been increased to nine uses plus the sixty or more reservoirs to be reported on individualy. On the Larimer County Canal which has four foreign ditches, river water and project water going to nine reservoirs and to irrigation, the number of possible combinations is increased from six to sixty. This has about tripled the number of computations necessary to get the information on the opscan sheets. Acode number was issued that enabled the water to be collected in the canal and then collectively distributed to irrigation and to the varios reservoirs which is of some help. Attachment "A" shows the number of entries needed prior to the inception of the computer program. Attachment "B" shows the number of entries needed to get the same information on the opscan sheets. As the opscan sheets cannot be used for a worksheet and the weekly reports do not provide for the detail, it is necessary to have a separate worksheet to make the necessary computations and to transfer them to the reports and opscan sheets resulting in longhand triplication.

It is being suggested that a form be used as suggested by the attachments "A" and "B" that could be used as a worksheet and copies Xeroxed for the Division Engineer and the computer to be keypunched. This may reduce errors by eliminating copying but could be offset with illegible entries.

While some problems were found to be the direct result of mis-marking the opscan sheets, most were the complete omission of data from the printout. Whether this was from my lack of filling out data sheets or their being lost I have not assertained. About 1500 sheets were filled out during the year requiring about 150 hours of time.

You and I both feel that the data being reported is in excess of that necessary to give a complete picture of river operations. I have never had a request for information in such detail; the requests are for total deliveries and diversions usually on a monthly basis and they are not interested in how the totals are arrived at. The major ditch companies keep their own records of the sources of their diversions so their requests are for totals of river water only.

With minor changes I would like to return to the original format which will require a change in the computer coding. I would like to reduce the code headings from five to two or three which would be sufficient to describe a run and eliminate the arbitrary 'piping' of water from one structure to another and reduce the number of possibilities for describing a run.

-27

Except for gage heights the return to whole numbers and eliminating the use of decimal amounts is desirable.

By doing this the extra time would be for entering the coding information on the reports - about an hour or two a week.

Sincerely, John M. Mentze

1

	(\mathcal{A})	Totals	13050	1150	204	49.51	×- \$20	640	5817	4873							n in the second s	and a second of a second of a second of a										90
		Ĩ			- Transition (constraints)	;	, , , ,					and the second second			مود فارود و المرافقي		And the second second	gan a a -d a a an, an	an in the second second	ماد بالمحمد ويواد والمحمد في وو		: ; ; ; ;		:			•••	
		ត ស	0¦ ř	023		387	164	010	256	420								A SALA AND A SALA AND A					a a status need to the		:-			
	73	2 9 2 9	375	202	0	1.4	295	0//	. 160	386		elinan een di sen toke		H = D				noris in the second	a and the second se		ang ana ang ang ang ang ang ang ang ang	ан (1939) ан тала ан санасан са	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			r . ki metagene etase	- - - 	
	<u>6</u>	28	385	2010	025	312	[33	o;)	263	396		an tanàn ang ang ang ang ang ang ang ang ang an		punc							1 			مرید . ۱				
	10	12	410	037 6	0 757	32.8	002	070	61.8	4-80	an san it Gris Jimat Ing	an digina da san sa	and she was a second	大中大			-					والمحمد بالمحمد المحمد الم	a (a 'i Via a tati a tati a				1	
	00	26 26	415	230	045	340	100	010	484	1221	n die der im verse weiten in einem	· · · · ·	A State State State	ST	a and a second se	a da produzen de como de como E				-								
	g Date	25 0	1977	37 6	539	340	062	120	424	496	stato i sulla suo y normativativativativativativativativativativ			1. 16 1			- A						_				* • · · · · · · · · · · · · · · · · ·	••••
	ginnin _g	9 24	125	14 C	215	10 10 10	023	263 0	715	188				X X 2			and a second sec											·· ··
•	Bec	23 8 23	130 4	19 0	07 (of .	89	0 100	42	13)	**************************************																	
	000	7 22	102	1 12	0	0-	337 2	202	385	22			a T	PLAS												-		
	ict No	21	1 00	0 1	0	30	02	72	70 6	172. 4				C - J		rar e tri (e soome e averdiente												
	Distr	20 2	10 16	0. 6	Le	66	38	13 0	25 H	23 4				4. And Ca	279 - 240 Br - 240	ai tea contra d										[
		4 0	10 4	14 02	3 0	53 3	38 0	14-1	# 20	4			a and a second se	5 4 1				[
	- NO	Σ	40 4	10 11	0	6 3	3 C Q	4 1	16 4	54	,			LINE	41777												, .,	-
	ivisio	2 19	4 01	10 6		1 30	38 0	4	5	14 5				36.00	PUNC													
	Δ	- 9	70 W	7 20	t. Seen te configurateuro co	3	37 0.	3 1	<u>ما.</u>	3 5				Daut	X 口 人													
	بر	-	±	2		2	0		56	0		141-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1					_			1								
	t Mont					- - - - - -			4 - " - 4 - 2 - 1					17.14	101	\$3Q3	-0-											
		Rese					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					DED		N B	0 ND	012 14	, 0,	,								1] }		
	_			0	0	0	0	0		T		NEF		DA.	2 .v								-			ے۔ - - -		
	SCES	- mo	5		*		111		911			I NG		N T N	17.10			,		-			1 		1	1 		
	RESOUR	u v	>		~	+	6	E)	<u>ک</u> ا	8		<u>م</u> ر							+				-					
	WATER	<u> </u>	2	116	dill	6	×	*			and the second	\star				3679	2672	- 	and a second		4 	1 · · ·	1		•	ì.	n an	• • •
	ON OF	۵ ۲	N. W.C.		57665	5 N° W°						1	-							:		:	-	1				
	DIVISI		Rurea (1 		TRI	5	E L	1			,		 	 -		, , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , ,	÷ •	, 			1.	-			· ·
		<i>.</i>	· · ·		<u>.</u>								- - - -	1			-			: 				* 1				·
		•					¢		` ;	i			2				1						к ,					

a) toto	300	150.	200	88	6151	617		a.	\$70	19.62	57 0	7-		30	10		n) NO	• ••••	/~	1- ·	2		67	, 113
	۲	1		5			~	an ang panan sa sa baga		· · · ·	3 ° °	: 			20										5
	-						0	- - 		·) Č	•						N D.			0				5
	¥ —	410	18 19	173	1	50 1-	5				7 - 2				-1		•			n K	S.			·	NZ
	14	375	<u>2</u> 6	421	∿3 , Î	22	149				1.2.1			· ·	10	0		2		•				O,	16
	13	60 70 70	48	160		H.	101		•	0			:		\overline{m}	5	1	×	0.	:		0		13	じっぺ
	12	110	37	175-	4.	+++	105	4		67		·		:		$\mathcal{J}_{\mathcal{I}}^{\mathcal{J}}$			25		S.	Ŕ		8	8LH
6	11	4.15	$\frac{\partial}{\partial t}$	08/	4	オキ	1/2	•		17 W			•	- - -		10.1			v_{j}	•	P	-		с) хі	181
	0 75	425	37	22!	fu	43	//3			5 M	 		••		0	19	; ,		$ u_{j} $		6	N.C.		<i>20</i>	404
27	646	425	44	205	ln	121	till			20	0:				R	· · · ·			N.	-	6	Ϋ́,		21	1.65
27-1	8 6	130	611	761	j.O	42	63				202	a Andreas and a set	· 2' • •	; ;					·· . ·			· · ·			1941
$D_{H} \uparrow E$	7	120	161	000	9	HH	19			0	1				64	0	. :		0		r }	хс У			10
HOW-	6	- 00°	01.	25	1	46	79	2		m		0	0	1	0			· ;	ĿЭ Г	о О с	 . <u></u>	νć			H70
• Broim	5	201	67	8	1	4	53 53	•		12.	· · · · · · · · ·	-t-	l			15/				1 ₉		, 			13
	4 0	5 C	10 ·	1. 1.	e	11	6			13 1		4	<i>ا</i>		6	20	•			- <i>T</i> -					1 20
· · ·	ň	5 S	7			7-	20			<u> </u>			· · · ·		5					÷.	1447-000 I I I		·		
02	2		7 70	0/ 2	8		7 . 1		:	3		+			18										36 3
v v v	- 4) Ø 	7 - 2			0 4	6			3		1.			2		· · · ····					· ·			6- 2-
stric		- 0	2	10		L-9.	15	;	:	11	0		0		ς.	0		0	0	-X-	<u> </u>	0		С.	10
	 	- - -	0	01	0	01	2	•	. :	10	0	Q	10		\mathcal{O}	1.01		0	o	C_{i}	$1 \phi_{\rm c}$	0		101	
No.	E (3	·	1091	16021	1605	0017		· - · · · ·	1.11.5	1116	611	0412		116	2442		116	9212	10	3737	6		8448	
ision	ູ ບ 	0	· · · ·	#	din	7-	ن ــــــــــــــــــــــــــــــــــــ			К	9	Ø	R	,	21			5	53	S.	<i>D</i> ,	19	•		~
Div		<u>2</u>	411	411	112	16	0	26792	9192	911	3744	3735	011	3-74-0	3742	1112	444.6	2736	116	3737	1116	3739	3743	6	
CES	lonth vir	L						284	-0-		1212.	0.0		626	00 ka		· On L	2012		12981		202	2000		1. C. S. S.
RE SOUR	t of <i>N</i> estervo	Ľ.		•	·	 		9.0 M	0	• .	63 01	22 1.4		197 DV	7.5 CZ	··· ·	4 1 4 2 7 2	20275		. 5' 01		1.90	17 60		
ATER	<u>ה ת (</u>	פ ג ע		 . } -		-		3		·	K De		· · · ·		25			3 S	:	<u></u> 01		250 	<u>е</u> А		* ~
4 OF W	. '	re < Coun	, 1.		/I X	1.4		12	5. D. :		BLK HL	CYRT	1. F.	1.14			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		، 22 ا	- MC		15/4	-1.11/-		'RF
• 1510		nc i n	12	, ().		V) ·		S S	1	ŝ		- - -	X	; 		×.					\mathcal{F}_{i}	-	· ·		

 P_{N}

December 10. 1973

TO: W.G.Wilkinson, Division Engineer

FROM: Robert D. Littler, Water Commissioner, Dist. 64 R.D.L.

SUBJECT: Computer Reporting

This is an evaluation of District 64 only. It does not have as many types or exchanges of water as do many other districts.

If initial information could be permanently recorded in computer, then one form only would be needed for entire yearly information. This would simplify our system. Repitition of records complicate our reports and is time consuming.

I very much like computer reporting, but colors are confusing and hard on the eyes.

With no critisism intended, the print-outs were not sent out in time for correction. After correction they were still incorrect. I'm sure that after talking with computer expert, and this being a pilot project, these ills will be easily corrected. Many errors were due to my own confusion and carelessness.

If computer excludes long-hand annual reports, then time, energy and confusion will be saved.

If computerization is not adopted, most of the above ills are applicable to the long-hand reporting and could also simplfy that system.

ml

93

*Transmountain Diversions: Designate either to (T) or from (F) District. E = Estimate

WATER COMPTSIONER'S SUMMARY

ы. В

W.D.

the figures for the water budget were not available in As a result of computer problems and time limitations

4,700 CBT to Irr. CBT to Irr. 34,462 CBT to Irr. 19,075 CBT to IFF. 6,355 CBT to Irr. Projects storage с С time for the submission of this report. The information Storage to Municipal Use 5,822 Storage to Industrial will be entered as soon as possible. Use to Irrigation from Storage Delivered 7,632 37,324 20,676 82,068 Diverted to Storage During Season Actual Am¹t 33,239 7,708 76,284 28,786 10-31-73 146,049 49,245 34,264 103,246 31,739 58,581 216,522 81,086 Amount in Storage Acre Feet 196,521 103,136 284,068 102,203 53,759 65,449 38,231 5-1-73 129,847 11-1-72

146,51 6,205 106,927 | 118,329 55,174 1,208,831 900,440 121,299 7,391 50,773 135,067 65,235 178,729 53,804 26,755 87,082 46,684 55,881 3,895 110,597 814,502 -2 ო 4 ഹ ശ 8-80 49 64 65 ~ σ 23 48 TOTALS - 2,310 +24,142 -37,793 -10,982 + 1,528 - 7,509 -16,164 - 7,732 - 4,777 -15,851 - 8,490

2,846

265 49

10 - 23

97,068

1. N. I.

	DATE	DIS	STRICT	PRIORITY				DI							
	ISSUE	CAI	LLING	CALLING		. 1	2	3	4	5	6	7	8	9	23
	····														
1.	3-26-73	8		4- 1-1911	Cancelled										х
2.	7- 1-73	1		5-31-1907			x	х	х	х	x	х	x	х.	x
3.	7- 3-73	64		7 - 19 - 1886		x	х	х	х	х	х	х	х	х	x
4.	7-16-73	1		10- 1-1888			х	х	х	х	х	х	x	x	x
5.	7-18-73	1		5-31-1907			х	х	х	х	х	х	х	х.	х
6.	7-21-73	NO	DEMAND			х	x	х	х	х	х	x	x	х	х
7.	8-11-73	2	Ab. St. Vr.	6- 9-1909								х	х	х	х
8.	8-12-73	2	Ab. St. Vr.	11-20-1885									x	х	х
9.	8-23-73	2	Ab. st. Vr.	10-15-1873								х	х	х	х
10.	8-26-73	2	Ab. st. Vr.	11-20-1885								х	х	х	х
11.	8-27-73	2	Ab. st. Vr.	7- 8-1876								х	х	x	х
12.	9 - 3- 73	2	Ab. St. Vr.	11-20-1885									х	x	х
13.	9- 6-73	8		9-10-1878											х
14.	9- 7-73	8	Released De	emand											x
15.	9-10-73	NO	DEMAND									х	x	x	x
16.	9-14-73	8		4- 1-1911											х
17.	9-25-73	8		9-10-1878											x
18.	9-28-73	NO	DEMAND												x
19.	10-23-73	8		4- 1-1911											x

.

95

The testimony presented by the state in the hearing now before the Water Court on protests to the rules and regulations pertaining to ground water use has been very convincing as to the need for such administrative action to prevent material injury to senior water rights. Further, the general attitude of counsel for the protestants suggests the inevitability of well regulation with the major concern being how and to what extent such regulation shall be implemented. If well regulation becomes a reality, as it now appears it shall, the burden of administration of wells will be added to the already extensive responsibilities of the division staff. Additional field personnel will be needed to accomplish this. Some of the responsibilities may be born by user organizations such as GASP or ditch companies, but it is estimated that at least fifteen full-time-equivalent positions will need to be staffed.

Regulation of wells such as they now exist will be difficult at best. While most wells have an electric meter on their power supply, the many variables involved make definite determination of the volume or rate of flow at the well very difficult. For this reason it is recommended that all wells be equipped with water meters.

The position of water commissioner and deputy have been classified in the state personnel system by comparison with that of a junior draftsman as a key class. It is felt by all division personnel that this results in underrating the water commissioner and deputy positions. It is recommended that the jobs be classified on the basis of responsibility, economic value and hazards involved. Further the division field staff must supply their own office space, utilities and furniture with the exception of file cabinets which were furnished this last year by the state. These officials also use help from their families for telephone and secretarial assistance. Compensation for these home facilities and help would certainly be appropriate.

The computer program for diversion and distribution records now makes use of op-scan sheets to enter the data into the machine. The water commissioners complete these sheets by simply making a mark in the applicable spaces. The machine then reads these marks by location on the sheets and interprets the numbers and/or codes. The original purpose of these op-scan sheets was to eliminate the need for keypunching. However, after a year's experience, it is believed desirable to have the water commissioners submit their reports on a standard periodic form, using numeric and alphabetic characters commonly used and easily understood. A keypunch operation ahead of the computer would then be required. This would materially reduce the errors and omissions common to the present method and, while requiring more work before going into the computer, would reduce the need for checking and revision after the initial printout.

Much constructive effort has gone into the determination of adequate water supplies and sewage disposal systems for subdivision developments. Some consideration has also been given drainage but it is believed that much more comprehensive evaluation must necessarily be made to force recognition by developers and planning groups of the disastrous flood potential resulting from changes in land use. A case in point was the May flood on the South Platte River occasioned by the heavy precipitation in the Denver area. While much heavier than normal, this particular storm dropped only 3.5 inches of water. Twenty-five years ago this would have caused some local flooding but much of the water would have been absorbed into the ground, retained by vegetation and generally slowed in runoff by natural circumstances. As it was in 1973 the rain and runoff was rapidly collected by rooftops, driveways, sidewalks, parking lots, streets, storm sewers and channeled immediately into creeks and rivers. The result was disastrous for those low-lying areas adjoining these streams from Denver to the state line. As urban development is expanded the flood potential is multiplied. Many residence, commercial and industrial buildings have been built in old flood plains. Creek channels, drain ditches, and natural draws have been choked off, obliterated or otherwise encroached upon. Canals which once intercepted the minor runoff of open rural areas are now used as storm sewers in addition to their normal purpose as a conduit for irrigation water. The danger of accumulating water from one natural drainage and transporting it to other drainages where inadequate capacity or physical failure may result in flooding an area with imported water is an increasing threat to life and property.

Certainly, definite guidelines and provisions for control of future man-made runoff would be advisable.

November 1, 1972

Division 1, Dugan Wilkinson, Division Engineer

As of mid-October, the weather continues warm and dry and stream flows are quite low. Most direct irrigation has been discontinued for the season allowing reservoirs to start storing for the 1973 season. The good weather has been a boon to farmers in harvesting their crops. The beet harvest is approximately one-half completed with both yields and sugar content running well above average.

The directors of GASP have been working diligently on the terms of a proposed contract and at their directors meeting on the 24th of October, the board decided to make contracts available for the 1973 season on the 15th of November. The assessments will be determined later and will be announced as soon as they have been determined. Plans are also being made to hold at least four public meetings within the division at which time interested persons are urged to participate. Announcement of the time and place for these meetings will be forthcoming.

The Dean Thompson and Dugan Wilkinson families have enjoyed vacations the past month. Both reported pleasant weather and beautiful fall scenery for their drives into the northwest.

Art Wenz, Water Commissioner in South Park, was released from the hospital October 14 after some two weeks of treatment. Art has been incapacitated much of the time as a result of injuries suffered in an automobile accident in March. We hope that his health will continue to show improvement.

Division 1, Dugan Wilkinson, Division Engineer

As of mid-November, most of our water commissioners had completed and submitted their annual reports. The office staff is now directing its efforts to accumulating and assembling all the material necessary for our annual report to the State Engineer.

The several snows this fall give us more confidence in Andy Nelson's snow forecasts. Andy, and old ditch superintendent, now deceased, contended that the day of the month for the first snow of the season was an accurate indicator of the number of snows we could expect during the winter and spring. After our first snow on October 29, we are now keeping the water bucket filled and the wood piled near the back door.

GASP has recently opened an office in Fort Morgan. It is very competently staffed by Marge Samples, Secretary, and Joe Howell, Manager; both are well qualified in the water business. Joe is a past superintendent with the Bijou Irrigation Company and director for the Northern Colorado Water Conservancy District and Marge as clerk in the Bijou office and wife of Bob Samples, Water Commissioner. GASP is now accepting contract applications for 1973. Four public informational meetings in December are planned. These will be held in the Brighton-Fort Lupton area, Greeley, Fort Morgan and Sterling. Applications and further information may be obtained from GASP, P.O. Box 974, Fort Morgan, Colorado 80701.

We are pleased to have Wes Hayman, Water Commissioner, join us in the Greeley office. Wes has been Deputy Water Commissioner in the Fairplay area the past two summers.

Marilyn Palmer, a member of the Water Commissioner Auxiliary, is recovering from major surgery at the Longmont Hospital. Our best wishes to Marilyn.

Justice is being well served. Bob Littler, Water Commissioner at Sterling, has been called for jury duty in the U. S. District Court at Denver starting November 13. He is probably asking himself, "Why couldn't this have happened in August?"

Division 1, Dugan Wilkinson, Division Engineer

Temperatures averaging 30 to 40 degrees below normal have slowed water use to a snail's pace the last few weeks. We are fortunate in some respects since early snowfall has been good in the mountains and we have had little wind.

Jim Clark and Dugan Wilkinson attended the annual Division Engineers' Meeting in Denver, December 14 and 15, and would like to thank the staff of the Denver office for the effort expended in preparation of an excellent report to the Division Engineers. Of particular interest in plans for the coming year will be the initiation of a diversion reporting system designed for inclusion in the data bank and the automated data processing system.

The State Engineer has published the rules and regulations for the use of underground water effective February 19, 1973. Under these rules, the nonexempt wells with applications in the Court prior to July 1, 1972 will be allowed to pump 3/7 of the time unless they are operating under some alternate plan of operation approved by the Division Engineer or one of his agents. Anyone having questions regarding these rules and regulations are asked to contact the Division Engineer.

GASP has held public meetings in Fort Morgan, Fort Lupton, Greeley and Sterling to explain their 1973 program to well owners and assist in making application for membership. A great amount of interest has been shown and a large sign up is anticipated. The final deadline for making application will be March 15, 1973. Contract applications are available at the GASP office, P.O. Box 974, Fort Morgan or at the Division office in Greeley, Room 208, 8th & 8th Office Building.

Wanda and Ray Leisman were the recipients of a very special Christmas present. Natalie Jo chose Christmas Day to join the family. Congratulations Ray and Wanda.

The annual dinner for staff members of Division 1, their spouses and guests, was held December 1 at the Regency Inn at Denver with 33 in attendance.

February 1, 1973

Division 1, Dugan Wilkinson, Division Engineer

It has come to our attention that three petitions are now being circulated in opposition to Central Colorado Water Conservancy District. The petitions are opposing:

- (1) Formation of a ground water sub-district
- (2) Existence of Central itself
- (3) Inclusion in sub-district if it is formed

A decree handed down by Judge Wolvington in the Division Water Court recently was a staggering blow to Central. The Court denied each of nine applications, with the decretal section reading as follows:

"It is therefore ordered, adjudged and decreed by the Court that there being no date on which any of the projects contained in the applications herein appears from the evidence to have been initiated and pursued thereafter with diligence, as a result of a manifested intent to appropriate water, each of the applications herein is denied and no decree for any water or water right is awarded herein with respect to any of the applications enumerated in the caption hereof (W-89-98) and each of Central's applications be, and they hereby are, dismissed."

A recent meeting with Bureau of Reclamation people indicated they are not optimistic about the Narrows dam being built in the near future. The present political climate will probably slow most dam construction until adequate emvironmental impact statements can be filed.

Several protests to the rules and regulations governing the use, control and protection of surface and ground water rights on the South Platte River and its tributaries have been filed with the Division Water Court. These range from those insisting that regulations should be 100% of the time to those who feel any regulation is a violation of justice. It is our hope that these protests can all be heard together, with a workable decision resulting.

Some other news items in brief:

- (1) Julesburg Hotel discovered burning shortly after hydrographer seen leaving town.
- (2) Ted Bell's very bright ties continue to warm our cold winter days.
- (3) Dean Thompson says the zipper on his briefcase is worn out and his ash tray cracked . . . I think he is informing us that he is thinking pretty strongly about fishing, traveling, and warmer climates.
- (4) Glenna Bell caused a little excitement recently when she and a friend got a jeep stuck late in the evening and had to spend the night high in those cold Colorado Rockies.

Division 1, Dugan Wilkinson, Division Engineer

The February 1 stream flow forecasts for 1973 are encouraging. The National Weather Service report indicates stream flows in the 100-110 percent range. The Soil Conservation Service reports snowpack as approximately 120 percent of average.

Severe ice conditions in several reservoir inlet canals are restricting the carrying capacity drastically. As a result, water which might otherwise be stored is going into Nebraska; approximately 2000 acre-feet is passing the Julesburg gage daily.

The Greeley Farm Show sponsored a public meeting January 24th at which Jeri Danielson explained the proposed regulation of wells for 1973 to several hundred interested water users.

At another meeting, which filled the R.E.A. Hall in Fort Morgan, on February 8th, several members of the Joint Legislative Committee on Natural Resources discussed proposed legislation on water use with water users and administrative officials. The general concensus of opinion was that some type of basin management by water users was desirable and necessary.

Applications to join GASP are coming to the Fort Morgan office of that corporation in a steadily increasing volume. The Bijou Irrigation Company presented a temporary plan of augmentation which has been approved by the State Engineer. Some 200 wells under the Bijou system will operate as they are needed this year with the replacement of their depletion made to the river as necessary by the company from reservoir or alternate sources. Several other alternate plans are under study at this time.

Nine protests to the rules and regulations on the use of underground water have been filed in the Water Court. These protests cover a wide range of objections from a variety of water users. Asking to be heard are diverters of surface water, underground water, water for irrigation, commercial, industrial and municipal uses. The protestants contend well use controls, varying from strict restriction by priority to no restriction whatsoever, should prevail. The Court has set aside two weeks beginning June 4th for hearings of the protests and has directed that imposition of rules and regulations be withheld pending the ruling of the Court on the protests. With most water uses and interests becoming involved, the hearings should be most interesting and the ultimate decisions conclusive.

A division staff meeting was held in Greeley on January 16th to discuss administrative procedures and problems for 1973. The inclusion of well regulation into the administrative duties has multiplied the responsibilities of our entire staff. March 1, 1973

Joy Ahlborn, who served most ably as the Clerk of the Water Court since its inception in 1969, returned January 1 to her former position as Court Librarian for Weld County District Court. Moving up to the position of Water Clerk is Lois Bohlender, who, after working in that office for some two years, is now directing its activities very capably. Congratulations to both of these good ladies on their new jobs and for work well done.

Jim Clark took advantage of the two national holidays and some annual leave to visit his family and friends in California in mid-February. Tom Platt of Boulder has also taken annual leave to vacation in Arizona and California. 103

April 1, 1973

Division 1, Dugan Wilkinson, Division Engineer

The month of February produced very little moisture in the South Platte drainage area. This fact is reflected in the March 1 streamflow forecasts which indicate surface flows will be in the 90-100 percent of average range.

During the month of February approximately 53,000 acre-feet of water passed out of the state at Julesburg. In mid-March this flow still amounted to 1,500 acre-feet per day. Diversion of a portion of this water to small recharge projects would go a long way toward alleviating the late summer water shortages.

The organization GASP (Groundwater Appropriators of the South Platte) reports that a large number of applications were received during the final week before the March 15th deadline. The totals will be reported in next months newsletter.

The Water Court has continued hearings on the formation of the Groundwater Subdistrict of the Central Colorado Water Conservancy District until April 3.

Marshall Grace and Norman Prosser from the Denver office of the National Weather Service visited the Greeley office March 21 to formulate plans to coordinate stream flow information with weather conditions in an effort to provide early, reliable flood flow predictions.
WATER NEWS

May 1, 1973

Division 1, Dugan Wilkinson, Division Engineer

The failure of Lower Latham Reservoir Dam on April 12th has been the event of prime interest and greatest concern in this area. The full extent of damage done by the water is not yet known but estimates run as high as four million dollars. The Lower Latham Reservoir Company stockholders had a meeting on April 25th to discuss whether to rebuild or abandon the reservoir. As of this date, a firm decision on that matter has not yet been reached. Further information on the Latham Reservoir disaster may be found elsewhere in this issue of the Water News.

The April 1st Water Supply Outlook forecasts stream flows in the South Platte drainage varying from 79 percent of normal on the St. Vrain at Lyons to 93 percent on the Cache la Poudre at the mouth of the canyon. Reservoir carry over storage is good, making a total water supply outlook adequate; now all we need are a few good warm days to allow area farmers to prepare the ground and plant their crops.

A report, dated April 12th, received from the Groundwater Appropriators of the South Platte (GASP) indicates the following contracts signed with GASP for the 1973 season:

Contracts	922
Wells	2095
Units *	3401

* 1 unit = 100 A.F. of water to be pumped

We see this as a strong, healthy step forward for area well owners in attempting to solve their water problems.

Division 1, Dugan Wilkinson, Division Engineer

Our calamity of the month was the flood on the South Platte River starting May 6th. Heavy rains on the South Platte River, Plum, Bear, Clear and Sand Creeks concentrated the runoff in the Denver area to flood proportions of nearly 23,000 cfs. Inflows of lesser magnitude from downstream tributary streams increased the peak measurement at Kersey to more than 30,000 cfs. The crest continued downstream and passed out of the state on May 11 with a peak flow of 20,340 cfs at Julesburg.

At least two lives were lost in the flood waters, many roads and bridges were destroyed, irrigation diversion works washed out, homes and farms were flooded and livestock drowned. Estimates of damage are running in excess of \$50,000,000.00. If any comfort can be found in the weather and runoff circumstances at the time of the flood, it might be pointed out that due to the cold spring, the base flows in the stream were considerably less than would otherwise have been expected. The very excessive precipitation did not extend into the Boulder and St. Vrain Creeks and the Thompson and Poudre River watersheds and, further, the Bijou, Kiowa, Box Elder, Lost, Badger and Beaver Creek flood flows entered the Platte well ahead of the Denver Crest. The above normal snowfalls in April have increased the snowpack to well above average and had the weather been normally warm, the runoff would have far exceeded the already record discharges between Denver and Weldona. We still have a serious potential for flooding conditions if we get a combination of hot weather and rain on the present snow accumulation in the mountains.

Farm work is far behind schedule in most of the division as a result of the cold, wet winter and spring. Very little irrigation has been necessary through mid-May. Major repair of flood damaged irrigation systems will be necessary before they can be effectively used.

Governor Love has declared those areas affected by the flood a disaster area and the President of the United States is expected to also proclaim portions of the state a major disaster area and thereby make federal funds available for repair and restoration both by grant and loan at low interest rates.

On May 8, President Nixon proclaimed a major disaster in Weld County as a result of the failure of Latham Reservoir Dam. Applications are now being made for federal funds to repair the damage resulting from the Lower Latham flood.

Bob Samples, Water Commissioner of Water District No. 1, had the painful misfortune of breaking his hip on May 13. He has been pinned back together and will be confined to the hospital for about 3 weeks. Our best wishes to Bob for the speediest recovery possible. Don Brazelton will assist in the administrative duties while Bob is convalescing.

July 1, 1973

Division 1, Dugan Wilkinson, Division Engineer

A large portion of the first two weeks in June was taken up attending the hearing of protests to the State Engineer's Rules and Regulations. A large amount of testimony was entered and more will be heard starting on Monday, October 29, 1973. As a result of this delay, and under order of the Court, wells will not be regulated this irrigation season.

The South Platte River between Kersey and Julesburg has remained at flood stage almost continuously since May 6th. Approximately 925,000 acre-feet of water passed the Kersey gage during the month of May and the first 15 days of June. The average annual discharge at Kersey for the past ten years has been 607,640 acre-feet.

New and summer employees of Division 1 are as follows: Ben Saunders joined us on June 6th as Water Commissioner 1 in the 1042 position recently vacated by the transfer of Wes Hayman. George Sievers was welcomed back to the Greeley Office for the summer on June 4th. Bruce Smith has been working for us since May 1st as Deputy Water Commissioner in District No. 3 assisting Jack Neutze on the Poudre. Bruce has worked with Bill Gleason on the Laramie for the past two summers. Welcome back to Bruce and George and a glad to have you aboard, Ben.

Bob Samples is home again and able to get around on crutches.

Our deepest sympathy is extended to Arlyn Davison whose mother passed away recently at Ogallala, Nebraska, and to the Bob Littler family. Bob's brother and Millie's father both passed away recently.

We also extend our heartfelt sympathy to Jack Fisher whose wife, Edith, passed away recently.

Merrie Wankelman Sims, daughter of Dorothy Wankelman, our secretary, was named one of America's Outstanding Elementary Teachers recently. Merrie is a 1969 graduate of UNC and teaches in Shelton, Washington. Congratulations, Merrie!

Members of our Division 1 family are on the move. Joe Clayton's daughter, Dixie, left recently for Colombia as an exchange student. Have fun, Dixie. Ula Bell, daughter of Ted Bell and sister of Orlyn Bell, will be getting married July 15th in Indonesia. Best Wishes to you, Ula. Don, Carolyn and Kendall Brazelton spent two weeks in Pennsylvania in June.

Division 1, W. G. Wilkinson, Division Engineer

The extremely dry weather we have been having for about a month broke on Thursday, July 12th. Good rain continued off and on through the weekend bringing much needed moisture to thirsty crops. The crisis may be past for most crops now, with foliage enough to shade the ground, it won't take as much water to keep them going. Reservoir storage is good and with average rainfall from here on out we anticipate a fairly good crop year.

The dry weather has made it necessary for the City of Greeley to curtail lawn watering substantially. Homes with even numbered addresses are allowed to sprinkle on even numbered days and odd numbered homes on odd numbered days. In addition, no watering is allowed from 12:01 A.M. - 5:00 A.M. and from 1:00 P.M. until 5:00 P.M.

A temporary gaging station has been installed on the South Platte at Kersey with hopes eventually of having a bubble gage and telemark there. This station is the key for all water administration below Kersey and a reliable, easily monitored station would be a great help.

Division 1 was represented at a meeting in Glenwood Springs on July 27th by Dorothy Wankelman, Ray Leisman, Don Brazelton and Dugan Wilkinson. New directives and procedures, as adopted by the Department of Personnel, were presented and discussed for the supervisory personnel attending from Divisions 1, 4, 5 and 6.

Art Wenz continues to have problems with injuries sustained while driving the Division 1 Bronco over a year ago and remains under doctor's care.

Dean Thompson, whose retirement begins today, was honored yesterday at a noon dinner by Division personnel. Thanks, Dean, for a job well done. Best wishes to you and Effie in the carefree days ahead.

September 1, 1973

Division 1, Dugan Wilkinson, Division Engineer

Water has remained plentiful throughout this season. Due to the availability of ample direct flow water, most reservoirs have remained full all year. This is becoming a matter of some concern at this time since most older irrigation reservoir dikes were not designed to hold water continuously. If they remain full for the rest of the year, they will have to be watched closely next spring for signs of stress. Reservoir owners are encouraged to help the State by reporting any problem dams as soon as there is any sign of difficulty.

The late start most farmers had last spring will make a long warm fall necessary for crops to reach maturity. Those predicting an early September frost are not much appreciated at this time.

The ceremony marking the closing of the Chatfield Dam was attended by the Division Engineer. The dedication speech was delivered by Vice-President Agnew who received a standing ovation.

A Four States Irrigation Council Tour was attended by the Assistant Division Engineer recently. He reported an interesting and informative tour was conducted through a portion of the Arkansas Valley. A running narrative on the role of irrigated agriculture was presented by members of the Southeastern Colorado Water Conservancy District. Visits were also made to the CF&I Steel Mill, CF&I Farms and the new Pueblo Dam.

One million dollars for the Narrows Project was authorized recently. This money is to be used for land acquisition according to Eric Wendt, Secretary-Manager of the Lower South Platte Water Conservancy District. Ceremonies for the signing of the contract between the Lower South Platte Water Conservancy District and the Department of Interior have been set for September 11 in Sterling.

The week of August 16th was a very trying and aging one for Dugan as he became a grandfather on Thursday the 16th with the arrival of Jared David Morrow. This was accomplished with the help of daughter Greta and son-in-law Al. "Grandpa Wilkinson", Grandson, and Mother are all doing fine.

We welcomed Beverly Thomas to our staff on August 21st to assist Dorothy Wankelman. Dorothy hopes to have time to take a lunch break some time in the future with Beverly's help.

Water Commissioner Art Wenz passed away on August 5th. He was to have retired on September 1st. We extend our deepest sympathy to his wife, Marge.

We also extend sympathy to Quinto Brunelli whose brother passed away recently and to John Noonen whose uncle passed away.

October 1, 1973

Division 1, Dugan Wilkinson, Division Engineer

The 1973 irrigation season is rapidly drawing to a close. In spite of below normal precipitation in many areas, we have been blessed with the best allseason water supply in many years. Most of the division has a large carryover in reservoir storage. A credit balance, as of September 1, of nearly 47 percent of the 1973 quota in the CBT Project was indicative of the ample reserve of supplemental water.

The potential for unseasonable weather in Colorado was again emphasized by the destructive hail in the Wiggins-Fort Morgan area on September 8. Widespread rains in that storm system curtailed harvest activities for several days.

The enlargement of Greeley's Barnes Meadow Reservoir has been completed as designed. Water from Peterson Lake is now being transferred in Barnes Meadow for winter storage.

Bill Gleason, Water Commissioner on the Laramie River, reports that most of the Glendevey unit of the Flying W Cross Ranch has been sold to Greeley investors. This, and sale of other Laramie River property in the past two years, portends a significant change from ranching to recreational interest in that area.

After climbing all of the 14,000 foot peaks in Colorado, Jim Clark spent September in Europe looking for new heights to conquer. A postcard from Switzerland brought the good news that he had successfully scaled the Matterhorn. Congratulations, Jim.

George Sievers has completed another summer working as an Engineer-Technician in the Hydrographic Unit of the Greeley office and has returned to CSU to complete his senior year. We hope that he will return to work next summer on a permanent basis.

The Division Engineer was privileged to attend the Western State Engineers Conference at Steamboat Springs, September 12-15. The program presented was interesting and informative.

Environmentalists question impact of Narrows Project

The proposed Narrows causing considerable conster-Dam across the South Platte River near Fort Morgan is nation for Colorado conservationists.

made in compliance with the adequate impact statement is Colorado Environmental Denver-based ecology action group, has formally requested mental Impact Statement for he project. The organization as also requested that the Office of Management and Budget refuse to release any runds for the project until an Legal Services (CELS), a that the Bureau of Reclamation issue a new Environ-National Environmental Pol icy Act of 1969.

verson for CELS, said that his filed in 1970, but CELS is and because they claim office had been contacted by mental impact of the project Statement for the project was demanding a new statement because of the passage of time and changed circumstances, An Environmental Impact a spokes persons who feel the environ nas not been fully considered Gary Parish,

after the passage of the Environmental Act and before guidelines had been adequately interpreted. He said the statement issued in original statement is not fully in compliance with Council on Environmental Quality guidelines or the requirements in the National Environmental Policy Act for impact statement contents.

Parish said this original 1970 was only 12 pages long, statement was issued shortly whereas a similar study after the bassage of the conducted on the impact of six volumes. He termed the original statement "the worst l've ever seen in terms of oil shale development filled

complying with the goals and Parish reported that his objectives of the Environ-mental Act."

organization is considering litigation against the Bureau of Reclamation if they do not comply with requests for-

discuss alternative sites for the project and that the cost-benefit figures are out of study does not adequately He claimed that the present new impact statement.

Debate over the Narrows Project was renewed recently date.

a bill allocating a million railroad track which runs dollars for basic studies and through the area. The spokesman, who said "I'm just a cog that the Bureau was aware of to indicate that the the dispute over the adequacy Project has been "in the in the machine" and asked not to be identified, reported of the original impact becoming reality. The alloca- statement. project design. The Narrows the signing of the recent bill works" for several years, but project was on the way to when President Nixon signed seemed

"The Bureau is in the agement and Budget before it sion of a new impact becomes available to the statement is required," he Bureau of Reclamation for said. "It is conceivable that funds now being processed Bureau said that if the funds approximate and Budget could be for the purpose of the money will be used for conducting another environadvance planning on the mental impact survey, but at project. Right-of-way must be the present time we have no obtained, surveys taken, and money to spend on any aspect through the Office of Man- process of deciding if submisfor the through the Office of Manplans made for moving a of the project." are approved by the OBM, used tion of funds still must go use on the project. A spokesman

-	ZE	
	EIN	
	Ξ	1
1	ZZZ	(
	5	
	By	

Latham Reservoir on April 12 was conducted Wednesday in Greeley by the with claim and counter-claim, a hearing into the cause of the breach in the Lower Tosphere, punctuated cultural Writer Tribune A In a tense

Those who testified at the hearing were state engineer, Clarence Kuiper.

Thurs., April 26, 1973

their testimony, but the hearing was not required to be sworn in before giving inuing study of the breach, Kuiper told recorded and will be used in the con-

The purpose of the hearing was to events leading up to and following the estimates. The damage was in the road repair, railroad repair, damage to caused damages estimated at about \$3.5 Another \$220,000 damage was done to gather first-hand information as to the million according to official county vicinity of Kersey and estimates included public facilities in Kersey and to personal breach. The breach, and resulting flood, osses to the residents of the the standing-room-only crowd. school buildings in Kersey.

Kuiper said the purpose of the hearing was to neither fix blame nor assess the damages, but simply to aid in determining the cause.

of this type of break. "Such a failure can cause a real disaster to the town and the farms in the area simply because both are dependent on the production of the Kuiper also noted the economic impact agricultural sector," Kuiper said. According to the Bureau

man out carrying a shovel, there are five 0 Reclamation, Kuiper noted, "for every men living in town who are living off his efforts.

The first witness to appear before the Victor Klein. Klein said he first heard of nearing was reservoir board member the breach at 9:30 a.m., April 12.

breach on the dike. Klein reported that at the time he and Mitchell arrived, the breach was about 30 feet wide and "no The point of breach, Klein said, at that after that time and drove to the site of the He said that he met ditch superintendent Roy Mitchell at the site shortly more than five to six feet deep.

He indicated that it was difficult to water was "shooting out in a V-shape along the structure. But the dirt along the east dike was still intact at the time we estimate the depth of the breach because arrived," Klein noted.

"By the time we left the area, which was a few minutes, the Klein noted that the spill-way was located at the site of a natural island in the reservoir. breach was over 50 feet wide, but still to the west," Klein said.

"That island goes about 150

seepage from the dike. "To my been rumors of excessive and the water at that point was probaby pretty shallow," Klein Klein noted that there had knowledge," Klein said, "no yards out into the reservoir,

knew about," Klein said in his "The only real seepage that I one ever came to the board with any mention of the excessive leakage or spill-over. If they did, I didn't hear of it.

related to as the spring. This It's peen there as long as I can spang, was about 250 yards. remer, and was always reservoir has natural fill from from the point of the breach. Klein also noted that the crystal-clear."

area of the inlet. "It has been the policy of the Bard to allow about as much water out of the outlet as is going over the spillway. In this way we felt we the Beebe Draw and seep in the

lies to the northwest of the point water, in my opinion, not the run into the seep ditch. But, excessive leakage or seeping at Rein said, "it was only a couple fill it at the same rate as we (Roy Mitchell) and there was that he and his wife were the specting the site Mitchell's hat year in expectation of increased was a problem. "I went to the run-off this spring. So we didn't area with the superintendent of the breach, confirmed the result of a leak." could keep ahead of the water," Although Brantner said he water in the area, but said he noticed the "excessive groundwater many weeks first to see and report the break. "There was so much water in testanony, "was what everyone , that pasture that the two 24-inch could not determine the specific Brantner denied, however, "I had a lake of about two to three acres in my pasture which is right at the base of the tubes which are supposed to take the water off my pasture couldn't handle it. I called the board about it, and they voted on April 4 to take no action on reason for the excessive ground the claims that there was no Joe Brantner, whose farm time of the breach and noted dike," Brantner charged. Klein also noted that "we kept the amount of fill down this have in the past." the situation." noticed Klein said. the dike.

action to increase the size of the March complaining of exbe re-routed, and the board said. "The county had indicated at one time that the road might didn't want to spend the money "The board was waiting to Mitchell was the next to offer Brantner had called him in late cessive seepage in his pastures. find out what the county was going to do about the road that the tubes went under," Mitchell testimony at the hearing. He told the state engineer that of inches deep." Rein said the The board decided not to take "because there didn't seem to which was designed to carry off any excess water. "I walked out in the ditch to get Roy's hat," inspection was made on April 2. tubes under the road, Rein said, was clear, and was ground-Rein said that, while inblew off into the seep ditch Johnny Rein, president of the which Brantner had said there. only a few inches of water. It reservoir company, testified that he had walked the area in be a problem." before the breach, but the board took no action at the time."

out to the area; there wasn't that much water. There was probably more than usual Mitchell continued, "The day until it knew what the county that Johnny (Rein) and I went was going to do."

water from their field across to

because other farmers had cut

couldn't see that there was that

was reported many months Mitchell was asked whether he'd noticed any cracks in the dike on the day he and Rein had been in the area. He indicated that there were none. "There was a crack in the dike which ago," Mitchell noted, "but that was located more than a city block from the point of the much considering the moisture we've had."

filled it with cement. There's Mitchell also said that he had behind the break in the wall and never been a leak at that point though and it's still in place," "In that case, we dug out Mitchell concluded. breach."

that there was an extremely before the breach and "saw no 5 · Other testimony indicated indication of any cracks leaking."

been across the dike two days

112

deep frost line in the area this

past season

Dams Cet Second Look N Walke Of Kersey Flood Ft Mersen Trans 4-23-73 In the wake of the Latham more nearly full than u

In the wake of the Latham Reservoir Dam collapse and flooding of Kersey, dams along the South Platte River are getting a second look in their regular inspections.

Regular Inspections. Bob Samples of Snyder, State Water Commissioner, Division I, is making weekly checks of dams all along the Platte and this past week he and an engineer from the, dam section of the Division of Water Resources have been walking along every dam or dike on both sides.

"I inspect dams in my area "I inspect dams in my area once a week during this period," Samples said, "and the state inspects periodically." He also pointed out that "people who are caretakers check the dams every hour or more frequently" during severe windstorms like Thursday's. Strong winds form waves on the reservoirs and cause the water to pound into and over dams.

Some reservoirs we check more frequently than others," Samples continued. "Those f with larger bodies of water we inspect more often than the F smaller ones."

He also pointed out that this inte of year reservoirs are

Tribune Staff Writer $\Im_{-S^{-7}3}$ Reconstruction of the Lower Latham more nearly full than usual Dam, damaged in an April 12 flood, will since it is just before the begin "in the next few weeks," according irrigation season. to Bob Boekenkamp of the Greeley "With Latham breaking engineering frim Nelson, Haley, Patpeople want to know about each terson and Quirk.

of the dams and after Latham Boekenkamp said Hensel Phelps we're giving them another Construction Wednesday was awarded a check." 5547,000 contract to remain flood domesd

Samples said reservoirs along \$547,000 contract to repair flood damage the Platte are not completely and improve the dam. full. They are full enough for The construction work involves two safety at this time of year, and segments, Boekenkamp said

safety at this time of year, and segments, Boekenkamp said. "we'll finish filling them just First, the portion of the dam breached before the direct ditches start tcin the flood will be rebuilt and the irrigate." spillway enlarged, at a cost of \$410,000.

When this is varies from year The 18-foot wide spillway in the old to year. Some years the dam will be replaced by a 360-foot wide earlier because of the available

supply and the demand of the crops.

"All my reservoirs are about a foot below capacity except Bijou No. 2 which is dry," the commissioner explained. "We've been holding them there about a month now and will start filling Bijou No. 2 the first part of the week." Samples also said that a formal hearing will be held Wednesday in Greeley at the Farm Fare on the Latham Reservoir Dam break and resulting Kersey flood. The hearing will start at 10 a.m.

spillway, Boekenkamp said. The first portion of the construction will be financed through funds from the Off of Emergency Preparedness, Boe akamp said.

Latham Dam to be rebui

By JOHN SEELMEYER

The second part of the construction will involve building embankments on the upstream side of the reservoir,

That construction, at a cost.of \$137,000, will be financed through a Farmers Home Administration loan and through funds the stockholders in the reservoir company have assessed themselves, he

The project was designed by Poekenkamp with Tom Burnett acting as e-gineer for the project. The work will b ng the dam up to state specifications.

'SB 35': Tough Law On Land Control

By Paul Danish

Bill 35, but it's probably not purposes of this article." worth the effort.

snort-hand name Colorado's new law regulating created as security, 3. create the creation of subdivisions. It cemetery plots, and 4. create stopped being a "bill" last mineral or water interests May 5 when Governor Love signed it into law, but the ship. General Assembly's numerical designation has stuck.

Senate Bill 35 is probably the most significant land use and the environment began sweeping Colorado.

It was enacted, according to the County Planning Department, because of concern over "land sales activities involving 1.5 to 2 million acres of Colorado land.'

subdivisions, and from all appearances it hasn't. It's object was to insure a more orderly development and to require that those subdivisions that were approved met certain minimum standards. Whether it has succeeded remains to be seen.

The regulations were nonetheless broad enough to effect one way or another most residential development outside of incorporated areas in Colorado.

And they were vague enough to pose a fascinating dilemma over whether the spirit of the law can be best served by a relatively permissive policy of granting. exemptions to it.

The law required each of the 63 counties in Colorado to have adopted sub-division regulations by Setember 1, 1972.

A key feature of the law was that it redefined the terms "subdivision" and "subdivised land" to include a greater that 1. at least a minimum catagory of proposed land activities.

With certain specifically spelled out exceptions, "sub- future projects are subjected divided," and therefore to at least a modicum of planregulated, land is defined as ning and review by interested. "any parcel of land in the state public agencies. which is divided into two or terests, or interests in com- limited. mon.

LTT

in size, and 2. "any division of It is probably possible to land if the board of county discuss growth in Colorado commissioners determines that without mentioning Senate such division is not within the

Other exceptions include Senate Bill 35" is the divisions of land which 1. are for created by court order, 2. are apart from the surface owner-

The 35-acre clause — the number and the name of the bill were coincidental - effectively insures that no law passed to date since the developer will attempt to wave of concern with growth create a suburban or exurban subdivision without going through the subdivision regulations.

Among other things, regulations require the developer to demonstrate that:

The proposed subdivision's The law was not intended to water supply is sufficient "in nalt growth, or even future terms of quality; quantity, and dependability.'

> a suitable means of sewage disposal.

Land areas for parks and schools have been set aside when such are reasonably necessary to serve the proposed subdivision and the future residents."

The impact of the geologic characteristics of the area on the subdivision have been evaluated.

In areas of radiation hazard the potential radiation hazard has been evaluated.

In areas where soil or topographical conditions present hazards "the proposed uses of these areas are compatible with such conditions."

Senate Bill 35 also provides that appropriate interested agencies, ranging from school boards to the forest service. receive copies of the proposed subdivision's plans in advance of any hearing.

It should, therefore, insurelevel of essential services have been provided for, in future developments, and 2. that

In short, growth and land more parcels, separate in- use are both regulated but not

The limits of that regulation The two most important ex- are shown by the problems, ceptions are 1. divisions of posed by the exemption clause land which create parcels all which permits the county comof which are at least 35 acres missioners to allow the trans-

fer of a parcel of land of less than 35 acres without it having first gone through the subdivision process.

By January, some nine months after Senate Bill 35 became law, 79 requests for exemptions had been submitted in Boulder County. Twenty-eight of those had been approved, creating 98 new lots with an average size of about 8.75 acres.

Another 38 applications involving some 1,800 acres were under consideration.

The planning department said the bulk of those applications involved farmers who wanted either to transfer a parcel of land to a relative for a home or sell a parcel of land to pay taxes.

The planning staff has tended to recommend approval of such requests, although requiring proof that water and sewer requirements could be met.

An argument in favor of the Provision has been made for generally liberal approach to the exemption clause is that if exemptions are denied on a relatively small tract of ground some farmers will take their entire farms through the subdivision process.

In other words, a conservative interpretation of the exemption clause could increase the number of subdivisions in rural areas.

The other side of the coin is that if the number of rquests for exemptions continue at last January's pace, will a liberal interpretation of the law result in the same impact that would have resulted if the law had not been passed?

What the exemption issue seems to show is that while Senate Bill 35 may be able to prevent a subdivision from turning into a disaster area, it is no substitute for a comprehensive land use policy.

interest groups have \$800,000 2hQ Fence budgets just for this purpose. The cheapest, most effective by Lynn Heinzo ourselves. 1-30-73 Tribune cents to write our state senators in the starting and

We are entering a period of minute! crisis.

The crisis stems from the rules and regulations issued by the state engineer, Clarence Kuiper,

The regulations will go into effect Feb. 19.

tions order the curtailment of management into the lap of the the state may suffer. well pumping four-sevenths of state engineer. the time.

state.

which affects the agricultural on the entire economy.

Because we are aware of these things and because we starve this year, we are mad.

Before we make the state regulations. engineer our whipping boy, let's

walk a mile in his boots.

every well in the state is junior maximize the use.

However, if we are to attain the we must change the laws.

maximum utilization of our We cannot do this with meet with 780 of us. water resources, the priority bombs, nor with guns, nor with don't want our families to system is not the way to do it. rocks. But we can do this with a saying "Ha! May sound good on The law gave the state show of concern.

The problem is that most of engineer basically two alter. We can show the state us are going after the wrong natives: the first was to shut legislative bodies that the of attitude, you're absolutely people. I've heard you good down the wells. The second was special interest groups and right. folks out there say that you'll to issue rules and regulations their greed are things of the

shoot anybody who dares to under which a replacement past.

shut off your wells. I've also scheme could be administered. We can hire lobbyists of our across the fence are not being The state engineer, realizing own to pressure the men on the met. heard some of you say that the state engineer should be strung the great economic catastrophe hill, which can be very exwhich would result in im-pensive. Some of the special done. up.

method is still doing the job

Writing letters to the representatives is effective. It would cost each of us only 56

Now — think about it for a mediate shutdown of the wells, and state representatives. If had no choice but to issue the every adult, in this county alone, wrote a letter to our

The law, as it now stands on representative, the statehouse the books, was the result of would be flooded by more than Senate Bill 81 and House Bill special interest group pressure. 350,000 letters.

1205 laid out the law, and to This group controls the surface A method which would be save money they threw the diversions, and depends upon more effective would be to go We all know that the regula- responsibilities of water them. In its greed, the rest of down to the state capital personally.

The law was enacted to If we were to charter a bus to These laws put the wells into facilitate the management of take us from Greeley to the And we all know what such a an unfair position by placing water resources to maximize capital and back, it would cost shut-down will mean to the them into the priority system. It beneficial use. However, it did us each about \$3. Each bus agricultural economy of the is commonly known that almost not set up the machinery to would carry 39 passengers, each day.

We also know that anything in right to surface diversions. We, the farmers, ranchers If one busload of us went It cannot be denied that all of and others who depend upon down every working day for one economy has a residual effect the water is interrelated well waters for our existence - month, our representatives would have the opportunity to

I suppose most of you are paper, but it'll never work."

And you know, with that kind

The law will change only when the needs of the people

It is up to us to see that it is

. 1

To act or to react situation, but never ready to act

Will we commit our welfare

in the first place.

The pressure is off. At least for the time being. The temporary relief came Thursday with the decision of Judge Donald Carpenter that the rules and regulations of the state engineer, as they apply to the South Platte River, could not become effective until they were heard before the District I Water Court.

Judge Carpenter set a date of June 4 for the hearings to begin, and decided all protests of the regulations would be heard and ruled upon during those hearings.

The decision to hear the nine protests at the same time is a good one, for it will allow widely diverse attitudes of water regulation to be aired in the same case.

But the postponement of the enforcement of the rules and regulations is of concern.

Although it will allow us to pump without curtailment for the next four months, what will happen after that?

And what of the complacency which will accompany the postponement? What of the people who, in the face of curtailment said "It'll never happen"0 They will have even more reason now to lay back and let the world go by.

So the decision Thursday came across the fence with mixed blessings. On the one hand, the wells will not be curtailed, at least for a while. And on the other hand, the massive effort to bring about change in the management of our water resources may fall into the purgatory of complacency.

My concern was expressed in the words of Sen. Dan Noble when he addressed a local group of conservationists recently. He told the group that we seem ready to react to a to others in our complacency? Or, will we take advantage of this period to act?

The decision that will shape our future will not be made by others, although others may choose the path we will follow.

The decision will be made by us. The outcome will be determined by our efforts or lack of efforts.

The final outcome will be the direct result of our action. Our action may take two forms: first, the form of complacency; and second, the form of an unified effort to bring about change.

It is during this period that we must act.

Now is the time for us all to continue to press for a viable water management plan.

The outcome of last year's water hearings on the regulations of the state engineer should be a lesson to us. The wells were curtailed last year, and the regulations were given the support of the courts.

Should we expect anything else today?

The wells will pump for the next four months, and the waters which they produce will bring forth another year's crop. And with the sprouting of this new life must come the beginning of new ideas in water management.

As the seedling must receive the nourishment of water if it is to survive, so too must the seedling ideas be nourished with action if they are to survive.

Others do not tell us when to plant, how to fertilize, the time to cultivate or the week to harvest.

But will we allow others to dictate when we will irrigate? The answer will be decided by our desire to act, 'or our willingness to settle for reaction.

shut off your well wants to TRIBUNE

"Every s.o.b. well in this state is going to be shut down; as long as I'm still able to fight for that shut-down, I will."

That statement has been attributed to an eminent attorney representing the Denver Water Board.

In this space my aim is to deal with problems of interest to the farmer and the city dweller. There is no more important problem facing either sector of our economy, than the problem of water.

The man I just referred to represents a very powerful and prestigious group. The Denver Water Board has had a history of getting what it wants.

According to this man, that board wants every well owner in the state to shut down. And there were no exclusions to the man's goal.

When he refers to every well, he includes every farm, agricultural, and city well in the state.

The reason for this man's

not understand the situation. He question to a vote. does not understand that the ture for its income.

fact that Denver cannot exist on that well. alone in this state.

great days of omni-power are past for the Denver Water Board. He has not yet realized the impact of the decision of the voters of Denver last year when they turned down the board's request for more money to bring more trans-mountain water from the West Slope needs. across to Denver.

But the tragedy is that this man may get what he wants!

He may get what he wants because others aren't willing to go down to the statehouse and describe what they want. Our representatives and senators in Denver report that no one is apparently interested in water

vendetta is simply that he does interested enough to force the

What all of this boils down to state is dependent upon agricul- is the simple fact that if you own a well, or if you drink water Nor does he understand the from a well - your life depends

It is not enough to say "if I And most importantly, he lose my well, the state will does not understand that the regret it." Because we are the state.

> It is not enough to say "they can't do this to me." Because the state has been known to do it before.

It is not enough to say "they'll work it out." Because "they'll" work it out to meet their own

It is only enough to take the initiative yourself. You must write or call the men who represent us in government. And that includes every member of the House or Senate.

It is only enough to pack every hearing related to water and to present your case.

And that is best done by management, or at least not meeting locally, hashing out differences and appointing one of your number as a spokesman. Then go south in numbers and let your man speak for you. The option is yours: either prepare to shut down your agricultural and municipal wells, or prepare to fight for them at the statehouse.

SODDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	
ITOM WOTOPOR CONSIGNT IN INTROMEDIATION IN INTROMEDIATION AND A STATE AND A ST	WIND OUD CONCERNENT OF The number of the water exists. The number of the water exists. The number of the rules were file by Eaton, La Salle, Pierce and Nunn, th city and county of Denver, Monfor Packing Co., Central Colorado Wate Conservancy District, Great Wester Sugar Co. and Public Service Co.
FFOCT $POCT$ $POCT$ $POCT$ $POCT$ $POCT$ $POCT$ membership includes cities and towns along the Platte which have found that they too face curtailment under the rules and regulations. While GASP was organized as a temporary "authority" along the South Platte, members and directors admit that the organization could eventually provide management of the entire basis, line. The biggest problem facing GASP is that to be effective on a basin-wide basis, nearly all water users would have to fective control and management could be users as members. But reasonably effective control and management could be users as members. But reasonably effective control and management could be users as members. But reasonably effective control and management could be users as members. In reasonably effective control and management could be users as members. In the organization of the users as members. In the organization of the users as members. In other words, if the organization were to construct recharge points, storage areas and other remedies of the organization is that members and the organization were to construct recharge points, storage areas and other remedies of the organization were to construct recharge points.	VV CIL SIDUT ON UNO ON TRIBUNE TRIBUNE $2 - 73 - 73$ A request of the state for permission to implement new well water regulations for the South Platte River Basin was denied by Judge Donald A. Carpenter in Water Court here last Thursday. The new rules had been scheduled to take effect today and the state asked to implement them immediately pending a decision by the court on nine protests that have been filed against the rules. Judge Carpenter set a hearing for June 4 on the regulations and suspended imposition of the new rules until their validity has been determined by the court. The rules would prohibit pumping of water wells four days a week unless a
ELEVENTIFIENCE By LYNN HEINZE Tribune Agricultural Writer Tribune Agricultural Writer Tribune Agricultural Writer This is a fifth article in a series dealing with the dilemma of water users in Colorado. There is one organization which is making an effort toward basin-wide management. It was conceived as a stop-gap measure and its purpose was to keep member wells pumping during periods of curtailment under rules and regulations issued by the state engineer. During the summer of 1972, when a call was placed on the South Platte River, member wells kept pumping during a provided enough water to replace the damage done to the river by the member wells, and the members were allowed to continue pumping. The organization is the Ground-water Appropriators of the South Platte (GASP).	

0 73 Ë E

WASHINGTON - President Nixon late last week signed a compromise bill that will provide \$1 million in the fiscal year that began July 1 for the long-proposed Morgan-Weld counties' Narrows Dam project.

Meanwhile, local spokesman Eric Wendt of Sterling said the proposed \$84 million Narrows project just downstream on the South Platte River from Weldona will have \$1.28 million available this fiscal year for land acquistion.

Wendt, secretary-manager of the Lower South Platte Water Conservancy District, indicated actual building of the Narrows Dam appears several years away. He said \$4 million to \$5 million or perhaps more - in federal funds will be sought next fiscal year for further land acquisition.

This year's federal money for the Narrows earlier appeared dead after the U.S. House Appropriations Committee wholly chopped a proposed \$1.5 million SOLA

amount from the federal public works budget.

However, behind pressure from the Colorado congressional delegation and other Colorado officials, a compromise \$1 million appropriation was reinstated in the Senate, Wendt said, and passed by a Senate-House conference committee working out differences.

Wendt said that beyond the \$1 million federal funding, other money will be available for Narrows land buying this year. That includes \$250,000 in fiscal 1973 funding that had been "frozen" plus \$20,-000 from the state and \$10,000 from the Lower South Platte district.

Wendt predicted that current agricultural hardship may even speed up federal funding of the project in coming years.

Officials pointed out that the Lower South Platte District will repay to the Federal Government 87 per cent of the

estimot

project construction costs allocated to irrigation; the rest will be picked up by the Central Colorado Water Conservancy District. The two districts are joint claimants of a decreed right to store up to 718,147 acre-feet of water annually in the Narrows Reservoir. The repayment revenue will be derived from a one mill property tax and the proceeds of project water sales for irrigation, municipal and industrial uses.

119

Negotiations on terms of the repayment contract, which will extend over a period of 50 years, have been carried on for several months.

District officials have been authorized to execute the contract when it is presented in final form.

This ceremony is now anticipated to occur in Sterling in the district office on Sept. 11, and will remove the last obstacle in the path of the actual start of construction of the Narrows Project.

STERLING - Formal survey of flood damages to irrigation works in the lower South Platte river valley began Thursday with an official field inspection of works of the Sterling Irrigation Company and the Farmers Pawnee Canal Company.

Preliminary estimates of damage in the Conservancy District service area total more than \$501,000, and involve 33 irrigation entries. In June, 1965, preliminary flood damage estimates in the same area totaled \$860,000. May 1969 flood damage to irrigation works was originally set at more than \$400,000.

A team of professional engineers is conducting the current survey for the Office of Emergency Preparedness (OEP).

The OEP survey team has established headquarters and may be contacted in the office of the Lower South Platte Water Conservancy District, 2111/2 Main St., Sterling, telephone 522-1378.

Arrangements have been the contras such

made for flood damage applications and other necessary number of farm units served. paper work to be channeled

in Denver with OEP officials and Logan Rappe, state coordinator, Emergency Operations Center, it was announced by the district office that it will handle 1973 flood matters in much the same fashion as was done in 1965 and 1969. Eric Wendt, general manager of the district, is in charge.

Ditch company officials who have not already submitted written notice of interest in applying for federal financial assistance should do so at once by contacting the District office, Wendt said.

Before an application will be considered for approval by the Office of Emergency Preparedness, the applying irrigation entity must file (a) an up-to-date copy of its articles of incorporation, (b) a map of

(c) a statement indicating the through the office of the Lower are at hand, Rappe will As soon as all applications Platte Water Conservancy schedule, probably in mid-June, a special meeting in After a Thursday conference Sterling to inform ditch company officials as to the form and content of records which must be kept to obtain reimbursement for disaster costs eligible under the law.

On May 23 President Nixon declared a 16-county section of Colorado a disaster area receiving an urgent request for relief from Governor John A. Love. Under provisions of Public Law 91-606, the Disaster Relief Act of 1970, Federal financial assistance is available to qualified applicants for debris removal, temporary repairs and permanent restoration of facilities.

Members of the survey team estimate that it will take until the middle of June to complete the formal survey of damages from the South Platte flood disaster which began early in the week of May A.

Court tio study water Supreme opinion malin DENVER (AP)

Supreme Court opinion on the constitutionality of a water bill pending in the legislature.

Acting Chief Justice Donald E. Kelley said the six court justices "respectfully" declined to answer four questions submitted to it by the House of Representatives on the bill.

The measure declares it is a beneficial use of water to maintain the flow of streams.

The measure passed the Senate several weeks ago, then cleared the house on preliminary reading last week.

^hBefore the final vote, the House decided Monday to submit the interrogatory to the court.

When Gov. John Love spoke to the legislature last January he called for establishment of the principal of maintaining stream flow but said he thought a constitutional amendment would be necessary.

Several law makers expressed belief the point could be established legally simply through enactment of a bill." Sen. Fred Anderson R-Loveland, sponsored the measure.

-The high court's decision to stay out of the case left the lawmakers with two alternatives; to complete passage of the bill and seek a quick test in a water court, probably on the Western Slope or to start a constitutional amendment.

Anderson originally favored passage of a bill and a test suit. He said whatever the water court ruling may be it could be appealed to the Supreme Court and a decision obtained.

Anderson said he thought this could be done by next legislative session.

In the event the act is ruled

Colorado's unconstitutional, he said, there refused still would be time for the legis-Tuesday to give an immediate lature to put a constitutional amendment on the ballot for a vote of the people at the 1974 general election.

> The chairman of the House Natural Resources Committee, Rep. C. M. "Bud" Edmonds, R-Manitou Springs, preferred the interrogatory approach and the House went along with him.

bill has been set for April 2.

Presumably the measure could be advanced if House leaders decided what to do with it.

The supreme Court is not required by the constitution to answer interrogatories.

An interrogatory is a seldomused procedure under which the governor or legislature can submit a question of major public importance to the high court and get a quick answer, thereby preventing enactment The final House vote on the of a law which might be declared unconstitutional

By GORDON G. GAUSS Associated Press Writer

DENVER (AP) — Backers of a bill to declare maintenance of stream flow in Colorado rivers a beneficial use of water are going ahead with plans to pass

the measure even though the state's Supreme Court has declined to give an advance opinion on its legality.

They hope to have the House of Representatives give final passage to the measure then

get the Senate to accept a House amendment assuring*the validity of interstate compacts, then ask Gov. John A. Love to sign it.

If the governor approves the measure, they intend to seek a quick test of its con* stitutionality through a suit

brought in a water court-probably in western Colorado.

This ruling, whatever it is, likely will be appealed to the after 12 weeks in session-to the measure before the law-year. makers reassemble for their 1974 session.

If the decision is unfavorable to the bill, the sponsors intend at the 1974 general election. to ask the legislature next year to pass a constitutional amendment covering the maintenance of stream flow.

The basic strategy was outlined to a reporter by Sen. Fred Anderson, R-Loveland, the bill's chief sponsor, and the two House members most active in that chamber on its behalf-Rep. C. M. "Bud" Edmonds, R-Manitou Springs, and Rep. Michael Strang, R-Carbondale.

All agreed that they will not ask the legislature-which still hasn't considered major bills Supreme Court. Hopefully, the take up the problem of a conhigh court will be able to act on stitutional amendment this

> In any event, the amendment? would have to go before voters for final approval or rejection

When Love called for maintenance of stream flow to be made a beneficial use of water, he expressed belief a con-

stitutional change would be necessary. The lawmakers decided, however, to try enactment of a bill first.

By Diana Sheek

Braving freezing temperatures through the night, men worked until 6 this morning to close a gaping hole in the dam of Horseshoe Lake, dumping in more than 40 car bodies and truckloads of rocks, bales of hay and mattresses.

Horseshoe Lake, an 8,000-acrefoot reservoir owned by the Greeley-Loveland Irrigation Co., is located on the west side of Boyd Lake, northeast of Loveland. The dam leak was located at the bridge on the southeast edge of the lake, just east of the outlet.

The immense outpour of water was finally haled about 6 a.m., nearly 17 hours after the leak was first discovered by Norman Wilson and his wife. Wilson is the superintendent for the Seven Lakes division of the Greeley-Loveland Irrigation Co.

Discovered 1 p.m.

"Norman and I discovered it shortly after 1 p.m.," said Mrs. Wilson, "and it was just a small whirlpool then."

"Apparently," Wilson said, "it started leaking about 12:30 p.m." He said he had driven across the dam about noon Wednesday and had seen no leak.

Throughout the 17 hours, officials for both the irrigation company and the Larimer County Sheriff's Department seemed relatively certain of no threat to houses, farms or businesses south of the lakes. No items were evacuated.

Channeling

Ed Boreson, chairman of the Seven Lakes board, said about 3 p.m., Wednesday, he thought all the water could be handled by channeling it into Boyd Lake through the upper, eastern dike and through Heinricy Lake.

Additional water, he said, could go south into Upper and Lower Hoffman Lakes, through a Greeley-Loveland ditch and into Equalizer Reservoir east of akind Daily Raporter-Herald Boyd Lake. Boreson estimated the Greeley-Loveland ditch could carry about 1200 cubic feet per second of water.

Superintendent Wilson was uncertain about the initial cause of the leak but was guessing it could have been caused by a muskrat digging its burrow in the dam.

Inspected

Wilson said the dam had been inspected by the state about six months ago, shortly after the Latham Reservoir near Kersey broke and flooded low-lying areas.

"We repaired the whole damn dike here last spring," remarked Boreson. "We were just talking here the other. day about what good shape the dam was in."

Boreson said Horseshoe Lake will now have to be drained low enough to permit repair of the damaged dam, probably sometime this fall.

Hauling Rocks

When the leak was discovered, Wilson said, "Luckily, I had some trucks hauling rocks." About 1:30 p.m., dump trucks began hauling in chunks of cement and dirt, some from the Boyd Lake dam and more supplied by county crews.

When the rock and dirt appeared to be simply washing away, Wilson called for car bodies with most of them obtained from Hiway Auto on South Lincoln Avenue in Loveland. With each successive car, the vehicle was pushed in by a loader and eventually sank out of sight into what appeared to be a bottomless hole of water. After the water had eaten through all the pavement on the east side of the bridge the men chained together about

five car bodies and dumped the collection into the hole. With this move, the course of the battle seemed to tilt in favor of h workers.

Nearby farmers contributed bales of hay and new and used mattresses were obtained from Quality Furniture—all dumped into the hole. In addition, the "bottomless hole" also contained three truckloads of old car and truck tires.

At the point, Joe Mitchell was operating a Coulson Excavating loader when a front wheel went through the west side of the bridge. He managed to throw the machine in reverse and moved it out of danger.

The final closing of the leak was accomplished by slowly building a wall of cement chunks across the leak area.

Among the groups contributing help to the effort were the Loveland Fire Department, the Larimer County Sheriff's Department, Ward Construction, Coulson Construction, Loveland E x c a v a t i n g, the Loveland division of the county road department, Jake Kauffman and Son Excavating and the State Department of Game and Fish.

																					•	
	· · · ·	the second	ate	site .	r to	ay	an the	rea	-st-	the	م م	ted	ə								122	
	-		ath: st:		corcu r, is failu	E E	to t	ខ្មែ ai	i Ei	of	ing.	licat	s .	: :								
	e e		er L the	arn	acc uipe he 1	rhicl e.	caus	ndin	uive.	ondi	hear issu	, ii	aent									
	• E		MOT O	he He .	ng, eKi ort	e w ilur	ke maj	rou	n ha	he t	tt	sday	bre									
· ·	S.	he no	he I d t	at ti	near renc ns fo	mag ie fa	lida da	e sur	erso		at 1	Tue	the									
		a a	of t lule	25, P	Clar Clar ason	dai n th	the	d the	v p	as	sent	ve	e of	2 1								
	<u></u>		chec	pril freel	eer eer ere	the	E E	/ an	s an	to I	pre	n Lo	wea									
			s	y, A in G	pose ngin e th	ted	ach \$3.5	dav	ırge	mat	be	John	wer ole c	2								
			in voir	sda	pur ie Ei igate	ass esul	bre	f Ke hurs	er (ntor ke p	, to T	lo I	obal	,								
	ē	A Point of T	ilure eser	gure edne ifete	I'he Stal vest	t to	The	wn o st T	Kuit	e di	eacl	ver	e pr	-								
0	- MARIN - ANA		E A	ڰؚػ	, , ,	. e. e	Ğ.	to a	ant au	E E	<u> </u>	ğ	<u>a</u> a	.* . #	•							•
	2		•																			
$\mathbb{P}\left(\mathcal{O}_{\mathcal{D}}\right)$	e e Anna an c																					
		ີດີ່ຍັງ	p q	2 ਨੂੰ ਜ਼ੱਟ	5 9	at at	S	e c		ວ່າວ່		°.		, 1	۰	6)	L		ິທາ	5	ທ່ 1	= (
		dee it th II b	h ha	cho.	eas	tha ed_a	cros	farr	ater	war	an	nt t attle	anc	resi	han	Ĕ	owe	f th	thi	plies	urce cor	Apri
		hìp tha we	vhicl	rn s ater	s to	said	th a	s al s 50	le w	10 10	cers	e sei	oon,	sey	Lat	e. 9	e L	ss o	ack	Idns	esou	of
		rly uter. said ight	n. h	udu v v	tche	ol s disn	nor	her: 'y ai	y th of h	acks	offic	were	t n	Ker.	the	erte dik	s th	t i	setb why	noi	er R eser	eras
C.		nea ur la ey s ey s	brea noo at hi	of A awa		be be	aken	d of mai	ed t		ff's	en '	noq	aid	ing	div the	ir i	tha	ere	igat	Wati he r	wate
619 4	$\overline{)}$	ıgh I hou Kers rsey	by by the	th of	f the	uld	tsta	and tas	mag dt	cific	heri	olm.	ed a	gs s /acu	llow	aily h of	ervo	said	seve	irr	ate aid t	t of
	U	hroi n ar of 1 Ke	om feet sai	non the	ne o	Aubi	ıden	nen I tha	e da	Ë.	e, s	pati	clos	g ev	s io	nort	res	ers.	· • •	2 Q Q	le St re s:	e fee
	60	de 1 tha lein n of	r fr 100 hiko	/ays file	sor e.	at . /	e sti	trolrated	t p	nion	olic	ate	as	er E bein	wa	as I cks	the	erv .	h be	rvoi	of 11 e he	acr
	U	wa less r Kl	wate d to Hos	pillw hanc	ting ssur	rts . sch	d th ?r.	paf	lgin si -	a 5 	ey p	o st	4 N	sion ere	ater	trae	j	sqo	ould	ine ese	fice 00	,740
(\bigcirc)		l to ter icto	ler lene	h sj ld rear	pre	epoi	n an rive	tate ne e:	les l lafei	the	sey. reel	orad	S.	mis s w	e w	ר, ar oad	wnei	ater	er c	her	ne of isior	ed 5
	_	hac wa who	wic	dite wou	dyn the	H Ker	noo the	scel	hon W	and	Ker G	Cold	Ď	com	Τ,	ditcl railr	Ó	M	wat	on t	Div 1	tain
								•	:		•				·	- ·	·	,				• •
	S	was saic 'n o	for the	, the	egar ight nins	t	and	st of	in 45 reat	nou	l₿. Ltol	and i	eral	දි දි ද	ater	MIIIM	vton	hen			•	
(05)	61	voir gs tow	and ted	sene	r b ne n	le ir	dirt,	Ea	oot 1 thi	cho vho	ildir le ou	ant mat	sev	≍ ਦ	ne w	and	Nev n sc	pu				
	U	ser ser fillin the	ıger aler	le so rec	vate ng ti ne re	e ho	ore	site	t a f		l bu catti	oiss to	prt	i ha	te, tl	ases	rcus	vea				
		ie re that	dar e	at tl rom	lurin Iurin Iv th	, 4 4	м М	loot	peo.	amil	choo led	D of	ole,	anc	olsi	ni Gres	Mai Al	abo				
	05	out. but. lity	nost wer	ials en fi	, th ke e awa	BIID	awa	l scł	se a he r		ed so	Orr	rou	lled	scho	N N	itor fth	ned				
0		th c ned o . G ssibi	he n 	offic	ently le di ore	, i	hed	burr	r ro	wor	g st	the	ch t	sta.	urn s	e Ho	Ed The	intio				
		nor vash oner pos	in t the	to c as s	pare Yr th	- - - -	was	Au	vate essir	/ads	emo	of	цц	ars	Aubu	the	orts e so	Ĕ				
Θ]	iles Ily v nissi as a	was ts ion	ding r w:	Ap ove dual	u i	idly	old	he	e e	he r sha	hou	too	ut.	the /	h as	le Sl	use:				
		e m ontee omn	sey iden cuat	ccor	off. hing gra	e e	rap	the	ns, 1 utes	2	uck uck	vici	out	eng ed o	mo	nort	ibur ed a	e ho				
	\bigcirc	thre repo	Ker resi eva	A	run was and	dirt W	dike	A.	Eva min	enin	Tr Tr	the Dun	with	pass pulle	Ξ.	run -	Tr valk	o th				
	GDI	ર્વુ છુ	or he	- j	E	e e	<u>م</u>	ъ З	in d	ມີອ	e	s a	2.5		0	- ທ	··· .		~ -	ć		
	CU	12-5 ead	ids V of the	Con	atha	opo ons		to ti om a	me f th	3 1 2 3	ef th	rker e th	etel	sen	eat	111011 8.8 a:	ion	ad-ir	wa)	L a C		
	<u>M</u>	of h	vate roa me	uty Jav	ції. Пе	nilli	rrou	was Str	e ho	, rok	bit o	woil	mpl	ent	le ar	acue e ari	0.00	l le	high	au		
		RS TON	he v omé sou	Cot	fron	te b ing i	ns .	ert ert	LT.	ke t	Ĕ.	ent	00	irtm	in th	e V: A the	, od	and	he			
105		ETE GER Wri Wri	by t e sc lieve	s of	ing Salle	endi endi	Ξ.	dan Rob	shed	e di	5 7	urtm		Jepa	nes	fron	+ ب	out,	ي ت م			
	$\mathbf{\bigcirc}$	E PI ED(Staff	red amit rel	vord	ushi La S	ay s	over	nare of]	fini: If n	- 4 - 4	it.	depa	vhic	ne. Te L	hon	ded	rth	lsh.	d d			
		AIK) ED. une S and	dyns ar fo	he w	rs r of]	r's r ursd		ned 1e	ntly ha	afte	the	ر مہر	^	Fir	nd to	her	ble.	wa	osec	200		
		By A ad R Tribu mes	enda to , orde	re ti Rov	vate east	Thu Thu	wai	hon	ecel	i oon	sed	thwa dit	ers	the	rour	also	ossi	it to	, cl			•
		ar J ho	ave	e." e.e.	ed v	ese a.m.	nd.	nost ite.	/as I aho	ir. S	cros	hig	wat	ded a S	ers a	ere	as p itv i	firs	vere			
		'Fift	the a by h these	bose ssion	vey	130 1202	silor 31 m	bora	ich v vted	ervo	ers se, i	thr	۲ ۲	toun	intee 7 20	le w	kly com	the	ls . Irtm			
(\bigcirc)	6		cat dit	рге Т	Re	at 5	far	ela	whi loca	res	bou	Si	hig	Suri Tr	volu	Catt	quic A	was	road		-	
 																						

APR. 73

By RED EDGERTON **Tribune Staff Writer**

With damage reports continuing to come in, the total bill for last week's Latham reservoir disaster is reaching oward the \$3½ million figure, according

will be needed in effecting the repairs

Billings said he received a late report and the report indicated that \$5,000 in repairs will be needed to Union Ditch before irrigation water can be turned into last night from the Union Ditch Company the ditch this year. needed

Reason given was that Union Ditch crosses the top of Latham Ditch in a concrete structure about half a mile from Auburn School and during the flood, the concrete structure collapsed and fell into Billings said that some of the land was Latham ditch.

west and 64 west, both in Township 5

north, took the brunt of the rampaging waters which flooded a total of 4,365 Farms in the path of the waters received the greatest damage, Billings

acres of land.

He put the total farm damage at \$2,182,500. This figure includes damage to land, buildings, ditches, fences,

said.

Commissioner Billings said ranges 65

to Weld County Commissioner Glenn

Billings.

to have been planted to sugar beets this year and that this would be impossible now.

He said some of the land can be planted to corn if it can be readied in time and some of the damaged land will not be able to sustain a crop of any kind this year.

> Damage in the town of Kersey was put at \$933,000, but this figure does not include damage to the Platte Valley School

equipment and other related items.

Billings also said that the long range

Billings said he estimated it would take \$10,000 to repair the Kersey sewage agoons and there was some doubt in his mind that this figure would bring the agoons up to standards set by the state

buildings in Kersey.

effects of the flood may possibly be the most damaging of all.

year and this will mean a short supply of conference with the governor how much water this year and possibly next year as the Kersey school aid might amount to. and get water back in the reservoir this He said it was his opinion that it will be impossible to repair the Latham Dam well.

Damage to three county bridges was

iealth department.

county roads and culverts hit by the flood

put at \$90,000 and the repair bill for

ime, materials and equipment which

These figures, Billings said, include

waters was set at \$110,000.

Billings said he was going to talk to Sen. Peter Dominick and Congressman

Jim Johnson in Washington, D.C., Wednesday to see what they could do in the way of helping to get funds for the county.

morning to talk with Gov. John Love He will be going to Denver Thursday about the situation, Billings said.

According to Billings, some farmers terest loans through the Farmers Home may be able to get long range, low in-

Administration or the Small Business Administration, but this was not a certainty.

Billings also emphasized that damage to the Platte Valley Schools and Union Pacific Railroad right of way was not included in the \$3½ million figure.

Meanwhile, State Sen. Hank Brown, R-Greeley, said Tuesday the Weld County legislative delegation had met with Gov.

dicated, said he will recommend a John Love. The governor, Brown inspecial state appropriation to aid Kersey's flood-damaged schools.

Brown noted that the governor feels Kersey will not qualify for federal disaster-area designation.

Brown said it was not stated during the

123

NVER (AP) - A new version of a bill declaring that "beneficial use" of water includes allocations for recreation and minimum flows of lakes and streams was introduced today into the Colorado Senate.

The measure, Senate Bill 97, covers the same points as an earlier bill, Senate Bill 79. the new bill were Sens. Ken-

Both were introduced by Sen. Fred Anderson, R-Loveland. Anderson told reporters his new measure carries a broader title than the original bill and is intended to prevent any court test on the basis of a title after amendments are added.

Anderson said he plans to kill his original bill - No. 79 - at a committee meeting Wednesday and to work on the new measure.

Even this proposal, he said, is facing a court test because it

seeks to do by legislation what Gov. John Love probably will require a constitutional amendment.

The committee work will be done in the Senate by the Agriculture Livestock and Natural Resources Comittee, which Anderson heads.

Joining him as cosponsors on

neth Kinnie, R-Julesburg; Harold McCormick," R-Canon City; Hank Brown, R-Greeley; Fay DeBerard, R-Kremmling; Joe Schieffelin, R-Lakewood; Dan Noble, R-Norwood; and Ray Kogovsek, D-Pueblo; and two Republican representatives, Mike Strang of Carbondale and Charles M. Edmonds of Manitou Springs.

Stream

UNF **By GORDON G. GAUSS Associated Press Writer**

Hous

2-13-73

DENVER (AP) - The Colorado Senate, working during a used benefically for agricullegal state holiday, gave initial approval Mon. to a bill which would make maintenance of up agricultural areas and harm river flow a benefical use of the towns where people live water.

The bill, sponsored by Sen. Fred Anderson, R-Loveland, and others, would allow the state to appropriate water or purchase water for the purpose of maintaining the level of a river or a lake.

It attempts to do by legislation what Gov. John Love asked the legislature to do by constitutional amendment.

The bill passed without dissent on preliminary reading and will come up for a final Senate vote Tuesday. If approved, it will go to the House vide free tuition for children of for consideration.

Anderson said that by use of the statutory approach "we do not jeopardize case law built up over 100 years."

He also described the measure as "a good approach to solving a need that exists within the state."

The Western Slope, in particular, he said, could benefit from the measure.

on an amendment offered by Sen. Christian Wunsch, D-La- would take advnatage of it. Junta, which would have pre-

vented the state from acquiring any water for the purposes of the bill if that water is now tural purposes.

"I don't think we should dry and diminish our food supply," Wunsch said.

His proposal lost overwhelmingly on a voice vote.

Wunsch and Rep. Forrest Burns, D-Lamar, are sponsoring a separate bill intended to halt the purchase of water now allocated for agriculture.

The action came as the Senate held a Lincoln's Birthday session, beginning the seventh week of the 1973 meeting.

The lawmakers gave preliminary approval to five other bills, one of which would pro men who have been prisoners of war in Vietnam or who are listed as missing in action.

Sen, Kingston Minister, R-Se curity, the bill's principal spon sor, described it as "a smal way for those of us in Colorado to say thanks for the sacrifice' of the men.

He said the best estimates are that between 69 and 72 per sons would be eligible for the Principal discussion centered. free tuition eventually, and that probably only half of then

> The Senate gave final approv al to three bills, all without dis sent. One of them would pro vide penalties of a year in jai and \$1,000 for interrupting leg islative sessions and would make the penalty five years in prison and a \$5,000 fine if the person had a firearm.

> Another of the bills would raise the renewal fee for snow mobiles from \$3 to \$5 and prc vides a reporting procedure i

touse asks Court opinion

Di Siream flow measure define appropriation to mean sible. simply for use of the people? DENVER (AP) - Colorado's **By GORDON G. GAUSS Associated Press Writer**

day to answer four questions tutionality of a bill allowing ouse of Representatives asked e state's Supreme Court hich would determine the conie state to protect the flow of s streams.

nimously, 60-0, to submit an an effort to determine wheun terrogatory to the high court ler the problem can be haned by a law or whether a conitutional amendment will be When Gov. John Love sugvoted The House cessary

ature more than two months nendment to handle the probested maintenance of stream ow in his message to the lego, he urged a constitutional

n, R-Loveland, expressed be-1 97-and it was approved by The questions asked by the of the problem could be haned by a law. Anderson inoduced the measure-Senate e Senate and cleared the However, Sen. Fred Anderouse on preliminary reading st week.

in waters to the people and move them from availability 1. May the state dedicate cerouse are

c appropriation for other purte a portion of the waters 2. If not, may the state dedises?

application of a certain portion of the waters "to beneficial use"'?

4. Is maintenance of minimum stream flow a beneficial use of water?

The interrogatory was approved by the House acting under special orders at the request of C. M. "Bud" Edmonds, R-Manitou Springs, chairman of the Natural Resources Committee.

said he will call the other jus-Acting Chief Justice Donald E. Kelley of the Supreme Court ices to meet with him, possibly ference, to see whether the before Thursday's regular concourt will consider the interrogatory or not.

Edward E. Pringle left on a from knee surgery, became acting chief justice when Chief Justice wo-week trip to Spain and Por-Kelley, recuperating ugal.

Kelley said the six justices The court can refuse to an swer the interrogatory if it wishes.

will look over the questions to see whether a legal answer is oossible. He pointed out that the situation is different from he usual case because there are no adverse parties in it and the factual situation has not The acting chief justice said been developed through briefs.

this might make a situation 3. May the General Assembly where a ruling would be imposIf the court decides to answer for briefs from interested parties, then one judge will be ashe questions, it likely will cal signed to write the opinion.

ature to carry out Gov. John

ove's demand for maintenance of stream flow in the Rep. Mike Strang, R-Carbon-

state's rivers.

dale, and Sen. Fay DeBerard,

Friday into the Colorado Legis-

egal status-were introduced

Edmonds and Speaker John Fuhr, R-Aurora, indicated a the House delayed its final vote on the bill until April 2. Both further delay might be likely if To give the court time to act, he court takes jurisdiction.

lature opened the 12th week of The action came as the legis its 1973 session

bills introduced Friday ive that it will stand a court he told reporters he isn't $\sum_{i=1}^{n}$ would have the same effect rres - one with questionable DENVER (AP)-Two meas-

By GORDON G. GAUSS **Associated Press Writer**

Stream-flow maintenance

Strang's amendment, with only a minor change in wording from one suggested by the governor says in part that "to preserve the natural environment and wildlife, for the benefit and to a reasonable degree, including the preservation of fish enjoyment of present and fu-

perennial natural stream or ake below a minimum flow or level as shall be established by aw.

Anderson's bill, with Strang as a co-sponsor, cuts from the ion of the natural flow of a definition of diversion a list of It adds to a section of the law er "maintaining all or a porways a stream can be diverted lume, reservoir, bypass, pipe describing beneficial use of wastream for recreational or oth-These include ditch, canal line, conduet, well, pump or oth er values to man kind." er structual diversion.

per-

... shall be

hereafter

Sen. Fred Anderson, R-Love-

asked by the governor. constitutional

ture generations no appropriation, diversion or use initiated

amendment

R-Kremmling, introduced a

any

land, introduced a bill which mitted which will deplete

making it a law, and then He said this test could be completed by next winter, in time for the legislature to pass the Anderson said he thinks the should seek a test in the courts. When the governor presented legislature should pass his bill constitutional amendment necessary.

told the lawmakers he thinks a troduced only moments before constitutional amendment will amendment and Anderson's bill were inthe legislature quit Friday noon Both Strang's be required

his proposal in his message to the legislature 10 days ago he for its third weekend recess of the year.

125

Rewritten water management told those at the committee State Engineer C. J. Kuiper hearing that Younglund's bill periods, Kuiper said he doubted ing water to senior-right irrithis would eliminate the potential for a call on a river such as Even with state wells supplygators during low-stream the South Platte, enforcing sen-Kuiper also suggested the committee set broad policy by determining whether such management structures as under his office, the State Water Conservation Board or dams and wells should fall under a system of river basin posed in a bill (HB 1274) walter, R-Greeley, which also is The basin authorities are prosponsored by Rep. Carl Shobefore the Natural Resources bill slafed for infroduction TRIBUNE 7-13-73 did not go far enough. ior water rights. authorities. **Committee**. DÉNVER – A bill allowing the state engineer's office to build and operate water management structures has troduced in the Colorado House which would have put the state Resources Committee conerosion of the senior surface rights structures such as dams, plus Friday or Monday, according to Younglund said the measure business for supplemental use ducted a hearing on that bill would allow the state engineer's been rewritten and will be in-Rep. Walt Younglund, R-New will replace his House Bill 1303 engineer in the irrigation well during low-stream periods. Members of the House Natural is far broader than HB 1303. It He argued this might lead to gradual office to build and operate well The new bill, Youngland said, granting the irrigation requires senior appropriators to accept authority. Raymer. April 11. However, Kuiper noted existing state law, of the senior stream rights held by that legislator and shareholder in the Sterling No. 1 Ditch Co., said he would refuse water from state wells to meet his share the governor power to declare emergencies and use water from the wells to meet them. Andersen asked if such language might allow trans-basin Lou Rinaldo of Sterling, a former varying means of delivery in fulfilling helpful in management of South Platte funding could be expected and said such projects may have to depend on state and although he questioned one section giving Kuiper said projects such as the Narrows Dam proposal, would be very water. But he echoed doubts that federal Art Andersen Jr. of Ault, secretary-treasurer of the Weld County Underground Water Users Association. State Water Conservation Board to build such wells, although it has not been used. indicated general support for the bill. Who will control store worker their senior rights. local funding. company. pùmping. would be funded, and did not speak to completely eliminate the potential for a Kuiper said the bill left questions of who would pay for water delivered by a state well system and how the system oill," Kuiper told the committee. "It's impact on ground-water recharge areas. basin-wide property taxes plus funds pointed to the three ways the committee could go in authorizing a framework for better water management. And Kuiper pointed to what he saw as failings of the "I must agree with the lawyers on this too simple. It should either go further, or not so far. And I doubt you'll ever rom the state not exceeding half the Younglund bill and limited remarks on inued until the next Natural Resources Both Kupper and Ken Broadhurst, an areas where surface waters could be The authorities would be financed by ocal amount. Showalter's bill would take Following lengthy testimony on the he Showalter measure, both are conattorney for the Denver Water Board, used for recreational purposes. Committee meeting Monday. call on the South Platte." founglund bill. effect July 1. not be forced to insure their water rights The second bill (HB 1274), being Greeley, would create seven river basin authorities based on existing boundaries carried by Rep. Carl Showalter, Rfor Colorado's seven water adjudication authorize the state engineer's office to without jeopardizing existing surface They would provide water to those during low-water periods so they would Wednesday as the Natural Resources Committee of the Colorado Walt Younglund, R-New Raymer, would These wells would have to be built and ground water rights, the bill says. bolding senior rights on stream flows vis office, the State Water Conservation 30ard or a proposed system of state pasin authorities to deal with projects for This potential of triple duplication One Bill (HB 1303), sponsored by Rep. build and operate state irrigation wells. Kuiper hopes members of a legislative House conducted hearings on two water-DENVER - State Engineer C. J. committee will decide whether they want by placing a call on the river. By RON TOLLEFSON **Tribune Staff Writer** management bills. petter water use. arose

Seven-member boards would preside of three ground water and three surface water users plus one director not a water appropriator in the basin. All would be The basin authority boards would be over the authorities. They would consist appointed by the district water judge. districts.

management projects and would have the power to condemn land for such ditches, dams, reservoirs and other empowered to build and operate wells, riand chanking the

He said state reservoirs might be \$ Both Kuiper and Broadhurst pointed necessary to resupply any losses recharge areas.

Younglund said later he had been attempting to write a simple, easily understood bill allowing the state wells. But he said he would agree to amendment of

out existing law gives authority to the

his measure.

bill, told the committee that debate on Showalter, carrying his basin authority the state well bill showed the need for basin-wide management

written, both bills provide duplicate Kuiper later said that as they now are management tool such as state wells. for providing systems

126

Colorado Farm Show has top speaker list

TRIBUME 1 - 1742 23 U The Colorado Farm Show discussed will be planning, (Jan. 23-24) is just around the corner and the program features a very impressive linecommunity. The groups are: The show, which starts with women. Monday night at seven categories. These nor d'oeurves and wine for the o'clock, is structured into three categories are designed to best meet the requirements of the people in the agricultural The Ladies' Town and Country Potpourri, Dairy Days and the up of personalities. Farm Show. main

which has caused the issuance of rules and regulations on the will speak on water problems and frontiers of the future. The talk will concern the situation Colorado state engineer. Kuiper basic consideration of Kuiper's wells shall operate only three-Heading the list of scheduled speakers is C. J. Kuiper, sevenths of the time and be The regulations state that all curtailed from operation the remaining four-sevenths. It is the belief of the state engineer that the use of well water may have to be curtailed completely The state engineer is exwithin the next few years. use of wells in the state.

pected to expand upon this point in his presentation at the Farm

Other topics that will be Show next Wednesday.

zoning and an explanation of accomplished through a panel Marshall Anderson, chairman Senate Bill 35. This will be discussion. Members of the panel will include: Betty Schulte, former administrative Sate Land Use Commission; of the Weld County Regional assistant to the Weld County Lee Woosley, county ad-John Watson, Weld County Planning Commission; and ministrator, Summit County; commissioners; Harry Cornell Planning Commission.

Also planned for the show will be a discussion of trust and estate planning, which will be vice-president, United Bank of presented by Ed Boos, senior Greeley.

discuss the advantages and dis-In another presentation, Darwin Schwartz, CPA, wil advantaes of incorporation.

of the Premier staff, will speak L. Mack Cropsey, a member

on the subject of new breeds in "Diethylstilbestrol, and the integrated beef production.

need for education," will be the topic of a presentation by Don Svedman, deputy com-missioner, Colorado Department of Agriculture.

will be covered at this year's further information on the the speakers and topics which Colorado Farm Show. For Chamber of Commerce or the Farm Show, contact **Extension Office**

These are just a sampling of

was reported favorably late Monday by the Senate's Comwhich would allow the State of Colorado to appropriate water to maintain the flow of streams mittee on Agriculture, Live-The prime sponsor of the bill stock and Natural Resources.

land, is the committee chair-Sen. Fred Anderson, R-Loveman.

on an amendment changing the Director Felix L. Sparks of the The measure is intended to priation" at the suggestion of Before the measure was reported, the committee tacked word "diversion" to "appro-Water Conservation Board.

ate-one which would repeal a aw excluding Denver from any river basin authority. The same law allows other municipalities to join or stay out of the auyear to put a constitutional other water bill into the Senment. Anderson has said that if gal there still will be time next Anderson also introduced anrecommended by Gov. John A. Love as a constitutional amendthe courts declare the bill illecarry out by law a proposal amendment on the 1974 ballot. horities.

ing Denver to help pay basin would have the effect of requir-The measure, if adopted, administrative costs.

Wednesday. Action on the measure was deferred pending a series of hearings on basin management proposals. (Tribune photo by Lynn Heinze) necessity of water management at a hearing of the Bill 75, and state engineer Clarence Kuiper discuss the Senator Hank Brown of Greeley, left, sponsor of Senate

12

1-31-73

Neutze said that his job involves a management sys-say, 'we are going to deliver An acre-foot is the amount of bookwork has increased three changed from that of an over-tem," he said. "In the past such amount of water, water it takes to cover an acre times with the new computer of the second transmission of an over-tem," he said. "In the past such amount of water, water it takes to cover an acre times with the new computer of the second transmission of an over-tem," he said. "In the past such amount of water, water it takes to cover an acre times with the new computer of the second transmission of tr that's what they told me. My been a good year for water to run the river in the case We have more water than we of illness. The division engineer knowing the district." He thinks the hardest part records on a data bank," he "Last spring, I estimated that said, which is supposed to dethe snow pack contained 330,000 crease my book work. At least mountains is a major determin-lof his job is record keeping, ant of the amount of water that "The state is putting all water company is trying to steal war fact that water commissioners ter, I'll shut them clear off are hard to replace for vaca the legal department." really no time to take a vaca-Neutze noted that this has tion," he said, "And no one can use this year," he said has a roving water commissioner to fill in, but there is the "Another part of my job is problem of that individual not judging the snow pack," he said. knowing the district." we re interested in 15 Biving vie week," he said, "from the water on an overall average," a week," he said "from the lime I he said tions and checks the amount his job. "I like the variation of water diverted on a graph more than anything else," Neut-He said a ditch company may ze said; "I never have two days get more or less water on a that are alike." we're interested in is giving the on the job only totals 100 hours "I have no problems with the go to bed. But I'm on call 168 ers, but not anymore. If a ditch NEUTZE WORRIES aboot the daily basis than what they can that are anke." appropriate by its decrees. "All "The amount of time I spend "My work has become more said. This year he estimates management oriented," he said, that 350,000 acre-feet will pass furnish by state law, monitor volume of the river because of the amount of water being di-the transfer of water among ond. Neutze unlocks these star The river administrator likes around 250,000 acre-feet Neutze NEUTZE ADMINISTERS the a year. This year I might ad-river through the use of record-minister up to 700,000 acre-feet. These stations, The amount of water adminis-The average amount of water They leave it to me as to where in the river during a year is minister 500,000 acre-feet during ing stations. These stations, the amount of the total which the ditch companies must tered is greater than the total a "THIS IS AN exceptional year," he said. "I usually adand turn the problem over to tions and illnesses. to the point where I have be through the river. verted in cubic feet per sec-ditch companies. ditch companies," he said, "We hours a week." amount of snow in the acre-feet of water," Neutze said. used to have some police powwant so many feet of water'. but I'd prefer to be called come sort of a river lord the water comes from." river administrator." will be available. stations. he sa'd. The Official controls river flow corder measures the water diversion of the ditch companies where a rein cubic feet per second. holds the tools of his trade. The keys Water Commissioner John W. Neutze are for the locked recording stations ADMINISTRATIVE TOOLS cache la **B**udre administrator

The appropriation of water is he headgates of ditch compan-As a state employe, working br the state engineer, Neutze s responsible for the Cache la water according to decrees." he vidual or company holding the sarliest decree may get his full rom a variety of sources to Poudre Watershed. "I deliver Chis decree entitles the holder first is based on the date the appropriation of water, whereas administrator," he said. "I am based on an adjudicated decree. to a certain amount of water that he can put to beneficial The priority of who gets water rdjudication of the decree took of the first water division. "I hink of myself as the river esponsible for the flow of water IN A LEAN year the indiplace.

ng the latest decree may not get any water at all. The use of the water falls rrigation, municipal or domeshe individual or company hold into three basic categories ic and recreation. $\mathbf{b}\mathbf{y}$

they hold in the company. Ditch ompanies also hold decrees on Water for these uses is transrording to the number of shares which own and operate transtitch companies are owned by ihareholders who get water acditch companies nission facilities. In general nitted

7-29-73 man who controls the

The

By ALAN STARK Of the Coloradoan 7-29-73 Jache La Poudre River is John

W. Neutze.

nissioner for the third district

His official title is water com-

COLORADO POPULATION TRENDS

VOLUME 2, NUMBER 3, SUMMER 1973

DIVISION OF PLANNING

COLORADO POPULATION PROJECTIONS FOR 1975 AND 1980

David E. Monarchi

INTRODUCTION

Planning requires some form of projections or guesses about the future. Planning activities in the areas of health, education, transportation, land-use, recreation, and economic development require information about the future size and composition of the population.

Ideally, this information would be projected for small geographical areas such as cities and towns for time spans of 30 to 50 years and would separate the population into subgroups such as age, race, and sex. Unforrunately, the reliability of population projections seems to be inversely related to their time span and the size of the population groups being projected. As the time period increases, so does the probability that the assumptions underlying the projections will be violated. Small population groups (i.e., small cohorts in an age-race-sex split) create problems in applying fertility and survival rates which are derived for large groups of people.

This issue presents in capsule form the results of a research effort aimed at projecting the population of all 63 Colorado counties stratified by age, race, and sex for the 10-year period 1971 through 1980. The complete text of the report is entitled Colorado Population Estimates-1970 To 1980; Methods and Results, Colorado Division of Planning, June 1973. In this research we tried to mitigate the above difficulties by limiting the projections to a 10-year span from 1970 to 1980 and by using a set of state projections as a check on the county projections. Nevertheless, many counties have only a few people in

Dr. David Monarchi is Assistant Professor of Management Science and Research Specialist in the Business Research Division, College of Business and Administration, University of Colorado.

some subgroups (especially the nonwhite) and the reliability of the births and deaths calculated for these groups at the county level is questionable, especially for the 1975-1980 period. However, the absolute size of these errors is probably relatively small.

Recieved Oct or Nov 1973 12

129

METHODOLOGY

The research employed two methodologies: (1) a simulation model which projected total state population and employment for 1975 and 1980 and (2) a cohortsurvival program which was calibrated to reflect county differences and which "allocated" the projections from the simulation model for 1975 and 1980. The results were then linearly interpolated to yield yearly county population projections by age, race, and sex. Only the results for 1975 and 1980 are presented in this report, and only total population figures are shown for the counties. A complete set of projections is contained in the original report.

The first model served as a guide and indicated a set of reasonable fertility and survival rates together with migration estimates for the state as a whole. The second utilized the same state fertility and survival rates as the first and was adjusted until the total state migration was approximately equal to the first. Individual county adjustments were also made to reflect county differences. Although the total population was not explicitly constrained in the second model, the results from the two differed by only 1 percent in 1975 and by 1.4 percent in 1980. This indicates that the county adjustments are reasonable in the sense that as a set they produce results comparable to projecting the state as a whole.

RESULTS

Before presenting the results, we must remind the reader that these figures are projections based on particular assumptions (e.g., fertility rates) which are thought to be reasonable. As such, they are conditional upon those

assumptions being fulfilled. To the extent that they are fulfilled, the projections become predictions. (The complete list of assumptions and documentation is contained in the report cited earlier.) In addition, some of the data used in making the projections is already "dated" in that recent changes have taken place in some counties which are not reflected in the projections. This situation is regrettable but unavoidable because of our reliance upon data supplied by many state agencies. Time and money constraints prohibit any attempts at primary data collection in each county to determine the current conditions in them.

Of the two models, we feel that the first offers more reliable and more detailed information at the state level so we will use its output in the following discussion. Table 1 presents age-race-sex splits for the state for 1970, 1975. and 1980. The total population of the state is projected to increase by 443,834 to 2,651,093 in 1975 for an average annual increase of about 89,000. This is a gain of 20.1 percent or an average annual gain of about 4 percent. The population shows a significant decline in the number of 5-9 year olds due to declining fertility rates. The largest increase occurs in the 20-24 year old age group (102,165) and is due primarily to net employment-related migration of 65,493 in that age group for this period. There is a sizable proportionate increase in the number of people 50-75 due, mainly, to assumed increases in net retirementrelated migration. Employment (not shown in Table 1) in 1975 is projected at 1,123,514, an increase of 234,914 for an average annual compound rate of increase of 4.8 percent. A total of 191,694 births and 112,720 deaths is projected for the five-year period together with net employment-related migration of 362,519.

TABLE 1. HISTORICAL AND PROJECTED STATE POPULA-TION FIGURES FOR 1970, 1975, AND 1980

1970ª

	Wt	lite	Nonwhite				
Age Group	Males	Females	Males	Females			
0-4	90,006	86,397	5,037	4.928			
5-9	108,414	104,438	5,712	5.607			
10-14	113,534	109,191	5,521	5,433			
15-19	105,572	102,401	4,834	4,644			
20-24	97,369	96,091	6,552	4,496			
25-29	73,694	76,309	3,720	3.697			
30-34	62,882	64,482	3,143	3.277			
35-39	60,165	61.013	2,863	3.075			
40-44	60,585	62,608	2,487	2,828			
45-49	58,751	61.638	2,210	2,306			
50-54	52,450	53,412	1,713	1.720			
55-59	43,769	46.894	1,211	1.290			
60-64	36,729	40,306	972	992			
65-69	27,460	33.035	712	869			
70-74	20,637	27.473	512	744			
75-79	14,664	21,400	338	458			
80-84	8,864	13.973	227	283			
85 and Over	5.819	9.927	249	247			
Totalse	1.041.364	1.070.988	48.013	46.894			
Race Totals	2.112	2.352	94.9	07			
Year Totals	2,207,259						

TABLE 1, Continued

	W	lite	Nonwi	hite				
Age Group	Males	Females	Males	Females				
0-4	100,653	97,944	6.186	5,798				
5-9	100,670	96,677	5,585	5.391				
10-14	124,736	119,610	6.090	6.026				
15-19	132,342	125,353	6,294	5.887				
20-24	151,405	139,252	9.377	6.639				
25-29	99,445	119,901	5.231	4,968				
30-34	90,992	94,790	3.880	4,235				
35-39	77,499	76 013	3,393	3,509				
40-44	67,006	69,915	2.630	3.213				
45-49	64,295	67,270	2.502	2,867				
50-54	61,063	63,129	2.156	2,267				
55-59	50,068	53,419	1.592	1.707				
60-64	41,342	46,980	1.217	1.355				
65-69	32,444	38,680	959	1.034				
70-74	22,472	30,318	671	863				
75-79	15,166	23,226	460	708				
80-84	9,280	15,743	269	414				
5 and Over	5,953	10,068	266	333				
Totalse	1,246,831	1,288,291	58,758	57.212				
ace Totals	2,535	,122	115.9	70				
ear Totals	2,651.093							

1975

1980^b

	W	lite	Nonwhite			
Age Group	Males	Females	Males	Females		
0-4	122,464	119,051	7,286	6.808		
5-9	108,377	105,432	6,087	5.676		
10-14	119,129	113,817	6,059	5.910		
15-19	163,772	137,765	9,664	6.571		
20-24	181,453	165,723	11.026	8.042		
25-29	155,133	166,056	8.134	7,199		
30-34	118,739	140,467	5.429	5.591		
35-39	105,982	107,650	4.154	4 512		
40-44	85,220	85,949	3,169	3 685		
45-49	71,214	75,088	2,666	3 297		
50-54	66,861	69,024	2,449	2,832		
55-59	59,276	64,031	2,174	2,408		
60-64	47,618	53,849	1 596	1 786		
65-69	36,830	45,337	1,225	1 414		
70-74	26,734	35,718	898	1 062		
75-79	16,732	25,968	600	868		
80-84	9,777	17,364	373	646		
5 and Over	6,649	11,358	318	506		
Totalse	1,501,960	1.539.648	73.307	68 817		
Race Totals	3,041	.607	142 1	23		
'ear Totals	. ,	3,183,	730	.23		

"1970 Census of Population

Vol. PC(1)-B7-Colorado

Table 19, Single Years of Age by Race & Sex: 1970

^bProjected by CPE model.

"Totals may not add due to rounding.

Colorado Population Trends is published quarterly (Winter, Spring, Summer, Fall) by the Business Research Division, University of Colorado, Boulder, Colorado 80302. Second-class application pending at the Post Office, Boulder, Colorado.

130

In 1980, the projected population is 3,183,730, an increase of 532,638 from 1975. Although the actual increase for 1975-1980 is greater than for 1970-1975, the average annual rate of increase is about 4 percent within each period. The 1975 reduction in the 5-9 year age group has moved into the 10-14 cohort for 1980, and the large 20-24 year age group has aged to 25-29 years old. The 20-24 year old group increased by 59,570 for 1975-1980, but there was a net employment-related contribution of 73,035 indicating that there would have been an absolute decrease in the size of the cohort otherwise. Total employment in 1980 (again, this is not shown in Table 1) is projected at 1,403,403, an increase of 279,889 for an average annual compound rate of growth of 4.5 percent. There are 236,678 births and 131,849 deaths projected for the 1975-1980 period together with net employmentrelated migration of 402,125.

So, for the decade we have a total population change of 976,472 including 428,372 births and 244,569 deaths. Net employment-related migration totals 764,644 and is the largest single component of change.

Table 2 presents total county population figures for 1975 and for 1980 as projected by the cohort-survival program (1970 figures are included for reference). Percent increases from 1970 to 1975 and 1975 to 1980 are also shown in this table as are the county population proportions for 1970, 1975, and 1980. The totals from this table differ from those in Table 1 because the methodologies vary.

At the county level, Clear Creek, Douglas, Gilpin, Hinsdale, Park, and Pitkin counties are all projected to at least double in size during the 1970-1980 decade. Summit County shows a projected growth of 220 percent for the period. Fifty-two of the 63 counties will grow during the

period although most will grow at a decreasing rate. Exceptions to this are Cheyenne, Conejos, Costilla, Kiowa, Lake, Las Animas, Logan, Montrose, Otero, Prowers, and Rio Grande, all of which are projected to grow at an increasing rate. Eleven counties show a decline in population over the period but only one, Moffat County, shows an increasing rate of decline and this increase is only marginal. The decrease in the other 10 appears to be slowing down. In fact, Saguache and San Miguel counties experience a reversal, showing a decline in the 1970-1975 period and a growth in the 1975-1980 period. Seven of the large urban counties-Adams, Arapahoe, Boulder, El Paso, Jefferson, Larimer, and Weld-are projected to grow by 50 to 75 percent over the decade. Denver shows only a moderate growth of about 20 percent for the decade and Pueblo only 15 percent.

Although 52 counties increased their population during the decade, only 20 grew at a rate faster than the state as a whole (i.e., faster than about 20 percent for the decade). They are Adams, Arapahoe, Boulder, Clear Creek, Douglas, Eagle, Elbert, El Paso, Gilpin, Grand, Jackson, Jefferson, Larimer, Mineral, Park, Pitkin, Routt, Summit, Teller, and Weld.

CONCLUSION

Colorado appears to be heading into a decade of substantial growth. The largest absolute increases in the population will take place principally in the large urban counties although many smaller counties will grow at a rapid rate. The growth will reverse or at least slow down the decline in population in a number of rural counties. The growth in the state population is closely related to its continued economic growth indicating a potential area for legislative policies concerning growth.

TABLE 2.	TOTAL	COUNTY	POPULATION FO	R JULY	1.	1975 AND	1980	FROM	THE	COHORT-SURVIVAL	PROGRAM
					• •						

			County	Population	Percentage					
	County		1970	% Change	1975	% Change	1980	1970	1975	1980
1	Adams		185.789	23.93%	230.256	21.20%	279.071	8.41%	8.60%	8 65%
2	Alamosa		11,422	14.35	13,061	13.41	14,813	.52	.49	.46
- 3	Arapahoe		162.142	28.13	207.750	24.82	259,322	7.35	7.76	8.03
4	. Archuleta		2,733		2,111	21.60	1,655	.12	.08	.05
-5,	. Baca		5,674	.81	5,693	.53	5,723	.26	.21	.18
6	. Bent		6,493	69	6,448	11	6,441	.29	.24	.20
- 7	Boulder	· . · ·	131,889	34.78	177,762	31.06	232,967	5.98	6 64	7.22
8	. Chaffee 💡		10,162	14.56	11,642	13.21	13,180	.46	.43	.41
9	Cheyenne		2,396	1.29	2,427	1.69	2.468		.09	08
10	<u>Clear</u> Creek		4,819	50.90	7.272	44.38	10499	02	.27	33
11.	. Conejos		7,846	9.51	8,592	10.59	9,502	.36	.32	.29
12	. Costilla		3,091	6.86	3 ,303	7.72	3,558	.14	.12	.11
13	. Crowley		3,086	— 5.57	2,914	5.46	2,755	.14	.11	.09
14.	Custer		1,120	15.63	1,295	15.44	1,495	.05	.05	.05
15	Delta		15,286	11.06	16,977	9.68	18,621	.69	.63	.58
16	Denver		514.678	10.47	568,542	9.71	623,748	23.32	21.22	19.32
17.	Dolores		1,641	<u> </u>	1,491	— 7.84	1,374	.07	.06	04
18	Douglas		8,407	56.85	13,186	50.26	19,814	.38	.49	61
19	Eagle		7,498	32.37	9,925	28.88	12,791	.33	.37	40
20	Elbert		3,903	24.88	4,874	22.26	5,959	.17	.18	18
21	El Paso		235,972	33.47	314,946	30.32	410,424	10.69	11.76	12.72
22.	Fremont		21,942	16.49	25,561	15.27	29,463	.99	.95	.91

TABLE 2, Continued

·			· · · · · · · · · · · · · · · · · · ·	Co	unty Populatio	<u>וווייייי</u> ו	1	County	Population	Percentage
	County	· · · ·	1970	% Change	1975	% Change	1980	1970	1975	1980
23.	Garfield		14,821	14.82%	17,018	13.30%	19,281	.67%	.64%	.60%
24.	Gilpin		1.272	47.96	1,882	42.72	2.686	.06	07	08
25.	Grand		4,107	38.91	5,705	33.30	7,605	.19	.21	.24
26.	Gunnison		7,578	17.41	8,897	16.21	10,339	.34	.33	.32
27.	Hinsdale		202	43.56	290	40.68	408	.01	.01	.01
28.	Huerfano		6.590	- 2.32	6,437	- 2.02	6,307	.30	.24	.20
29	lackson		1.811	24.52	2,255	22.53	2,763	.08	.08	.09
30.	Jefferson		235,300	35.80	319.526	32.59	423,665	10.56	11.95	13.13
31.	Kiowa		2.029	3.70	2,104	4.04	2,189	.09	.08	.07
32.	Kit Carson		7.530	7.13	8,067	6.12	8,561	.34	.30	
33.	Lake		8.282	.74	8,343	1.56	8,473	.37	.31	.26
34	La Plata		19,199	12.64	21,625	11.72	24,159	.87	.81	.75
35.	Larimer		89.900	34.92	121.290	31.31	159.262	4.07	4.53	4.93
36	Las Animas		15.744	6.91	16,832	7.77	18,140	.71	.63	.56
37	Lincoln		4.836	10.13	5.326	9.59	5,837	.22	.20	.18
38	Logan		18,852	3.36	19.485	3.55	20,176	.85	.73	.63
39	Mesa		54.374	9.41	59,489	8.33	64,444	2.46	2.22	2.00
40	Mineral		786	38.80	1.091	34.22	1,463	.04	.04	.05
41	Moffat		6.525	2.04	6,392	2.33	6,243	.30	.24	.19
42	Montezuma		12,952	8.03	13,992	7.66	15,064	.59	.52	.47
43	Montrose		18,366	.63	18.482	1.06	18,678	.83	.71	.58
44	Morgan		20,105	18.02	23,728	17.29	27.831	.91		.86
45	Otero		23 523	77	23,705	.97	23,934	1.07	.88	.74
45.			1 546	18.82	1.837	17.31	2,155	.07	.07	.07
17	Park		2 185	59 54	3,486	51.66	5,287	.10	.13	.16
18	Phillips		4 131	1.91	4.210	1.52	4,274	.19	.16	:13
10	Pitkin		6 185	55.88	9.641	48.07	14,275	.28	.36	.44
50.	Prowers		13 258	6.40	14.107	6.41	15,011	.60	.53	.47
51	Puehin		118 238	7 49	127.092	7.41	136,513	5.36	4.74	4.23
52	Rio Blanco		4 842		4.112		3,554	.22	.15	.11
52.	Rio Grande		10 494	7.50	11.281	7.74	12,154	.48	.42	.38
50.	Routt		6 592	32 37	8 7 2 6	28.65	11.226	.30	.33	.35
55	Sanuacho		3 827	1 28	3 778	.16	3,784	.17	.14	.12
56	San Juan		831	4 21	866	4.27	903	.04	.03	.03
57	San Minual		1 949	92	1.931	.62	1,943	.09	.07	.06
58	Sodowick		3 405	- 76	3 379	<u> </u>	3.369	.15	.13	.10
- <u>10.</u> - 50	Summit		2.665	79.88	4,794	77.12	8,491	.12	.18	.26
- 29.	Jullinn		2,005	38 36	4 588	34.11	6,153	.15	.17	.19
61	Washington		5 550	2 38	5 418	2.09	5.305	.25	.20	.16
62	Wold	<u>.</u>	89 297	25.82	112,357	25.16	140.628	4.05	4.19	4.36
<u>.92</u> ,	Viima		8 544	6.00	9.057	5.34	9.541	.39	.34	.30
<u>.</u>	Total	<u>,</u>	2,209,528ª	21.23%	2,678,647	20.50%	3,227,718	99.99% ^b	100.01%t	> 100.04% ^b

^aCorrect current Bureau of the Census total for Colorado. ^bTotals do not equal 100.00 percent due to rounding.

COLORADO POPULATION TRENDS Business Research Division Graduate School of Business Administration University of Colorado Boulder, Colorado 80302 Application to mail at second-class postage rates is pending at Boulder, Colorado

FEDERAL-STATE COOPERATIVE PROGRAM FOR Population Estimates

Series P-26, No. 17 February 1973 U. S. DEPARTMENT OF COMMERCE • Social and Economic Statistics Administration • BUREAU OF THE CENSUS

ESTIMATES OF THE POPULATION OF COLORADO COUNTIES JULY 1, 1971 AND JULY 1, 1972

This series of reports presents population estimates prepared under the auspices of the Federal-State Cooperative Program for Local Population Estimates. The objective of this program is the development and publication of State-prepared estimates of the population of counties using uniform procedures largely standardized for data input and methodology. The methods used have been mutually agreed upon by the individual States and the Bureau of the Census and were selected on the basis of the results of an extensive test of methods against the 1970 census conducted in late 1971 and early 1972.¹

The revised estimates for July 1, 1971 and provisional estimates for July 1, 1972, shown here for Colorado counties were prepared by the Colorado Division of Planning. This agency was designated by the Governor to work with the Bureau of the Census in implementing and carrying out the Federal-State Cooperative Program. The estimates shown for July 1, 1971, are based on an average of:

1. Regression (ratio-correlation) method, in which a multiple regression equation is used to relate changes in a number of different data series to change in population distribution. The series of data used in the regression method for Colorado are average daily school attendance (X_1) , automobile registration (X_2) , births (X_3) , sales tax (X_4) , covered employment (X_5) , and deaths (X_6) . The prediction equation for Colorado for the 1970's is given by

$$\hat{Y}_{2}=0.0057 + 0.3362x_{1} + 0.6640x_{2} - 0.0019x_{3}$$

- 0.0274 x_{4} - 0.0200 x_{5} + 0.0530 x_{6}

2. The Census Bureau's Component Method II, which employs vital statistics to measure natural increase and school enrollment as a basis for measuring net migration. The estimates made by the Census Bureau's Component Method II are specific to the civilian population under 65, with Medicare statistics used to estimate the resident population ages 65 and over. The total resident population is derived by adding estimates of the military station strength in each county to the estimates of the civilian resident population.

The provisional July 1, 1972 estimates for counties in the Denver metropolitan area were developed by adding the average change between 1971 and 1972 Housing Unit Method and Component

¹For a more detailed description of the program, see Meyer Zitter, "Federal-State Cooperative Program for Local Population Estimates," <u>The Registrar and Statistician</u>, U.S. Department of Health, Education, and Welfare, January 1968, and "Federal-State Cooperative Program for Local Population Estimates: Status Report, January 1971," <u>The Registrar and Statistician</u>, U.S. Department of Health, Education, and Welfare, April 1971. For a detailed analysis of the test results, see the forthcoming <u>Current Population</u> Reports, Series P-26, "Federal-State Cooperative Program for Local Population Estimates: Test Results--April 1, 1970."

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402, 25cents. Current Population Reports issued in Series P-20, P-23, P-25, P-26, P-27, P-28 (summaries only), P-60, and P-65 are sold as a single consolidated subscription at \$30.50 per year, \$7.75 additional for foreign mailing.

ESTIMATES OF THE POPULATION OF COLORADO COUNTIES, JULY 1, 1971 AND JULY 1, 1972—Continued

(State estimates are shown to the nearest thousand, county estimates to the nearest hundred)

County	July 1, 1972	July 1,	April 1, 1970	Change, 1970 to 1972			
	(provisional)	1571	(census) ¹	Number	Percent		
Pueblo	120,700	119,700	118,238	2,500	2.1		
Rio Blanco	4,700	4,800	4,842	-100	-2.6		
Rio Grande	10,600	10,300	10,494	100	1.2		
Routt	7,800	7,300	6,592	1,200	18.7		
Saguache	4,000	3,900	3,827	100	3.5		
San Juan	800	800	831	~100	-8.8		
San Miguel	1,900	2,000	1,949	-100	-3.4		
Sedgwick	3,500	3,400	3,405	100	1.7		
Summit	3,800	3,300	2,665	1,200	43.7		
Teller	4,700	3,700	3,316	1,400	41.5		
Washington	5,500	5,500	5,550	(Z)	-0.6		
Weld	96,200	92,700	89,297	6,900	7.8		
Yuma	8,400	8,400	8,544	-100	-1.2		

Z Less than 50.

 1 Total does not agree with the sum of the counties due to corrections made to the county populations after release of the official State counts.

APPENDIX

OTHER ESTIMATES PUBLISHED IN SERIES P-26 REPORTS

Estimate date(s)

Report No.

State

Idaho 9 July 1, 1971 and July 1, 1972 10 Utah July 1, 1971 and July 1, 1972 11 Arizona July 1, 1971 12South Dakota July 1, 1971 13 Vermont July 1, 1971 14 Indiana July 1, 1971 and July 1, 1972 15 Delaware July 1, 1971 and July 1, 1972 16 Louisiana July 1, 1971

A UNITED STATES DEPARTMENT OF COMMERCE PUBLICATION

Series P-25, No. 508 November 1973 U. S. DEPARTMENT OF COMMERCE - Social and Economic Statistics Administration - BUREAU OF THE CENSUS

ESTIMATES OF THE POPULATION OF STATES: JULY 1, 1972 AND 1973 (Advance report)

DEC 10 1973

DIVISION F

This report presents revised estimates of the population of States for July 1, 1972, and provisional estimates for July 1, 1973. The 1972 estimates here supersede the provisional 1972 numbers published in <u>Current Population Reports</u>, Series P-25, No. 488. Estimates are shown both for the resident and the civilian populations.

The population estimates were developed by averaging the results of two methods: (a) the Census Bureau's Component Method II, which employs vital statistics to measure natural increase and uses elementary school enrollment (or school census) data and expected cohort survivors to this age group as a basis of net civilian migration; and (b) a regression method in which changes in four sets of symptomatic indicators (but only two variables for 1973) are used to estimate changes in population. These indicators are (1) elementary school enrollment, (2) automobile registration, (3) Federal incometax returns, and (4) civilian work force.

Data on automobile registration and Federal income tax returns for 1973 are not available at

this time. Therefore, the provisional 1973 regression estimate was derived by using a regression equation based on school enrollment and civilian work force alone, comparing this with a 1972 regression estimate using only these two series, and adding this 1972-73 change to the 1972 regression estimate based on all four indicators. Thus, the provisional 1973 estimates are based completely on current symptomatic data series. Previously, the net civilian migration component for the last year in the provisional series was based either in part or in total on an extrapolation of recent past trends.

CURRENT POPULATION REPORTS

Population

133

These estimates will be contained in a full report to be published in Series P-25 which will show annual estimates for July 1, 1970, through 1973 and components of change for the period April 1, 1970, to July 1, 1973, together with a full description of methodology.

The estimates presented in the table have been rounded to the nearest thousand without being adjusted to group totals, which are independently rounded. Percentages are based on unrounded numbers.

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402, 25 cents. Current Population Reports issued in Series P-20, P-23, P-25, P-26, P-27, P-28 (summaries only), P-60, and P-65 are sold as a single consolidated subscription at \$30.50 per year, \$7.75 additional for foreign mailing.

ESTIMATES OF THE POPULATION OF STATES: JULY 1, 1972 AND 1973

(Population in thousands. Resident population includes estimated Armed Forces personnel residing in each State)

	Resident population					Civilian population				
Region, division, and State	July 1, 1973	July 1, 1972	April 1, 1970 (census)	Change, 1970 to 1973		July 1, 1973	July 1,	April 1,	Change, 1970 to 1973	
	sional)			Number	Percent	sional)	ra (2	1970	Number	Percent
United States	209,851	208,230	203,235	6,616	3.3	208,094	206,457	201,064	7,030	3.5
REGIONS:					1					
NorthCentral	49,678	49,726	49,051	628	1.3	49,521	49,556	48,847	674	1.4
South	57,801 66,005	57,410	62 798	3 206	1.8	57,433	57,232	56,366	1,067	1.9
West	36,567	36,036	34,809	1,758	5.0	35 994	35 476	61,721	3,425	5.5
NORTHEAST :							,	. 54,130	1,004	5.5
New England	12,151	12,105	11,847	303	2.6	12,069	12,023	11,750	319	2.7
Middle Atlantic	37,528	37,621	37,203	325	0.9	37,452	37,533	37,097	355	1.0
East North Central	40.897	40 793	40.253	645	1.6	40 822	40 717	40.150	670	
West North Central	16,704	16,617	16,324	379	2.3	16,611	16.520	40,152	5/0	1.7
SOUTH :			,			,		20,214	350	2.4
South Atlantic	32,459	31,921	30,671	1,787	5.8	31,935	31,377	29,988	1,948	6.5
East South Central	13,289	13,156	12,805	484	3.8	13,185	13,059	12,675	510	4.0
West South Central	20,257	19,982	19,322	935	4.8	20,026	19,757	19,059	967	5.1
WEST:	0 140	8 890	9 294	925	10.5	0.005	0.750			
Pacific	27,417	27.156	26.526	892	3.4	9,025	8,759	8,160	865	10.6
		,	20,020	001	5.4	20,505	20,111	23,909	1,000	3.8
NEW ENGLAND:	1 028	1 026	004	25		1 010	1 015			
New Hampshire	791	774	738	53	3.5	1,018	1,015	982	36	3.7
Vermont	464	460	445	19	4.4	464	460	134	52	7.2
Massachusetts	5,818	5,796	5,689	129	2.3	5,795	5,773	5.658	137	24
Rhode Island	973	969	950	23	2.5	945	941	915	30	3.3
Connecticut	3,076	3,080	3,032	44	1.4	3,061	3,064	3,016	45	1.5
MIDDLE ATLANTIC:	10.000	10.007	10.041							
New Jorgev.	18,265	18,367	7 168	103	0.1	18,236	18,337	18,210	27	0.1
Pennsylvania	11,902	11.905	11.794	108	0.9	11 890	11 893	7,109	216	3.0
EAST NORTH CENTRAL:	,		,		0.0		,050	11,770	112	. 1.0
Ohio	10,731	10,722	10,652	79	.0.7	10,716	10,707	10,632	84	0.8
Indiana	5,316	5,286	5,194	123	2.4	5,309	5,279	5,186	: 33	2.4
Illinois	11,236	11,244	11,114	122	1.1	11,200	11,204	11,058	142	1.3
Michigan	9,044	9,013	8,875	169	1.9	9,029	8,998	8,860	170	1.9
WEST NORTH CENTRAL:	4,505	4,520	4,410	152	3.4	4,008	4,524	4,416	152	3.4
Minnesota	3,897	3,877	3,805	92	2.4	3.894	3.873	3.800	93	25
Iowa	2,904	2,884	2,825	79	2.8	2,903	2,883	2,824	79	2.8
Missouri	4,757	4,747	4,677	79	1.7	4,731	4,718	4,639	92	2.0
North Dakota	640	634	618	22	3.5	626	622	606	20	3.3
Nebrocka	1 5/9	1 528	1 494	18	2.7	678	673	661	17	2.6
Kansas	2 279	2,268	2 249	30	1 4.0	2,030	2,005	1,472	58	4.0
SOUTH ATLANTIC:	-,	-,	-,			2,230	2,200	6,216		1.6
Delaware	576	571	548	27	5.0	570	565	542	28	5.2
Maryland	4,070	4,048	3,922	147	3.8	4,013	3,990	3,849	165	4.3
District of Columbia	746	752	757	-11	-1.4	737	742	745	-8	-1.1
Virginia	4,811	4,705	4,648	162	3.5	4,665	4,612	4,455	210	4.7
North Carolina	5,273	5,221	5.082	191	3.8	5 181	5 128	1,744	49	2.8
South Carolina	2,726	2,688	2,591	135	5.2	2,657	2,615	2,513	144	5.7
Georgia	4,786	4,733	4,590	196	4.3	4,732	4,676	4,498	233	5.2
Florida	7,678	7,347	6,789	888	13.1	7,587	7,255	6,683	904	13.5
EAST SOUTH CENTRAL:								1		
Toppossee	3,342	3,306	3,219	123	3,8	3,309	3,274	3,171	139	4.4
Alshama	4,120	3,521	3,924	202	5.2	4,105	4,055	3,899	207	5.3
Mississippi	2,281	2,256	2,217	64	2.9	2,256	2,233	2,195	104	3.1
WEST SOUTH CENTRAL:			-			,		-,		
Arkansas	2,037	2,008	1,923	113	5.9	2,029	1,998	1,915	114	6.0
Louisiana	3,764	3,738	3,643	121	3.3	3,735	3,706	3,601	134	3.7
UKIAhoma	2,663	2,033	2,559	103	4.0	2,635	2,607	2,521	113	4.5
MOUNTAIN:	11,794	11,004	11,197	597	5.3	11,628	11,446	11,022	606	5.5
Montana	721	716	694	26	3.8	714	710	688	26	3.8
Idaho	770	755	713	57	7.9	764	750	708	56	7.9
Wyoming.	353	346	332	21	6.3	349	343	329	20	6.1
Volorado	2,437	2,364	2,207	230	10.4	2,387	2,317	2,157	230	10.6
Arizona	2 059	1 963	1,016	90	8.9	1,089	1,060	999	90	9.1
Utah	1.157	1,127	1.059	263 98	9.2	1 153	1,934	1,744	286	16.4
Nevada	548	533	489	59	12,1	539	523	479	60	12 4
PACIFIC:	1	·								
Washington	3,429	3,418	3,409	20	0.6	3,383	3,378	3,338	45	1.3
Uregon	2,225	2,185	2,091	134	6.4	2,223	2,182	2,088	- 135	5.4
Alaska	20,601	20,411	19,923	548 99	3.2	20,285	20,096	19,559	726	3.7
Hawaii	832	816	770	20 62	9.3 81	303	297	270	33	12.3