Environmental Surveillance Report

U.S. Department of Energy

Rocky Flats Environmental Technology Site

Information Exchange

FOURTH QUARTER 2004

This is a numerical summary of environmental surveillance measurements performed by the Department during the past quarter.

Page intentionally left blank

TABLE OF CONTENTS

INTRODUCTION 1
Air Monitoring Stations - 2
Water Monitoring Stations - 3
DECISION RULES 4
ANALYTES OF INTEREST 8
AIR and WATER STANDARDS
National Ambient Air Quality Standards 10
Colorado Water Quality Control Commission Standardsfor Radioactive Materials at and around RFETS11
Sampling and Analytical Results for this Quarter
AIR RESULTS
Description of Air Sampling this Quarter 14
Graphs of Selected Air Results 15
Tabular Data
Table A Gross Alpha and Gross BetaRadioactivity Suspended AirborneParticulate Material16Table B Alpha Spectrometric Analysis andLong-Lived Gross Alpha RadioactivityConcentrations in Suspended Airborne Particulate 18Material

WATER RESULTS

Description of Precipitation and Surface Water Sampling Done This Quarter 20
Graphs of Selected Water Results 23
Tabular Data
Table G1 CDPHE Surface Water Monitoring Program G1
Table H Inorganic Analysis of Surface Water H1
Table I Organic Analysis of Surface Water I1
GLOSSARY 25

Introduction

The purpose of this Environmental Surveillance Report (ESR) is to provide a quarterly update on Colorado Department of Public Health and Environment (CDPHE) air and surface water monitoring data at the Rocky Flats Environmental Technology Site (RFETS).

CDPHE currently has three Divisions that conduct monitoring at RFETS including the Air Pollution Control Division (APCD), the Hazardous Materials Waste Management Division, and the Laboratory Services Division (LSD). APCD monitors air for meteorological conditions. The Hazardous Materials Waste Management Division conducts surface water monitoring for many parameters, including metals, inorganics and radionuclides. The Laboratory Services Division performs radiological monitoring in air.

Under normal conditions, groundwater and soils are not monitored by Colorado Department of Public Health and Environment (CDPHE), but are monitored by DOE.

Sampling and data analysis is performed by CDPHE according to the Rocky Flats Integrated Monitoring Plan (IMP), which describes not only the monitoring done by CDPHE, but also that done by the Site and surrounding communities. It is possible that CDPHE may do some additional sampling as part of a special study or for some unusual circumstances. This report describes the results of both types of CDPHE monitoring.

Page left intentionally blank

BACKGROUND INFORMATION

MONITORING STATIONS

DECISION RULES

ANALYTES OF INTEREST

AIR STANDARDS

WATER STANDARDS

Page left intentionally blank

Colorado Department of Public Health and Environment Air Monitoring Locations 2002

Colorado Department of Public Health and Environment

Page left intentionally blank

Colorado Department of Public Health and Environment Surface Water Monitoring 2001/2002

Colorado Department of Public Health and Environment

Page left intentionally blank

Decision Rules

The data acquired for each quarter is examined using standard methods of evaluation that are described in the Integrated Monitoring Plan (IMP). The methods use a series of decision rules to effectively analyze the data that has been collected, and make determinations about what actions need to be taken. Decision rules are if-then statements pertaining to data quality objectives. The decision rules define, quantitatively and qualitatively, the point at which a decision should be made or action should be taken.

The decisions could involve many different actions including, but not limited to, further analysis of data, implementation of new monitoring stations for source detection, management decisions, or evaluation of remediation alternatives. Any exceedence of an action level for a surface water or air contaminant during the quarter are summarized in this report, along with any actions taken or follow up investigations that are required.

The primary decision rules that pertain to each media are outlined below:

A. Air Monitoring

1. Ambient Air Quality Monitoring: Nitrogen Dioxide $\left(\mathrm{NO}_{2}\right)$, Ozone $\left(\mathrm{O}_{3}\right)$ and particulate monitoring is performed by APCD. Particulate monitoring includes monitoring of both fine particulates $\left(\mathrm{PM}_{10}\right)$ and total suspended solids (TSP).

IF: A perimeter monitor detects an NO_{2} (annual arithmetic mean) concentration of 0.053 parts per million (ppm), an O_{3} (1 hr av. time) concentration of 0.12 ppm , a TSP measurement of 75 micrograms per cubic meter $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$ averaged over a 1 year time period or $150 \mu \mathrm{~g} / \mathrm{m}^{3}$ over a 24 -hour time period, or a PM_{10} concentration of $50 \mu \mathrm{~g} / \mathrm{m}^{3}$ annually or $150 \mu \mathrm{~g} / \mathrm{m}^{3}$ in a 24 -hour period (Include these values in a table in the report, too confusing this way)

THEN: The Site's operating permit may potentially be revised to mitigate the exceedence.
2. Beryllium (Be) Monitoring: Emission points (stacks) are monitored for Be.

IF: \quad Be emissions from a source exceed 10 g in a 24-hour period
THEN: CDPHE may take enforcement action.
IF: \quad Ambient Be concentrations at monitoring sites exceed $0.01 \mu \mathrm{~g} / \mathrm{m}^{3}$ over a 30 -day Period

THEN: CDPHE may take action to identify the source.
3. Volatile Organic Compound (VOCs) Monitoring: Various VOC monitoring stations exist around the perimeter of the site and are maintained by APCD. It is possible that remediation processes could release significant levels of VOCs. VOC data does not tend to vary and the measured concentrations are generally very low. A significant increase from normal levels of any VOC at any monitoring site could indicate a potential problem.

IF: \quad A measured value of any VOC exceeds trends in historical data
THEN: An investigation will be enacted to determine the source of the elevated VOC concentration.
4. Radiological Ambient Air Quality Monitoring: LSD air sampling locations are monitored for radiological contaminants and total suspended particulates (TSP).

IF: \quad Measured values of radionuclides exceed typical trends existing in historical data

THEN: Any number of actions may be taken including, but not limited to, analysis of samples for verification, comparison of samples from nearest DOE monitoring sites, ComRad Program samplers, and/or APCD monitoring sites, request for investigation or explanation of elevated results from DOE, calculation of public dose/risk and/or a presentation to CDPHE management.

B. Surface Water Monitoring

1. Pond Predischarge Monitoring: Analytes of Interest (AoIs) and some VOCs are monitored in the ponds previous to pond discharge so that discharge will not result in exceedence of stream standards.

IF: \quad Predischarge monitoring indicates apparent exceedence of stream standards THEN: CDPHE will notify the Site of additional AoIs for that discharge.

AND: \quad The Site would then perform flow-paced POC monitoring for the additional AoIs during that discharge, as part of the Segment 4 compliance monitoring. OR

The Site may evaluate alternative water management options, which avoid immediate discharge including, but not limited to, treatment, storage or disposal.
2. Wastewater Treatment Plant (WWTP) Influent Radiological and Metals Monitoring: The Site has made an effort to eliminate any possible connections between waste streams containing radionuclides and WWTP influent. Therefore, it is assumed that radiologic loads will not significantly increase from baseline values. Radiologic parameters include total plutonium, total americium, total uranium, tritium, as well as alpha and beta activity. Metals parameters include for the total recoverable fraction - arsenic, beryllium, cadmium, chromium (total), iron, lithium, and thallium; plus special metals (total recoverable fraction) - silver, copper, manganese, nickel and selenium. Decontamination and decommissioning (D\&D) activities
could potentially introduce radiologic loads to WWTP influent. The influent is monitored to track sources of contaminants that may be introduced during the cleanup process, through evaluation of pollutant loads and concentrations coming through the WWTP collection system.

IF: \quad Influent loading for any of the radiologic parameters exceeds baseline values determined from historical data
THEN: Evaluation will be performed to determine the source of contamination.
3. Performance Monitoring: Performance monitoring is conducted where specific D\&D operations or remedial action pose a concern for a specific contaminant release that could impact surface water or groundwater. Performance monitoring is integrated with groundwater investigations and conducted to improve monitoring network resolution to isolate impacts of individual projects. CDPHE conducts performance monitoring in association with the Mound and East Trenches groundwater plume and treatment system, and Solar Pond Plume Treatment System.
a. Mound and East Trenches - VOC and metal contamination are present in the area of the Mound and East Trenches plume (south of South Walnut Creek). In order to ensure that stream standards are being attained, monitoring for VOCs and selected metals will be conducted in South Walnut Creek in the immediate vicinity where the groundwater contaminant plumes may be intersecting the stream.

IF: VOC or metal concentrations exceed stream standards
THEN: The monitoring frequency and number of sampling locations may be increased.

ELSE: VOC monitoring will be discontinued after three years and metals concentrations will be reviewed using the following Decision Rule.

IF: Metals concentrations are lower than stream standards, but significantly higher than the concentrations found at other RFETs locations.

THEN: Further investigation of in-stream concentrations and the cause of unusually high concentrations will be considered.

ELSE: Metals monitoring may be discontinued after a period of three years.
b. Solar Pond Plume Treatment System - The Solar Ponds groundwater contaminant plume contains elevated concentrations of nitrate, uranium and chloride, as well as lower concentrations of several metals. A groundwater treatment system has been installed, monitoring is being conducted to ensure that stream standards are being attained. The Site collects nitrate and uranium parameters. CDPHE collects metals and nitrate (as part of the Ad Hoc Nitrate Study).

IF: Metals or nitrate concentrations exceed stream standards.
THEN: The monitoring frequency and number of sampling locations may be
increased.

ELSE: Metals and nitrate monitoring will be continued until it has been demonstrated that metals concentrations at the most down gradient portion of the Solar Pond Plume are declining.
4. Ad Hoc Program: Ad Hoc Monitoring may be requested by DOE or the stakeholders to collect specific information related to special projects or to support decision-making processes. CDPHE has taken the responsibility for an evaluation of nitrate loading on Walnut Creek, and man-made versus natural uranium by inductively coupled plasma/mass spectrometry (ICP/MS) methodology.
a. Nitrate Loading - Nitrate from the Solar Pond Groundwater Plume and treated effluent from the on-site Sewage Treatment Plant pose potential impact to surface water in the Walnut Creek Drainage and pond system. To supplement in-place continuous performance monitoring, for more accurate evaluation of nitrate loading, CDPHE is conducting additional water quality monitoring, consisting of grab samples for nitrate and ammonia analysis.

IF: No upward trend or high variability is detected.
THEN: Monitoring will continue on a quarterly basis.
ELSE Monitoring frequency may change.
b. Uranium ICP/MS - Conducted to augment the ICP/MS evaluation of groundwater at RFETs. The Uranium ICP/MS study has been undertaken to evaluate where man-made uranium isotopes are present in groundwater versus natural uranium in groundwater. The Site is supporting CDPHE in the collection of samples and analysis by ICP/MS.

IF: Sample results indicate non-natural uranium,
THEN: Evaluate potential sources of non-natural uranium and whether loading from that source may change over time.
5. Stream Segment 4, Non-POC Monitoring - POC monitoring will be supplemented to assess the effect of reduced flows and reduced nutrient loading to the Walnut Creek drainage as a result of the Sites' closure process. Monitoring for select metals will be conducted to ensure that stream standards are attained. To assist with the assessment of loading inorganics, nutrients (nitrate and ammonia) and physical parameters (pH , dissolved oxygen, hardness, total suspended solids) are also collected.

IF: \quad Concentrations or loadings of specified contaminants exceed their 95% upper tolerance levels (UTLs)

THEN: CDPHE will notify the Site and the Cities, and RFETS may propose a change in ambient standards.

Analytes of Interest

Analytes		Air	Water	Purpose of Monitoring
	PM_{10} particulates	X		Monitored to provide information on fine airborne particulate levels. Filters also used for metals and radionuclides analyses.
Volatile Organic Compounds	VOCs	X	X	A variety of volatile organic compounds, some of which are toxic to humans and ecology. Known discharges to air and water as well as groundwater infiltration.
Real Time Monitoring of Physical and Indicator Parameters (Note A)	PH		X	Toxicity to humans and ecology. Regulatory concern due to chromic acid incident. Real-time monitoring is an inexpensive and effective method of detecting acid spills such as (chromic acid or plutonium nitrate) or failure of treatment systems.
	Conductivity		X	Conductivity is an indicator of total dissolved solids, metals, anions, and pH . Real-time monitoring of conductivity is an inexpensive indicator of overall water quality.
	NO_{3}		X	Past releases near RFCA stream standards and action levels upstream of ponds provide reasonable cause to expect future releases in excess of RFCA stream standards and action levels. ITS discharges are often high in nitrate, and may challenge RFCA action levels.
	Flow		X	Required to detect flow events, evaluate contaminant loads and plan pond operations and discharges. Affects nearly every decision rule, and is the most commonly discussed attribute of RFETS surface waters.
	Oxides of Nitrogen	X		Monitored due to RFETS historical use of nitric acid.
	Ozone	X		Monitored as part of the CDPHE network. Not required or part of monitoring for RFETS.
	Wind speed	X		Monitored to provide emergency response modeling information.
	Wind direction	X		Monitored to provide emergency response modeling information.
	Temperature	X		Monitored to provide emergency response modeling information.

Note A: These parameters provide real-time indication for a wide variety of regulated contaminants, and are also required component for monitoring for AoIs. They require no laboratory analysis and are the RFETS most cost effective defensive monitoring.

NATIONAL AMBIENT AIR QUALITY STANDARDS

POLLUTANT	AVERAGING TIME	STANDARD
Carbon Monoxide (CO)		
Primary Standard	1 Hour ${ }^{(a)}$	35 ppm
Primary Standard	8 Hour ${ }^{(a)}$	9 ppm
Ozone (O_{3})		
Primary and Secondary Standards (up to 1997)	1 Hour ${ }^{(b)}$	0.12 ppm
Primary and Secondary Standards (as of July 1997)	8 Hour ${ }^{\text {(c) }}$	0.08 ppm
Nitrogen Dioxide (NO_{2})		
Primary and Secondary Standards	Annual Arithmetic Mean	0.053 ppm
Sulfur Dioxide (SO_{2})		
Primary Standard	Annual Arithmetic Mean	0.030 ppm
Primary Standard	24 Hour ${ }^{(a)}$	0.14 ppm
Secondary Standard	3 Hour ${ }^{\text {a }}$	0.5 ppm
Particulates (PM_{10})		
Primary and Secondary Standards	Annual Arithmetic Mean ${ }^{(d)}$	$50 \mu \mathrm{~g} / \mathrm{m}^{3}$
Primary and Secondary Standards	24 Hour ${ }^{(b)}$ prior to July 1997, (e) as of July 1997	$150 \mu \mathrm{~g} / \mathrm{m}^{3}$
Fine Particulates ($\mathrm{PM}_{2.5}$) (as of July 1997)		
Primary and Secondary Standards	Annual Arithmetic Mean ${ }^{(d)}$	15.0 g/ m^{3}
Primary and Secondary Standards	24 Hour ${ }^{(f)}$	$65 \mu \mathrm{~g} / \mathrm{m}^{3}$
Lead (Pb)		
Primary and Secondary Standards	Calendar Quarter Average	1.5 g/ m^{3}
Total Suspended Particulates (TSP)		
Primary Standard	Annual Geometric Mean ${ }^{(\mathrm{g})}$	$75 \mu \mathrm{~g} / \mathrm{m}^{3}$
Primary Standard	24 Hour ${ }^{(g)}$	$260 \mu \mathrm{~g} / \mathrm{m}^{3}$
Secondary Standard	Annual Geometric Mean ${ }^{(\mathrm{g})}$	$60 \mu \mathrm{~g} / \mathrm{m}^{3}$
Secondary Standard	24 Hour ${ }^{(g)}$	$150 \mu \mathrm{~g} / \mathrm{m}^{3}$

(a) Not to be exceeded more than once per year.
(b) Statistically estimated number of days with concentrations above this level averaged over a three-year period, is not to be more than 1 per year.
(c) The three-year average of the fourth maximum value for each year is not to exceed this level.
(d) The average of three years of annual averages (based on quarterly averages) is not to exceed this level.
(e) The three-year average of the $99^{\text {th }}$ percentile for each year is not to exceed this level.
(f) The three-year average of the $98^{\text {th }}$ percentile for each year is not to exceed this level.
(g) The TSP standard was replaced by the PM_{10} standard on July 1, 1987. TSP is now a State standard only and was temporarily suspended from 30 August 1993 to 30 October 1995 by the AQCC.

Page left intentionally blank

Colorado Water Quality Control Commission Standards for Radioactive Materials at and around RFETS

	SEGMENT 2 Standley Lake	SEGMENT 3 Great Western Reservoir	SEGMENTS 4a and 5 Woman Creek	SEGMENTS 4a, 4b and 5 Walnut Creek
Gross Alpha (pCi/L)	6	5	7	11
Gross Beta (pCi/L)	9	12	8	19
Plutonium (pCi/L)	0.03	0.03	0.15^{*}	0.15^{*}
Americium (pCi/L)	0.03	0.03	0.15^{*}	0.15^{*}
Tritium $(\mathrm{pCi/L)}$	500	500	500	500
Uranium $(\mathrm{pCi} / \mathrm{L})$	3	4	11	10

* The modification is a narrative standard requiring that the concentration of americium and plutonium be consistent with attaining the numerical water quality standard in Segment 4(b) of Big Dry Creek

Standards for Inorganics and Metals

Inorganic/Metal	SEGMENTS 4a \& 4b Standards ($\mu \mathrm{g} / \mathrm{L})$	SEGMENT 5 Action Levels ($\mu \mathrm{g} / \mathrm{L})$
Ammonia	$*$	$*$
Beryllium, total recoverable	4	4
Cadmium, dissolved **	1.5	1.5
Cadmium, Total recoverable	5	-
Chloride	250,000	250,000
Chromium (VI), dissolved**	11	11
Copper, dissolved**	16	16
Iron, dissolved	300	-
Iron, total recoverable	1000	1000
Manganese, dissolved**	50	1000
Manganese, total recoverable	200	-
Nitrate	10,000	100,000 ™
Nitrite	500	4500 TM
Phosphate, ortho	-	-
Phosphate, total	-	-
Selenium, dissolved**	5	5
Silver, dissolved $* *$	0.59	0.59
Sulfate	250,000	250,000
Sulfide	2	2

*There is no unionized ammonia standard for Segment 5 or Segment 4b. A standard of $0.1 \mathrm{mg} / \mathrm{L}$ applies to Segment 4a.
**The standards for these metals were calculated using a formula based on hardness. A hardness value of $143 \mathrm{mg} / \mathrm{L}$ was used because this is the average hardness found in these waters.
TM - Temporary Modification

EPA Method 524.2 for VOCs in Surface Waters

VOCs	$\begin{gathered} \text { MCL } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \mathrm{MDL} \\ (\mu \mathrm{~g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \mathrm{PQL} \\ (\mu \mathrm{~g} / \mathrm{L}) \end{gathered}$	VOCs	$\begin{array}{\|c\|} \hline \mathrm{MCL} \\ (\mu \mathrm{~g} / \mathrm{L}) \end{array}$	$\begin{gathered} \text { MDL } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\left.\begin{array}{c} \mathrm{PQL} \\ (\mu \mathrm{~g} / \mathrm{L}) \end{array}\right)$
1,1,2-Tetrachloroethane	none	0.5	0.5	Chloroform	5.7	0.5	0.5
1,1,1-Trichloroethane	200	0.5	0.5	Chloromethane	none	0.5	0.5
1,1,2,2-Tetrachloroethar	0.18	0.5	0.5	Dibromochloromethane	none	0.5	0.5
1,1,2-Trichloroethane	3	0.5	0.5	Dibromomethane	none	0.5	0.5
1,1-Dichlorethane	none	0.5	0.5	Dichlorodifuoromethane	none	0.5	0.5
1,1-Dichlorethene	7	0.5	0.5	Ethylbenzene	700	0.5	0.5
1,1-Dichloropropene	none	0.5	0.5	Fluorotrichloromethane	none	0.5	0.5
1,2,3-Trichlorobenzene	none	0.5	0.5	Hexachlorobutadiene	14	0.5	0.5
1,2,3-Trichloropropane	none	0.5	0.5	Isopropylbenzene	none	0.5	0.5
1,2,4-Trichlorobenzene	70	0.5	0.5	Naphthalene	28	0.5	0.5
1,2,4-Trimethylbenzene	none	0.5	0.5	Propylbenzene	none	0.5	0.5
1,2-Dichlorobenzene	600	0.5	0.5	Styrene	100	0.5	0.5
1,2-Dichloroethane	0.38	0.5	0.5	Tetrachloroethene	5	0.5	0.5
1,2-Dichloropropane	0.52	0.5	0.5	Toluene	1000	0.5	0.5
1,3,5-Trimethylbenzene	none	0.5	0.5	Trichloroethene	5	0.5	0.5
1,3-Dichlorobenzene	600	0.5	0.5	Vinyl chloride	2	0.5	0.5
1,3-Dichloropropane	none	0.5	0.5	Xylene, (total)	10,000	0.5	0.5
1,4-Dichlorobenzene	75	0.5	0.5	cis-1,2-Dichlroethene	70	0.5	0.5
2,2-Dichloropropane	none	0.5	0.5	cis-1,3-Dichloropropene	none	0.5	0.5
2-Chlorotoluene	none	0.5	0.5	n-Butylbenzene	none	0.5	0.5
4-Chlorotoluene	none	0.5	0.5	sec-Butylbenzene	none	0.5	0.5
4-Isopropyltoluene	none	0.5	0.5	tert-Butylbenzene	none	0.5	0.5
Benzene	1.2	0.5	0.5	trans-1,2-Dichloroethene	100	0.5	0.5
Bromobenzene	none	0.5	0.5	trans-1,3-Dichloroethene	none	0.5	0.5
Chloroethane	none	0.5	0.5	Methylene Chloride	4.7	0.5	0.5
Bromodichloromethane	0.56	0.5	0.5				
Bromoform	4.3	0.5	0.5				
Carbon Tetrachloride	0.27	0.5	0.5				
Clorobenzene	100	0.5	0.5				
Chloroethane	none	0.5	0.5				
1,1-Dichloropropene	none	0.5	0.5				

EPA Method 515.1 for Chlorinated Acid Herbicides

Contaminant	MDL $(\mu \mathrm{g} / \mathrm{L})$	PQL $(\mu \mathrm{g} / \mathrm{L})$	Contaminant	MDL $(\mu \mathrm{g} / \mathrm{L})$	PQL $(\mu \mathrm{g} / \mathrm{L})$
Acifluorfen	0.3	3	3,5 -Dichlorobenzoic acid	0.8	8
Bentazon	0.4	4	Dichlorprop	0.3	3
Cloramben	1.2	12	Dinoseb	0.6	6
2,4-D	0.3	3	4-Nitrophenol	0.8	8
Dalapon	0.7	7	Pentachlorophenol	0.6	6
2,4-DB	0.5	5	Picloram	0.5	5
DCPA	0.4	4	$2,4,5-\mathrm{T}$	0.3	3
Dicamba	0.3	3	$2,4,5-\mathrm{TP}$	0.3	3

EPA Method $\mathbf{5 2 5 . 2}$ for SVOCs in Surface Waters

SVOCs	$\begin{gathered} \mathrm{MCL} \\ (\mu \mathrm{~g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { MDL } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \mathrm{PQL} \\ (\mu \mathrm{~g} / \mathrm{L}) \end{gathered}$	SVOCs	$\begin{gathered} \mathrm{MCL} \\ (\mu \mathrm{~g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { MDL } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \mathrm{PQL} \\ (\mu \mathrm{~g} / \mathrm{L}) \end{gathered}$
1,2,4-Ttichlorobenzene	none	5	10	Benzo(a)anthracene	none	5	10
1,2-Dichlorobenzene	none	5	10	Benzo(a)anthracene	0.2	5	10
1,3-Dichlorobenzene	none	5	10	Benzo(b)fluoranthene	none	5	10
1,4-Dichlorobenzene	none	5	10	Benzo(ghi)perylene	none	5	10
2,4,5-Trichlorophenol	none	5	10	Benzo(k)fluoranthene	none	5	10
2,4,6-Trichlorophenol	none	5	10	Butyl benzyl phthalate	none	5	10
2,4-Dichlorophenol	none	5	10	Chrysene	none	5	10
2,4-Dimethylphenol	none	5	10	Di-n-butylphthalate	none	5	10
2,4-Dinitrophenol	none	25	10	Di-n-octylphthalate	none	5	10
2,4-Dinitroroluene	none	5	10	Dibenz(a,h)anthracene	none	5	10
2-Chloronaphthalene	none	5	10	Dibenzofuran	none	5	10
2-Methyl-4,6-dinitrophenol	none	25	50	Diethyl phthalate	none	5	10
2-Chlorophenol	none	5	10	Dimethyl phthalate	none	5	10
2-Methylnaphthalene	none	5	10	Hexachlorobutadine	none	5	10
2-Methylphenol	none	5	10	Hexachlorocyclopentadiene	50	5	10
2-Nitroaniline	none	5	10	Hexachloroethane	none	5	10
2-Nitrophenol	none	5	10	Indeno(1,2,3-cd)pyrene	none	5	10
3,3-Dichlorobenzidine	none	5	10	Isophorone	none	5	10
3-Nitroaniline	none	25	50	N-Nitosodi-n-propylamine	none	5	10
4-Bromophenylphenylether	none	5	10	N -Nitrosodiphenylamine	none	5	10
4-Chloro-3-methylphenol	none	10	20	Naphthalene	none	5	10
4-Chloroaniline	none	10	20	Nitrobenzene	none	5	10
4-Chlorophenylphenylether	none	5	10	Pentachlorophenol	1	25	10
4-Methylphenol	none	5	10	Phenanthrene	none	5	10
4-Nitoraniline	none	25	50	Phenol	none	5	10
4-Nitrophenol	none	25	50	Pyrene	none	5	10
Acenaphthene	none	5	10	bis(2-Chloroethoxy)methane	none	5	10
Acenaphthylene	none	5	10	bis(2-Chloroethyl) ether	none	5	10
Anthracene	none	5	10	bis(2-Ethylhexyl) phthalate	6	5	10

Page left intentionally blank

AIR RESULTS

Page left intentionally blank

CDPHE AIR MONITORING

FOURTH QUARTER 2004

Laboratory Services Division

AIR MONITORING:

Table A contains the complete gross alpha /gross beta results for the fourth quarter 2004. These data show no obvious anomalies, compared to historical data. Corrected alpha spectrometric data for the first and second quarters is presented in Table B. Alpha spectrometric data for the third and fourth quarters have been delayed, and should be available in the next report.

2. Graphical Presentation

Graphs of pertinent and abnormal data from air monitoring are presented in this section.

Environmental Surveillance Report

TABLE A: GROSS ALPHA AND GROSS BETA RADIOACTIVITY CONCENTRATIONS IN SUSPENDED AIRBORNE PARTICULATE MATERIAL

FOURTH QUARTER 2004

Location	Sampler Type	Number of Samples		Gross Alpha			Gross Beta				
				Mean $\mathrm{pCi} / \mathrm{m}^{3}$	$\begin{gathered} \operatorname{Max}_{\mathrm{pCi} / \mathrm{m}^{3}} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Min}_{\mathrm{pCi} / \mathrm{m}^{3}} \\ \hline \end{gathered}$	Mean $\mathrm{pCi} / \mathrm{m}^{3}$	$\begin{gathered} \operatorname{Max}_{\mathrm{pCi} / \mathrm{m}^{3}} \\ \hline \end{gathered}$	$\begin{gathered} \text { Min } \\ \mathrm{pCi} / \mathrm{m}^{3} \\ \hline \end{gathered}$		
INDUSTRIAL AREA SAMPLERS											
D-1	TSP	13	$<$	0.0032	0.0056	0.0003	0.0251	0.0345	0.0113		
E-1-T	TSP	11	$<$	0.0017	0.0028	0.0011	0.0197	0.0313	0.0105		
BUFFER ZONE SAMPLERS											
D-10	TSP	13	$<$	0.0024	0.0045	0.0005	0.0214	0.0359	0.0113		
D-15	TSP	13	$<$	0.0021	0.0042	0.0000	0.0213	0.0363	0.0133		
E-2-T	TSP	13	$<$	0.0021	0.0046	0.0007	0.0226	0.0352	0.0119		
SITE BOUNDARY SAMPLERS											
X-1	TSP	11	$<$	0.0015	0.0024	0.0006	0.0190	0.0350	0.0111		
X-2	TSP	11	<	0.0015	0.0020	0.0007	0.0200	0.0302	0.0115		
X-3	TSP	11	$<$	0.0021	0.0047	0.0002	0.0203	0.0339	0.0102		
X-4	TSP	13	$<$	0.0019	0.0040	0.0005	0.0234	0.0399	0.0116		
X-5	TSP	12	$<$	0.0024	0.0041	0.0007	0.0187	0.0284	0.0099		

TSP = Total Suspended Particulates
PM10 = Particulate Material < 10 microns in diameter

Environmental Surveillance Report

TABLE A: GROSS ALPHA AND GROSS BETA RADIOACTIVITY CONCENTRATIONS IN SUSPENDED AIRBORNE PARTICULATE MATERIAL

THIRD QUARTER 2004

Location	Sampler Type	Number of Samples		Gross Alpha			Gross Beta		
				Mean $\mathrm{pCi} / \mathrm{m}^{3}$	$\begin{gathered} \operatorname{Max}^{\mathrm{pCi} / \mathrm{m}^{3}} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Min}_{\mathrm{pCi} / \mathrm{m}^{3}} \\ \hline \end{gathered}$	Mean $\mathrm{pCi} / \mathrm{m}^{3}$	$\begin{gathered} \operatorname{Max}_{\mathrm{pCi} / \mathrm{m}^{3}} \\ \hline \end{gathered}$	$\operatorname{Min}_{\mathrm{pCi} / \mathrm{m}^{3}}$
INDUSTRIAL									
AREA SAMPLERS									
D-1	TSP	10	$<$	0.0024	0.0044	0.0011	0.0222	0.0310	0.0132
E-1-T	TSP	13	$<$	0.0021	0.0031	0.0010	0.0208	0.0328	0.0066
BUFFER ZONE									
SAMPLERS									
D-9	TSP	13	$<$	0.0018	0.0030	0.0006	0.0191	0.0233	0.0104
D-10	TSP	13	<	0.0032	0.0067	0.0001	0.0251	0.0384	0.0119
D-15	TSP	13		0.0024	0.0047	0.0004	0.0248	0.0364	0.0154
E-2-T	TSP	12	$<$	0.0023	0.0036	0.0012	0.0239	0.0333	0.0161
SITE BOUNDARY									
SAMPLERS									
X-1	TSP	13	$<$	0.0020	0.0032	0.0008	0.0239	0.0456	0.0125
X-2	TSP	13	$<$	0.0025	0.0055	-0.0001	0.0226	0.0408	0.0132
X-3	TSP	9	$<$	0.0019	0.0027	0.0011	0.0205	0.0279	0.0097
X-4	TSP	12	$<$	0.0026	0.0052	0.0001	0.0278	0.0422	0.0096
X-5	TSP	9	$<$	0.0027	0.0041	0.0013	0.0216	0.0328	0.0123

TSP = Total Suspended Particulates
PM10 = Particulate Material < 10 microns in diameter

Environmental Surveillance Report

TABLE B: ALPHA SPECTROMECTRIC ANALYSIS AND LONG-LIVED GROSS ALPHA RADIOACTIVITY CONCENTRATIONS IN SUSPENDED AIRBORNE PARTICULATE MATERIAL

FIRST QUARTER 2004

								Mean
LOCATION	SAMPLER	${ }^{239+240} \mathrm{Pu}$	${ }^{241}$ Am	$\begin{gathered} { }^{239+240} \mathbf{P u} /{ }^{241} \\ \mathrm{Am} \end{gathered}$	${ }^{234} \mathrm{U}$	${ }^{235} \mathbf{U}$	${ }^{238} \mathrm{U}$	Gross Alpha
	TYPE	pCi/ \mathbf{M}^{3}	$\mathrm{pCi} / \mathrm{M}^{3}$	Ratio	pCi/M ${ }^{3}$	$\mathrm{pCi} / \mathbf{M}^{3}$	pCi/M ${ }^{3}$	$\mathrm{pCi} / \mathbf{M}^{3}$
D-1	TSP/Continuous	$\begin{gathered} 0.000021 \pm \\ 0.000005 \end{gathered}$	< 0.000006	---	0.000033	< 0.000004	0.000032	< 0.0017
D-15	TSP/Continuous	$\begin{gathered} 0.000023 \pm \\ 0.000004 \end{gathered}$	< 0.000005	---	<0.000028	< 0.000006	<0.000022	< 0.0017
X-1	TSP/Continuous	< 0.000006	< 0.000003	---	0.000028	< 0.000004	0.000022	<0.0020
X-2	TSP/Continuous	< 0.000004	<0.000004	---	0.000034	<0.000005	0.000034	<0.0020
X-3	TSP/Continuous	$\begin{gathered} 0.000004 \pm \\ 0.000002 \\ \hline \end{gathered}$	< 0.000004	---	0.000027	< 0.000004	<0.000018	<0.0016
X-4	TSP/Continuous	< 0.000004	< 0.000003	---	0.000023	< 0.000004	<0.000019	<0.0023
X-5	TSP/Continuous	< 0.000003	< 0.000007	---	0.000056	< 0.000006	0.000040	<0.0022

$\mathrm{pCi} / \mathrm{m}^{3}=$ Picocuries per cubic meter
TSP = Total Suspended Particulates
Continuous = continuous sampling

Environmental Surveillance Report

TABLE B: ALPHA SPECTROMECTRIC ANALYSIS AND LONG-LIVED GROSS ALPHA RADIOACTIVITY CONCENTRATIONS IN SUSPENDED AIRBORNE PARTICULATE MATERIAL

SECOND QUARTER 2004

								Mean
LOCATION	SAMPLER	${ }^{239+240} \mathrm{Pu}$	${ }^{241}$ Am	$\begin{gathered} { }^{239+240} \mathrm{Pu} /{ }^{241} \\ \mathrm{Am} \end{gathered}$	${ }^{234} \mathrm{U}$	${ }^{235} \mathrm{U}$	${ }^{238} \mathrm{U}$	Gross Alpha
	TYPE	$\mathrm{pCi} / \mathbf{M}^{3}$	$\mathrm{pCi} / \mathbf{M}^{3}$	Ratio	$\mathrm{pCi} / \mathrm{M}^{3}$	$\mathrm{pCi} / \mathrm{M}^{3}$	$\mathrm{pCi} / \mathrm{M}^{3}$	$\mathrm{pCi} / \mathrm{M}^{3}$
D-1	TSP/Continuous	$\begin{gathered} 0.000047 \pm \\ 0.000007 \end{gathered}$	$\begin{gathered} 0.000006 \pm \\ 0.000003 \end{gathered}$	7.8 ± 4.1	0.000043	<0.000007	0.000045	<0.0019
D-15	TSP/Continuous	$\begin{gathered} 0.000039 \pm \\ 0.000008 \end{gathered}$	< 0.000003	---	0.000032	< 0.000006	0.000034	< 0.0020
X-1	TSP/Continuous	$\begin{gathered} 0.000007 \pm \\ 0.000002 \end{gathered}$	< 0.000004	---	<0.000015	< 0.000003	<0.000016	< 0.0022
X-2	TSP/Continuous	< 0.000003	< 0.000003	---	0.000043	< 0.000005	0.000035	<0.0019
X-3	TSP/Continuous	<0.000003	< 0.000002	---	0.000028	<0.000006	<0.000028	<0.0017
X-4	TSP/Continuous	< 0.000005	< 0.000003	---	<0.000077	< 0.000016	<0.000078	<0.0028
X-5	TSP/Continuous	$\begin{gathered} 0.000004 \pm \\ 0.000002 \\ \hline \end{gathered}$	< 0.000004	---	0.000046	< 0.000005	0.000047	< 0.0029

i $/ \mathrm{m}^{3}=$ Picocuries per cubic meter
TSP = Total Suspended Particulates
Continuous $=$ continuous sampling

Page left intentionally blank

WATER RESULTS

Page left intentionally blank

CDPHE Surface Water Sampling

Fourth Quarter 2004

Surface water sampling conducted by CDPHE for the Fourth Quarter 2004, included:

- Wastewater Treatment Plant (WWTP), Building 995, ceased operation in October 2004. The building has been demolished.
- Pre-discharge samples were collected from Pond A-4 on November 3, 2004, and from Pond C-2 on October 6, 2004. Pond B-5 was not discharged this quarter.
- Nitrate and performance monitoring samples were taken from North and South Walnut Creek on December 9, 2004. Ponds B-1 and B2 were not sampled on December 9, 2004 because the ponds were being excavated. A VOC sample was taken from GS-09. Nitrate samples were taken at SW-093, GS-13, A3, A4, B-3, and SW-118. No samples were taken from GS-10, B-5 and SW-114 because of no flow or the sample point was frozen. Chloride samples were taken at SW-093, GS-13, A-3, and A-4. Metals samples were taken at GS-9 and GS-13. Property boundary sample points SW-001 and SW114 were dry. Sample point B-3 effluent was not sampled because the waste-water treatment plant is closed. Samples for radioactive analysis were taken on November 23, 2004 from Pond A-3 and SW-093.

Table G provides a summary of the sample activity and parameters collected by CDPHE. Table H presents inorganic results and Table I presents VOC results. Several samples from this quarter await analysis.

Wastewater Treatment Plant Influent

The Wastewater Treatment facility is closed.

Pre-Discharge Monitoring

The Pre-Discharge sampling program is conducted for compliance evaluation of the Site's ability to discharge storm water and treated wastewater to the Big Dry Creek drainage. Pre-Discharge Monitoring is conducted at the terminal ponds on Walnut Creek (Pond A4 and Pond B5). Typically the
Walnut Creek Ponds A4 and B5 are discharged 8-10 times per years and Woman Creek Pond C2 once a year. Sampling is conducted by both the Site and CDPHE. Only the CDPHE results are presented in this document. Reference Table G for monitoring specifics.

This quarters' pre-discharge samples from Ponds A-4 showed elevated concentrations of americium241 and gross beta concentrations above established RFCA action levels or applicable WQCC stream standards. The Am- 241 concentration was measured at $0.565 \mathrm{pCi} / l i t e r$ on November 3, 2004 and $0.371 \mathrm{pCi} /$ liter on November 23, 2004. Pond A-3 had a measured Am-241 concentration of 0.399 pCi/liter on November 23, 2004. The gross beta measured in A-4 was 16 pCi/liter. Treatment of the
water is being performed. Plutonium standards were not exceeded.

A pre-discharge sample analysis from Pond C-2 showed elevated gross beta at $10 \mathrm{pCi} /$ liter. The elevated gross beta in pond $\mathrm{C}-2$ is explained by potassium in the water.

Point of Compliance - Surface Water Results

Point of Compliance monitoring is conducted below the terminal ponds and at the Site boundary along Indiana Street, on both Walnut and Woman Creek. Point of Compliance monitoring is conducted to evaluate Site compliance with WQCC stream standards and RFCA action levels, as appropriate. Point of Compliance monitoring activities are shared between CDPHE and the Site. Only the CDPHE monitoring results are presented in this document. Reference Table G for monitoring specifics.

Nutrient Sampling - North Walnut Creek

This Ad Hoc program conducted by CDPHE monitors nutrient concentrations related to nitrate and ammonia in the North and South Walnut Creek drainages as a result of Sewage Treatment Plant Operations and Solar Pond Groundwater Plume. The nitrate profile in the Walnut Creek drainages exhibits a pattern of elevated levels in excess of the underlying standard, since the time the French drain and active treatment system for the solar pond area was dismantled and discontinued, and the installation of the passive solar pond plume passive treatment project. Historically the highest exceedences are at GS-13, which more represent the full impact of the solar pond nitrate plume into North Walnut Creek.

These quarters' nitrate results ranged from $<0.03 \mathrm{mg} / \mathrm{L}$ to $30 \mathrm{mg} / \mathrm{L}$. All results were less than the temporary modification of $100 \mathrm{mg} / \mathrm{L}$. The normal Colorado standard for nitrate is $10 \mathrm{mg} / \mathrm{L}$.

These quarters' total ammonia results ranged from $<0.03 \mathrm{mg} / \mathrm{L}$ to $0.12 \mathrm{mg} / \mathrm{L}$. Calculating for unionized ammonia exhibited concentrations ranging from 0.0001 to $0.0023 \mathrm{mg} / \mathrm{L}$, compared against the conservative unionized standard of $0.1 \mathrm{mg} / \mathrm{L}$ (segment 4a stream standard), no samples exceed the stream standard.

Performance Monitoring - Mound/East Trench Plume

The Mound and East Trenches groundwater contaminant plumes contain volatile organic compounds (VOCs) and select metals. Groundwater collection and treatment systems are in place and appear to be effective. However, it is possible that some contaminated groundwater either was down gradient of the collection systems before installation, or that some groundwater may be by-passing the collection trenches. There is no in-stream monitoring specified in the Decision Documents for these systems that can either verify or disprove this. In order to ensure that stream standards are being attained, monitoring for VOCs and selected metals was commenced during second quarter 2002 in South Walnut Creek in the immediate vicinity of where the groundwater contamination plumes may be intersecting the stream.
Water levels in Ponds B-1 and B-2 were not sampled this quarter because of excavation activities.

Performance Monitoring - Solar Pond Plume

The Solar Ponds groundwater contaminant plume contains high levels of nitrates and uranium, and lower concentrations of several other metals. Groundwater collection and treatment systems have been installed, and the treatment appears to be effective. However, it is possible that some contaminated groundwater either was already down gradient of the collection system before it was installed, or, that some groundwater may be bypassing the collection trench.

While the Site monitors in-stream uranium concentrations, CDPHE will perform in-stream monitoring for metals. This data will be used in order to ensure that stream standards are being attained. It should be noted that both the Site and CDPHE monitor nitrate concentrations at this location, and the CDPHE nitrate monitoring is described in the ad-hoc section of this ESR.

Am-241 at a measured concentration of $0.204 \mathrm{pCi} /$ liter was found at SW-093 on November 23, 2004 samples. Plutonium concentrations were non-detect. Otherwise, no exceedance of nitrate or metal surface water standards were found this quarter.

Page left intentionally blank

Total Recoverable SILVER at 995INF reported in UG/L

CHLORIDE at SWA4 reported in mg/L

Page left intentionally blank

TABLE G - CDPHE SURFACE WATER MONITORING PROGRAM

Sampling Frequencies for Listed Locations \& Parameters			Pre Discharge		Treatment Plant Influent		Performance Monitoring		Ad Hoc Program	Stream Segment 4, POC Monitoring, Non-POC Monitoring at Indiana					
Parameter or Method	Method	Total \# Analyses Per Year All Sites	$\begin{aligned} & \hline \text { Pond A4 } \\ & \text { or } \\ & \text { Pond B5 } \end{aligned}$	Pond C2	Bldg 995 Following Equalizati on Basin	: Bldg 990 $\mathrm{~N} . \& \mathrm{~S}$. Interceptors Prior to Equalizatio n Basin	Mound/ East Trenches Plume (footnote a)	Solar Pond Plume	Nitrate Study 8 Stations (footnote b)	During Pon (foo	nd Releases tnote c)	Dry Weath No Pond	her Flow Release	Following Events Rele	ng Storm No Pond ase ${ }^{\text {d }}$
			SWA4 or SWB5	SWC2	INFL	$\begin{aligned} & 990 \text { INFL_N } \\ & 990 \text { INFL_S } \end{aligned}$	SWB1, SWB2, SWB3, GS09	GS13	various	SW114 (GS03) Walnut Ck	SW001 (GS01) Woman Ck	SW114 (GS03) Walnut Ck	SW001 (GS01) Woman Ck	SW114 (GS03) Walnut Ck	SW001 (GS01) Woman Ck
Field pH		na	Field pH and Temperature Will be Collected for All Samples >>>>>>>>>												
Field Temp, C		na	Field pH and Temperature Will be Collected for All Samples >>>>>>>>>												
Field DO		na	$10 / \mathrm{yr}^{1}$	$1 / \mathrm{yr}^{1}$											
RADS - Total (unfiltered), RUSH															
Americium - 241	$\begin{aligned} & \hline \text { TRU } \\ & \text { SPEC } \end{aligned}$	11	$10 / \mathrm{yr}^{1}$	$1 / \mathrm{yr}^{1}$											
$\begin{array}{\|l} \hline \text { Plutonium - } \\ 239 / 240 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { TRU } \\ & \text { SPEC } \end{aligned}$	11	$10 / \mathrm{yr}^{1}$	$1 / \mathrm{yr}^{1}$											
Gross Alpha	900.0	11	$10 / \mathrm{yr}^{1}$	$1 / \mathrm{yr}^{1}$											
Gross Beta	900.0	11	$10 / \mathrm{yr}^{1}$	$1 / \mathrm{yr}^{1}$											
RADS - Total (unfiltered)															
Americium - 241	$\begin{gathered} \text { TRUSP } \\ \text { EC } \\ \hline \end{gathered}$	20			Monthly ${ }^{2}$	Quarterly ${ }^{1}$									
$\begin{array}{\|l} \hline \text { Plutonium - } \\ 239 / 240 \\ \hline \end{array}$	$\begin{gathered} \text { TRUSP } \\ \text { EC } \end{gathered}$	20			Monthly ${ }^{2}$	Quarterly ${ }^{1}$									
Gross Alpha	900.0	20			Monthly ${ }^{2}$	Quarterly ${ }^{1}$									
Gross Beta	900.0	20			Monthly ${ }^{2}$	Quarterly ${ }^{1}$									
Uranium, Fluorometric	908.0	25	Quarterly ${ }^{1}$	$1 / \mathrm{yr}^{1}$	Monthly ${ }^{2}$	Quarterly ${ }^{1}$									
Metals - Dissolved (filtered)															
Ag	200.8	22-26	Quarterly ${ }^{1}$	$1 / \mathrm{yr}^{1}$			Quarterly ${ }^{1}$	Quarterly ${ }^{1}$		Quarterly ${ }^{1}$	$1 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}{ }^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}{ }^{1}$
Cu	200.8	22-26	Quarterly ${ }^{1}$	$1 / \mathrm{yr}^{1}$			Quarterly ${ }^{1}$	Quarterly ${ }^{1}$		Quarterly ${ }^{1}$	$1 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}{ }^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$
Mn	200.7	22-26	Quarterly ${ }^{1}$	$1 / \mathrm{yr}^{1}$			Quarterly ${ }^{1}$	Quarterly ${ }^{1}$		Quarterly ${ }^{1}$	$1 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}{ }^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}{ }^{1}$
Ni	245.1	22-26	Quarterly ${ }^{1}$	$1 / \mathrm{yr}^{1}$			Quarterly ${ }^{1}$	Quarterly ${ }^{1}$		Quarterly ${ }^{1}$	$1 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$
Se	200.8	22-26	Quarterly ${ }^{1}$	$1 / \mathrm{yr}^{1}$			Quarterly ${ }^{1}$	Quarterly ${ }^{1}$		Quarterly ${ }^{1}$	$1 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}{ }^{1}$	$2 / \mathrm{yr}^{1}$

TABLE G - CDPHE SURFACE WATER MONITORING PROGRAM

Sampling Frequencies for Listed Locations \& Parameters			Pre Discharge		Treatment Plant Influent		Performance Monitoring		Ad Hoc Program	Stream Segment 4, POC Monitoring, Non-POC Monitoring at Indiana					
Parameter or Method	Method	Total \# Analyses Per Year All Sites	$\begin{aligned} & \hline \text { Pond A4 } \\ & \text { or } \\ & \text { Pond B5 } \end{aligned}$	Pond C2	Bldg 995 Following Equalizati on Basin	: Bldg 990 $\mathrm{~N} . \& \mathrm{~S}$. Interceptors Prior to Equalizatio n Basin	Mound/ East Trenches Plume (footnote a)	Solar Pond Plume	$\begin{array}{\|c\|} \hline \text { Nitrate Study } \\ 8 \text { Stations } \\ \text { (footnote b) } \end{array}$	During Pon (foo	nd Releases tnote c)	Dry Weat No Pond	her Flow Release	Followin Events Rele	ng Storm No Pond ase ${ }^{\text {d }}$
			SWA4 or SWB5	SWC2	INFL	$\begin{aligned} & 990 \text { INFL_N } \\ & 990 \text { INFL_S } \end{aligned}$	SWB1, SWB2, SWB3, GS09	GS13	various	SW114 (GS03) Walnut Ck	SW001 (GS01) Woman Ck	SW114 (GS03) Walnut Ck	SW001 (GS01) Woman Ck	SW114 (GS03) Walnut Ck	SW001 (GS01) Woman Ck
(unfiltered)															
As	200.8	42-46	Quarterly ${ }^{1}$	$1 / \mathrm{yr}{ }^{1}$	Monthly ${ }^{2}$	Quarterly ${ }^{1}$	Quarterly ${ }^{1}$	Quarterly ${ }^{1}$		Quarterly ${ }^{1}$	$1 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$
Be	200.8	42-46	Quarterly ${ }^{1}$	$1 / \mathrm{yr}{ }^{1}$	Monthly ${ }^{2}$	Quarterly ${ }^{1}$	Quarterly ${ }^{1}$	Quarterly ${ }^{1}$		Quarterly ${ }^{1}$	$1 / \mathrm{yr}{ }^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$
Cd	200.8	42-46	Quarterly ${ }^{1}$	$1 / \mathrm{yr}{ }^{1}$	Monthly ${ }^{2}$	Quarterly ${ }^{1}$	Quarterly ${ }^{1}$	Quarterly ${ }^{1}$		Quarterly ${ }^{1}$	$1 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}{ }^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$
$\mathrm{Cr}(\mathrm{VI})$ dslvd??	200.8	42-46	Quarterly ${ }^{1}$	$1 / \mathrm{yr}{ }^{1}$	Monthly ${ }^{2}$	Quarterly ${ }^{1}$	Quarterly ${ }^{1}$	Quarterly ${ }^{1}$		Quarterly ${ }^{1}$	$1 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$
Fe	200.7	42-46	Quarterly ${ }^{1}$	$1 / \mathrm{yr}{ }^{1}$	Monthly ${ }^{2}$	Quarterly ${ }^{1}$	Quarterly ${ }^{1}$	Quarterly ${ }^{1}$		Quarterly ${ }^{1}$	$1 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}{ }^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$
Lithium	200.8	42-46	Quarterly ${ }^{1}$	$1 / \mathrm{yr}^{1}$	Monthly ${ }^{2}$	Quarterly ${ }^{1}$	Quarterly ${ }^{1}$	Quarterly ${ }^{1}$		Quarterly ${ }^{1}$	$1 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$
Thallium	200.8	42-46	Quarterly ${ }^{1}$	$1 / \mathrm{yr}{ }^{1}$	Monthly ${ }^{2}$	Quarterly ${ }^{1}$	Quarterly ${ }^{1}$	Quarterly ${ }^{1}$		Quarterly ${ }^{1}$	$1 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}$	$2 / \mathrm{yr}$	$2 / \mathrm{yr}$
Special TR Metals (unfiltered) For STP Influent - until domestic sewage contributions are discontinued:															
Ag	200.8	20			Monthly ${ }^{2}$	Quarterly ${ }^{1}$									
Cu	200.7	20			Monthly ${ }^{2}$	Quarterly ${ }^{1}$									
Mn dslvd??	200.7	20			Monthly ${ }^{2}$	Quarterly ${ }^{1}$									
Ni	245.1	20			Monthly ${ }^{2}$	Quarterly ${ }^{1}$									
Se	200.8	20			Monthly ${ }^{2}$	Quarterly ${ }^{1}$									
Hardness as CaCO3	130.2	22-26	Quarterly ${ }^{1}$	$1 / \mathrm{yr}^{1}$			Quarterly ${ }^{1}$	Quarterly ${ }^{1}$		Quarterly ${ }^{1}$	$1 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}{ }^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}{ }^{1}$	$2 / \mathrm{yr}{ }^{1}$
Organic Analyses															
VOCs	502.2	8					SemiAnnual ${ }^{1}$								

TABLE G - CDPHE SURFACE WATER MONITORING PROGRAM

Sampling Frequencies for Listed Locations \& Parameters			Pre Discharge		Treatment Plant Influent		Performance Monitoring		Ad Hoc Program	Stream Segment 4, POC Monitoring, Non-POC Monitoring at Indiana						
Parameter or Method	Method	Total \# Analyses Per Year All Sites	$\begin{aligned} & \hline \text { Pond A4 } \\ & \text { or } \\ & \text { Pond B5 } \end{aligned}$	Pond C2	Bldg 995 Following Equalizati on Basin	: Bldg 990 N. \& S. Interceptors Prior to Equalizatio n Basin	 Mound/ East Trenches Plume (footnote a)	Solar Pond Plume	Nitrate Study 8 Stations (footnote b)	$\left\lvert\, \begin{aligned} \text { During Pon } \\ \text { (foot } \end{aligned}\right.$	nd Releases tnote c)	Dry Weath Pond	er Flow - No Release	Followin Events Rele	ng Storm No Pond ase ${ }^{\text {d }}$	
			SWA4 or SWB5	SWC2	INFL	$\begin{aligned} & 990 \text { INFL_N } \\ & 990 \text { INFL_S } \end{aligned}$	SWB1. SWB2, SWB3, GS09	GS13	various	SW114 (GS03) Walnut Ck	SW001 (GS01) Woman Ck	SW114 (GS03) Walnut Ck	SW001 (GS01) Woman Ck	SW114 (GS03) Walnut Ck	SW001 (GS01) Woman Ck	
Nutrients/Inorganics		52-56	10/yr ${ }^{1}$	$1 / \mathrm{yr}{ }^{1}$	Monthly ${ }^{1}$											
Ammonia as	350.2								Quarterly ${ }^{1}$	Quarterly ${ }^{1}$	$1 / r^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$/ \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	
Nitrite/Nitrate	353.2	52-56	$10 / \mathrm{yr}^{1}$	$1 / \mathrm{rr}^{1}$					Quarterly ${ }^{1}$	Quarterly ${ }^{1}$	1/yr ${ }^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	
as N																
Phosphate, T	365.1	$\begin{aligned} & 20-24 \\ & 20-24 \end{aligned}$	$\\| \begin{aligned} & 10 / y r^{1} \\ & 10 / y r^{1} \end{aligned}$	$\left\lvert\, \begin{aligned} & 1 / y r^{1} \\ & 1 / y r^{1} \end{aligned}\right.$						Quarterly ${ }^{1}$	1/yr ${ }^{1}$	$2 / \mathrm{yr}{ }^{1}$	$2 / \mathrm{yr}{ }^{1}$	$2 / \mathrm{yr}{ }^{1}$	$2 / \mathrm{yr}^{1}$	
Orthophosph ate	365.2									Quarterly ${ }^{1}$	1/yr ${ }^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	
Solids, total suspended Chloride	160.1	40-44	$10 / \mathrm{yr}^{1}$ Quarterly ${ }^{1}$	$\begin{aligned} & 1 / y r^{1} \\ & 1 / \mathrm{yr}^{1} \end{aligned}$		Quarterly ${ }^{1}$				Quarterly ${ }^{1}$	$1 / r^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}^{1}$	$2 / \mathrm{yr}{ }^{1}$	$2 / \mathrm{yr}^{1}$	
						Quarterly				Quarterly						
	325.3	5														

4 at GS09. VOC monitoring will be conducted in late fall
b Nitrate Special Study Stations: SW118, SW093, GS13, Pond A-4, GS10, EFFL, Pond B-5, SW114. Station EFFL
is the outfall from the STP.
${ }^{c}$ Metals monitoring at Indiana Street "During Pond Releases", will be conducted for those pond discharges where metals monitoring was done
for the Pre-Discharge sample.
d "Storm Event / No Pond Release" related monitoring may be conducted by the Site as part of it's Buffer Zone Hydrologic Monitoring Program . If not, the State will attempt to schedule grab sample collection.

Grab
Sample

Page left intentionally blank

Environmental Surveillance

TABLE H - INORGANIC ANALYSIS OF SURFACE WATER FOURTH QUARTER 2004

Location | Sample |
| :--- |
| Date Parameter |

Pre-Discharge Monitoring

Pond C2

10/06/2004
Americium ${ }^{241}$, Total
Gross Alpha
Gross Beta
Plutonium ${ }^{239+240}$, Total
Uranium, Total
Arsenic, Total Recoverable
Beryllium, Total Recoverable
Cadmium, Total Recoverable
Chromium, Total Recoverable
Copper, Dissolved
Iron, Total Recoverable
Lithium, Total Recoverable
Manganese, Dissolved
Nickel, Dissolved
Selenium, Dissolved
Silver, Dissolved
Thallium, Total Recoverable
Ammonia as N
Chloride
Hardness as CaCO3
Nitrate/Nitrite
Orthophosphate
Phosphate, Total
Total Suspended Solids

Pond A-4

11/03/2004

Americium ${ }^{241}$, Total		0.565	+/-	0.064	pCi/L
Gross Alpha	$<$	5			$\mathrm{pCi} / \mathrm{L}$
Gross Beta		16	+/-	4	ug/L
Plutonium ${ }^{239+240}$, Total	<	0.005			pCi/L
Uranium, Total		4			ug/L
Arsenic, Total Recoverable	$<$	0.001			mg / L
Beryllium, Total Recoverable	$<$	0.001			mg / L
Cadmium, Total Recoverable	$<$	0.0006			mg / L
Chromium, Total Recoverable	$<$	0.003			mg / L
Copper, Dissolved	<	5			ug/L
Iron, Total Recoverable		74			ug/L
Lithium, Total Recoverable		0.017			mg / L
Manganese, Dissolved		6			ug/L
Nickel, Dissolved	$<$	30			ug/L
Selenium, Dissolved		0.001			mg / L
Silver, Dissolved	<	0.0005			ug/L
Thallium, Total Recoverable	<	0.001			mg / L
Ammonia as N		0.12			mg / L
Chloride		310			mg/L
Hardness as CaCO3		270			mg / L

Environmental Surveillance

TABLE H - INORGANIC ANALYSIS OF SURFACE WATER FOURTH QUARTER 2004

Location | Sample |
| :--- |
| Date Parameter |

Nitrate/Nitrite
Orthophosphate
Phosphate, Total
Total Suspended Solids

11/23/2004
Americium ${ }^{241}$, Total <
Gross Alpha
Gross Beta
Plutonium ${ }^{239+240}$, Total
Uranium, Total
Arsenic, Total Recoverable
Beryllium, Total Recoverable
Cadmium, Total Recoverable
Chromium, Total Recoverable
Copper, Dissolved
Iron, Total Recoverable
Lithium, Total Recoverable
Manganese, Dissolved
Nickel, Dissolved
Selenium, Dissolved
Silver, Dissolved
Thallium, Total Recoverable
Ammonia as N
Chloride
Hardness as CaCO3
Nitrate/Nitrite
Orthophosphate
Phosphate, Total
Total Suspended Solids

Analysis Units $\begin{gathered}\text { *Analysis* } \\ \text { 1st 2nd }\end{gathered}$

<0.3	mg / L
0.04	mg / L
0.083	mg / L
10	mg / L

0.371			$\mathrm{pCi} / \mathrm{L}$
$<$	5		
	$\mathrm{pCi} / \mathrm{L}$		
10	$+/-$	4	$\mathrm{pCi} / \mathrm{L}$

$<0.013 \mathrm{pCi} / \mathrm{L}$
4 ug/L
$<0.001 \mathrm{mg} / \mathrm{L}$
$<0.001 \mathrm{mg} / \mathrm{L}$
< $0.0006 \mathrm{mg} / \mathrm{L}$
$0.003 \mathrm{mg} / \mathrm{L}$
< 5 ug/L
< 10 ug/L
mg / L
ug/L
mg / L

Pond A3

11/23/2004

Americium ${ }^{241}$, Total <	0.399				$\mathrm{pCi} / \mathrm{L}$
Gross Alpha	<	6			$\mathrm{pCi} / \mathrm{L}$
Gross Beta		17	+/-	6	pCi/L
Plutonium ${ }^{239+240}$, Total	<	0.021			$\mathrm{pCi} / \mathrm{L}$
Uranium, Total		12			ug/L
Arsenic, Total Recoverable	<	0.001			mg / L
Beryllium, Total Recoverable	<	0.001			mg / L
Cadmium, Total Recoverable	<	0.0006			mg / L
Chromium, Total Recoverable		0.004			mg/L
Copper, Dissolved	$<$	5			ug/L
Iron, Total Recoverable	<	10			ug/L
Lithium, Total Recoverable		0.031			mg / L
Manganese, Dissolved		16			ug/L
Nickel, Dissolved	<	0.03			mg/L
Selenium, Dissolved	<	0.001			mg / L
Silver, Dissolved	<	0.0005			mg / L

Environmental Surveillance

TABLE H - INORGANIC ANALYSIS OF SURFACE WATER FOURTH QUARTER 2004

Location | Sample |
| :--- |
| Date |

Thallium, Total Recoverable Ammonia as N
Chloride
Hardness as CaCO 3

Nitrate/Nitrite
Orthophosphate
Phosphate, Total
Total Suspended Solids

Creek Sampling

North Walnut Creek above Pond A-1 (GS13)

12/09/2004
Sodium, Total
Arsenic, Total Recoverable
Beryllium, Total Recoverable
Cadmium, Total Recoverable
Chromium, Total Recoverable
Copper, Dissolved
Iron, Total Recoverable
Lithium, Total Recoverable
Manganese, Dissolved
Nickel, Dissolved
Selenium, Dissolved
Silver, Dissolved
Thallium, Total Recoverable
Ammonia as N
Chloride
Hardness as CaCO3
Nitrate/Nitrite
Orthophosphate
Phosphate, Total
Total Suspended Solids

South Walnut Creek below Pond B-4 (GS09)

12/09/2004

Sodium, Total	320	
Arsenic, Total Recoverable	<0.001	mg / L
Beryllium, Total Recoverable	<0.001	mg / L
Cadmium, Total Recoverable	<0.0006	mg / L
Chromium, Total Recoverable	0.009	mg / L
Copper, Dissolved	0.005	mg / L
Iron, Total Recoverable	0.12	mg / L
Lithium, Total Recoverable	0.16	mg / L
Manganese, Dissolved	0.18	mg / L
Nickel, Dissolved	<0.03	mg / L
Selenium, Dissolved	<0.001	mg / L
Silver, Dissolved	<0.5	ug / L
Thallium, Total Recoverable	<0.001	mg / L

Environmental Surveillance

TABLE H - INORGANIC ANALYSIS OF SURFACE WATER
FOURTH QUARTER 2004

Location \begin{tabular}{ccc}
Sample

Date \& Parameter \& Analysis

Analysis

1st 2nd
\end{tabular}

Ammonia as N	$<$	no bottle
Chloride	670	mg / L
Hardness as CaCO3		500
mg / L		
Nitrate/Nitrite	no bottle	mg / L
		mg / L
Orthophosphate		
Phosphate, Total		0.03
Total Suspended Solids	$<$	ng / L
		10

Nutrient Monitoring

Walnut Creek below Portal 3 (SW093)

12/09/2004

Americium ${ }^{241}$, Total	0.204		$\mathrm{pCi} / \mathrm{L}$	
Gross Alpha	$<$			$\mathrm{pCi} / \mathrm{L}$
Gross Beta		13	$+/-$	6
Plutonium $^{239+240}$, Total	$<$	0.008		$\mathrm{pCi} / \mathrm{L}$
Chloride	410		mg / L	
Nitrate/Nitrite	1.1		mg / L	

SW118

12/09/2004

Nitrate/Nitrite
<0.3
mg/L

Pond A3

12/09/2004

Ammonia as N	0.10	mg / L
Chloride	280	mg / L
Nitrate/Nitrite	9.2	mg / L

Pond A-4
12/09/2004

Ammonia as N	0.07	mg / L
Chloride	290	mg / L
Nitrate/Nitrite	<0.3	mg / L

Page left intentionally blank

Environmental Surveillance

TABLE I - VOLATILE ORGANIC ANALYSIS OF SURFACE WATER FOURTH QUARTER 2004

Location \begin{tabular}{c}
Sample

Date

 Parameter Analysis Level Units \quad

Analysis

1st 2nd
\end{tabular}

Pond C2
10/06/2004
Toluene $0.41 \quad \mathrm{ug} / \mathrm{L}$

South Walnut Creek below Pond B-4 (GS09)
12/09/2004
Trichloroethylene $\quad 1.6 \quad \mathrm{ug} / \mathrm{L}$
Tetrachloroethylene ug/L

Page left intentionally blank

GLOSSARY

Ag	silver
Am	americium
AOI	analyte of interest
APCD	Air Pollution Control Division
AQCC	Air Quality Control Commission
ALF	action level framework
B	found in blank
Be	beryllium
CAS	chemical abstracts service number
Cd	cadmium
CDPHE	Colorado Department of Public Health and Environment
Cr	chromium
D\&D	decontamination and decommissioning
DOE	Department of Energy
EPA	Environmental Protection Agency
ESR	Environmental Surveillance Report
H	exceeds holding time
IMP	Integrated Monitoring Plan
J	detected but below practical quantitative limit
LARS	Laboratory and Radiation Services
mg/L	Milligram per liter
MCL	Maximum Contaminant Level (below MCL is safe)
MDL	minimum detection level
Nd	not detected
NO_{3}	nitrate
pCi/L	picocuries per liter
$\mathrm{pCi} / \mathrm{m}^{3}$	picocuries per cubic meter
PM	particulate material
ppb	parts per billion
ppm	parts per million
PQL	practical quantitative level
Pu	plutonium
QNS	quantity not sufficient
RFCA	Rocky Flats Cleanup Agreement
RFETS	Rocky Flats Environmental Technology Site
TLV	ACGIH Threshold limit value
TSP	Total Suspended Particulate
TSS	Total Suspended Solids
$\mu \mathrm{g} / \mathrm{L}$	microgram per liter
$\mu \mathrm{g} / \mathrm{m}^{3}$	micrograms per cubic meter
U	uranium
VOCs	volatile organic compounds
WQCC	Water Quality Control Commission
WQCD	Water Quality Control Division
WWTP	wastewater treatment plan

Page left intentionally blank

If you have questions or comments about this report, or if you would like to be placed on the mailing or email list to receive copies of this report in the future, please write to:

Rocky Flats Program,
Hazardous Material and Waste Management Division
Colorado Department of Public Health and Environment
4300 Cherry Creek Drive South Denver, Colorado 80246-1530
Telephone (303) 692-3300

INTERNET ACCESS

Air Pollution Control Division

Email
World Wide Web

Email gordon.pierce@state.co.us
World Wide Web www.cdphe.state.co.us/ap/
Hazardous Materials \&Waste Management Division
Email
edgar.ethington@state.co.us
World Wide Web
www.cdphe.state.co.us/hm/

Laboratory Services Division
Email
tony.harrison@state.co.us
World Wide Web
arch.crouse@state.co.us
www.cdphe.state.co.us/ap/

