Environmental Surveillance Report

on the U.S. Department of Energy

Rocky Flats Environmental Technology Site

Information Exchange

SECOND QUARTER 2003

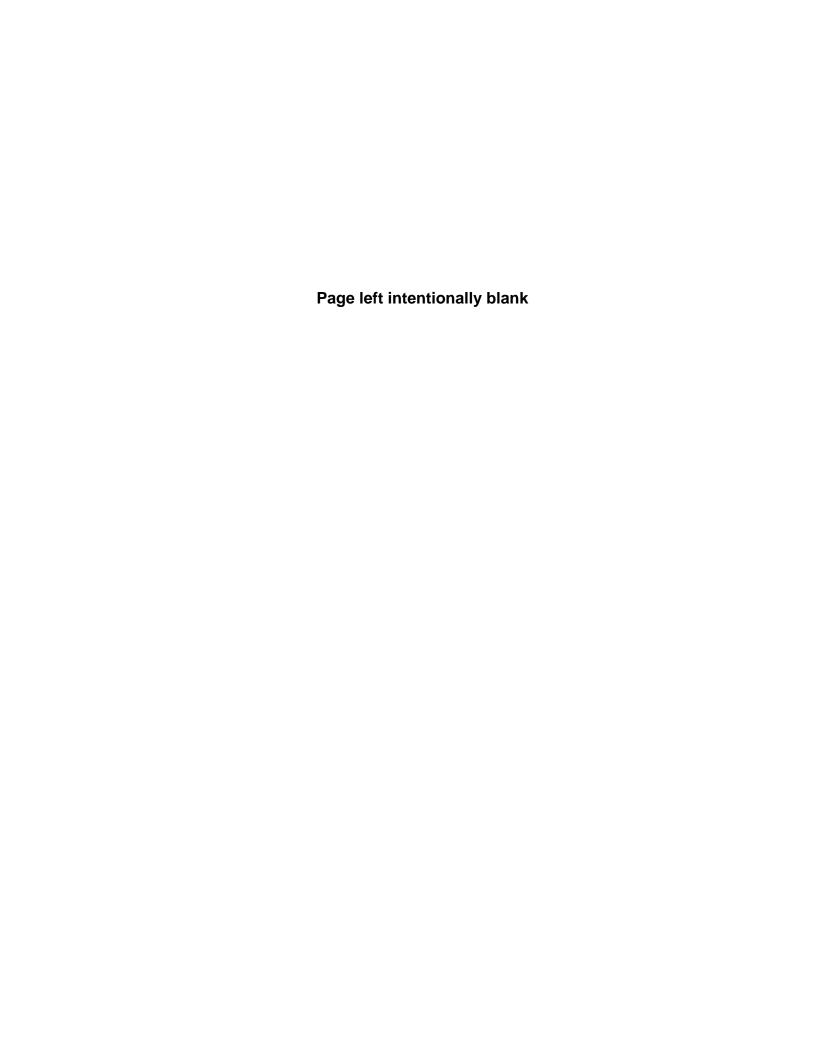
This is a numerical summary of environmental surveillance measurements performed by the Department during the past quarter.

TABLE OF CONTENTS

INTRODUCTION		1
Air Monitoring Station	ons - 2003	2
Water Monitoring S	tations - 2003	3
DECISION RULES		4
ANALYTES OF INT	EREST	8
AIR and WATER S	TANDARDS	
National Amb	pient Air Quality Standards	10
	ater Quality Control Commission Standards ive Materials at and around RFETS	11
Sampling and Analy	tical Results for this Quarter	
AIR RESULT	-S	
Descr	iption of Air Sampling this Quarter	14
Graph	ns of Selected Air Results	15
Tabula	ar Data	
	Table A Gross Alpha and Gross Beta Radioactivity Suspended Airborne Particulate Material	17
	Table B Alpha Spectrometric Analysis and Long-Lived Gross Alpha Radioactivity Concentrations in Suspended Airborne Particulate Material	18

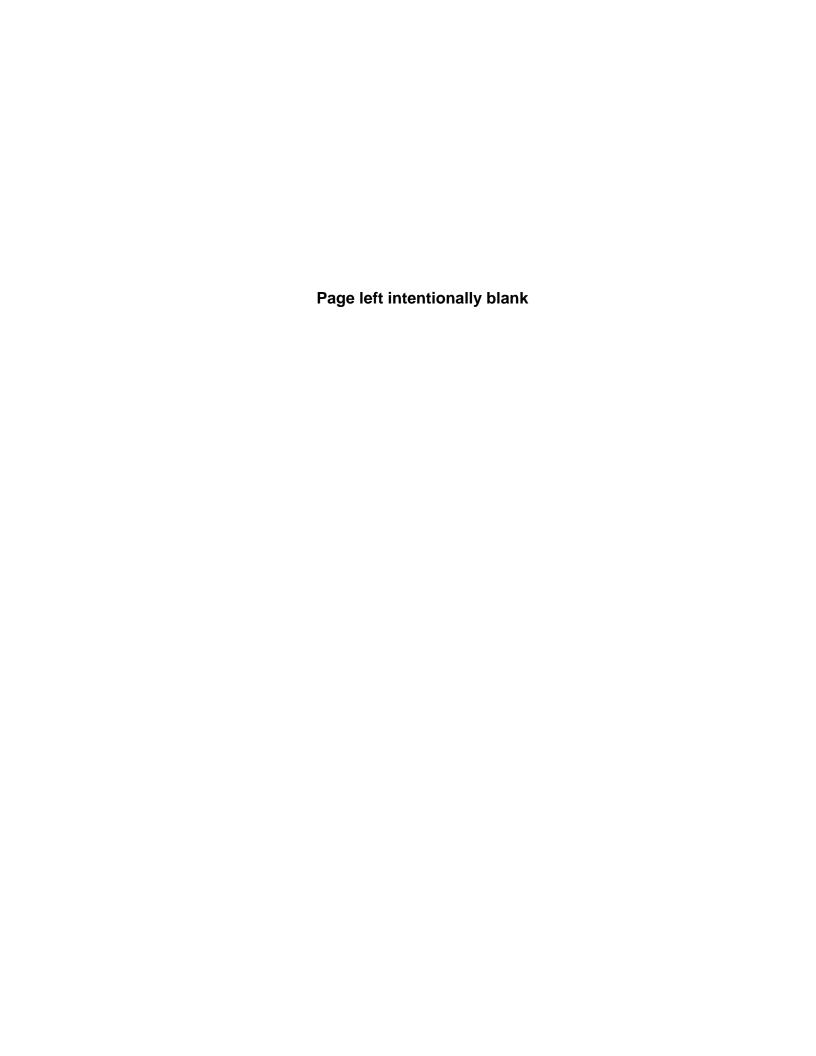
WATER RESULTS

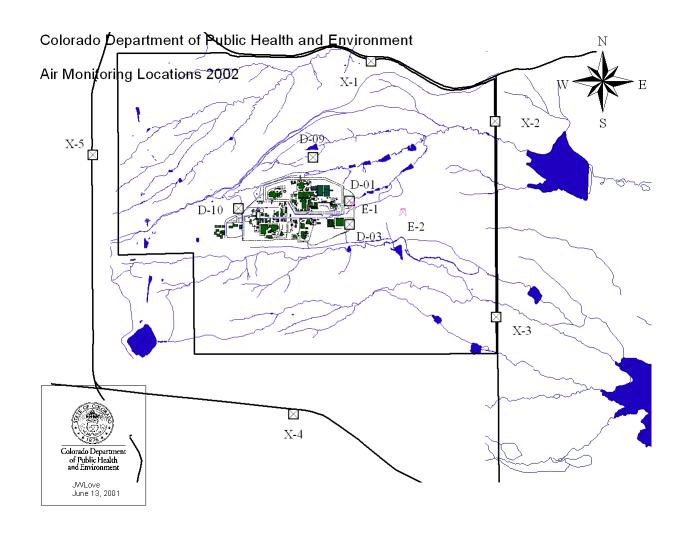
	Description of Precipitation and Surface Water Sampling Done This Quarter	19
	Graphs of Selected Water Results	22
	Tabular Data	
	Table G1 CDPHE Surface Water Monitoring Program Table H Inorganic Analysis of Surface Water Table I Organic Analysis of Surface Water	G1 H1 I1
GLOSSARY		24

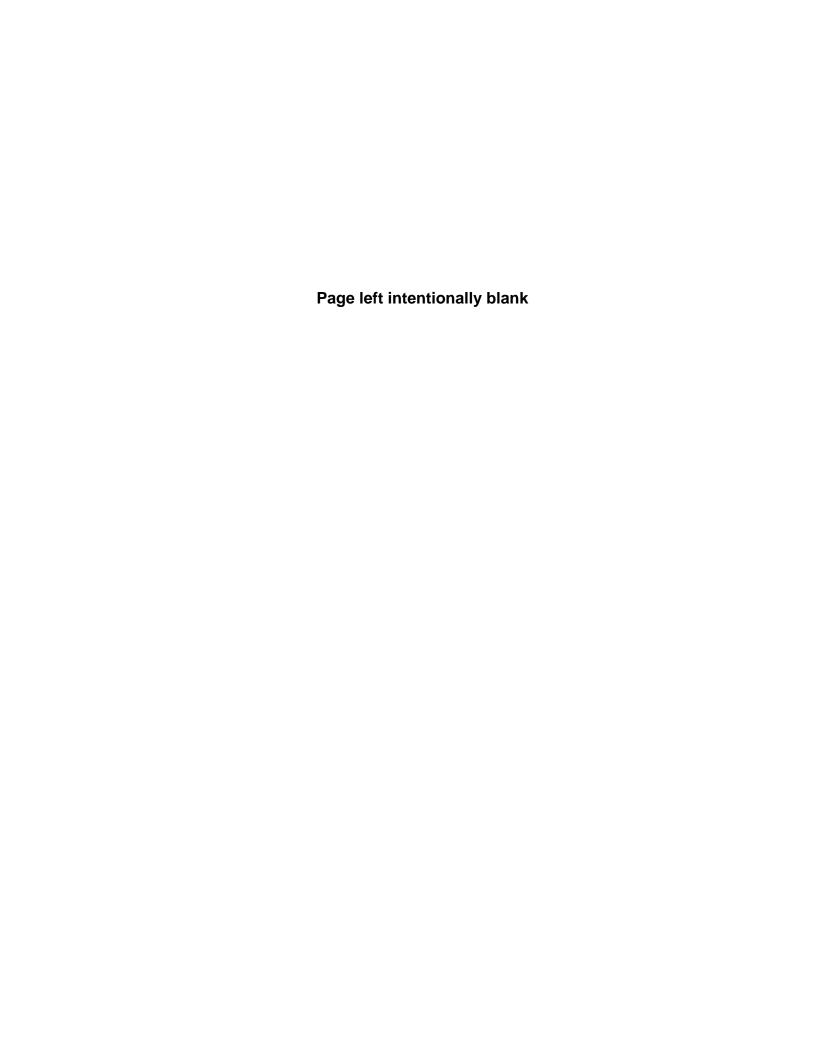

Introduction

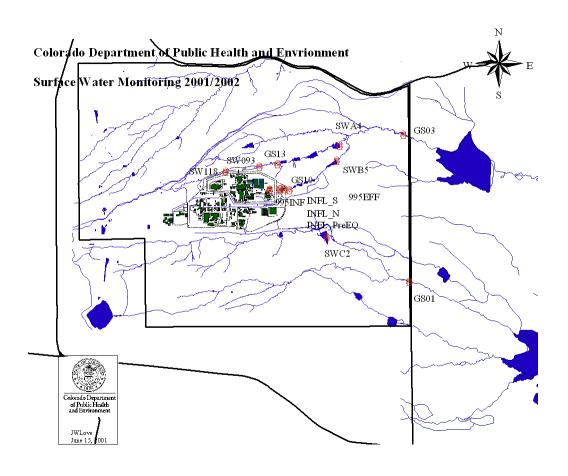
The purpose of this Environmental Surveillance Report (ESR) is to provide a quarterly update on Colorado Department of Public Health and Environment (CDPHE) air and surface water monitoring data at the Rocky Flats Environmental Technology Site (RFETS).

CDPHE currently has three Divisions that conduct monitoring at RFETS including the Air Pollution Control Division (APCD), the Hazardous Materials Waste Management Division, and the Laboratory and Radiation Services Division (LARS). APCD monitors air for contaminants such as particulates, oxides of nitrogen, ozone, volatile organic compounds (VOCs), and radionuclides beryllium. The Hazardous Materials Waste Management Division conducts surface water monitoring for many parameters, including metals, inorganics and radionuclides. The Radiation Control Division performs radiological monitoring in air, and precipitation.


Under normal conditions, groundwater and soils are not monitored by Colorado Department of Public Health and Environment (CDPHE), but are monitored by DOE.


Sampling and data analysis is performed by CDPHE according to the Rocky Flats Integrated Monitoring Plan (IMP), which describes not only the monitoring done by CDPHE, but also that done by the Site and surrounding communities. It is possible that CDPHE may do some additional sampling as part of a special study or for some unusual circumstances. This report describes the results of both types of CDPHE monitoring.




BACKGROUND INFORMATION


MONITORING STATIONS DECISION RULES ANALYTES OF INTEREST AIR STANDARDS WATER STANDARDS

Decision Rules

The data acquired for each quarter is examined using standard methods of evaluation that are described in the Integrated Monitoring Plan (IMP). The methods use a series of decision rules to effectively analyze the data that has been collected, and make determinations about what actions need to be taken. Decision rules are if-then statements pertaining to data quality objectives. The decision rules define, quantitatively and qualitatively, the point at which a decision should be made or action should be taken.

The decisions could involve many different actions including, but not limited to, further analysis of data, implementation of new monitoring stations for source detection, management decisions, or evaluation of remediation alternatives. Any exceedence of an action level for a surface water or air contaminant during the quarter are summarized in this report, along with any actions taken or follow up investigations that are required.

The primary decision rules that pertain to each media are outlined below:

A. Air Monitoring

1. <u>Ambient Air Quality Monitoring</u>: Nitrogen Dioxide (NO₂), Ozone (O₃) and particulate monitoring is performed by APCD. Particulate monitoring includes monitoring of both fine particulates (PM₁₀) and total suspended solids (TSP).

IF: A perimeter monitor detects an NO₂ (annual arithmetic mean) concentration of

0.053 parts per million (ppm), an O_3 (1 hr av. time) concentration of 0.12 ppm, a TSP measurement of 75 micrograms per cubic meter ($\mu g/m^3$) averaged over a 1

year time period or 150 µg/m³ over a 24-hour time period, or a PM₁₀

concentration of 50 μg/m³ annually or 150 μg/m³ in a 24-hour period (Include

these values in a table in the report, too confusing this way)

THEN: The Site's operating permit may potentially be revised to mitigate the

exceedence.

2. Beryllium (Be) Monitoring: Emission points (stacks) are monitored for Be.

IF: Be emissions from a source exceed 10 g in a 24-hour period

THEN: CDPHE may take enforcement action.

IF: Ambient Be concentrations at monitoring sites exceed 0.01 µg/m³ over a 30-day

Period

THEN: CDPHE may take action to identify the source.

3. <u>Volatile Organic Compound (VOCs) Monitoring</u>: Various VOC monitoring stations exist around the perimeter of the site and are maintained by APCD. It is possible that remediation processes could release significant levels of VOCs. VOC data does not tend to vary and the measured concentrations are generally very low. A significant increase from normal levels of any VOC at any monitoring site could indicate a potential problem.

IF: A measured value of any VOC exceeds trends in historical data

THEN: An investigation will be enacted to determine the source of the elevated VOC

concentration.

4. <u>Radiological Ambient Air Quality Monitoring</u>: LARS and APCD air sampling locations are monitored for radiological contaminants, PM₁₀ and total suspended particulates (TSP).

IF: Measured values of radionuclides exceed typical trends existing in historical

data

THEN: Any number of actions may be taken including, but not limited to, analysis of

samples for verification, comparison of samples from nearest DOE monitoring sites, ComRad Program samplers, and/or APCD monitoring sites, request for investigation or explanation of elevated results from DOE, calculation of public

dose/risk and/or a presentation to CDPHE management.

B. Surface Water Monitoring

1. <u>Pond Predischarge Monitoring</u>: Analytes of Interest (AoIs) and some VOCs are monitored in the ponds previous to pond discharge so that discharge will not result in exceedence of stream standards.

IF: Predischarge monitoring indicates apparent exceedence of stream standards

THEN: CDPHE will notify the Site of additional AoIs for that discharge.

AND: The Site would then perform flow-paced POC monitoring for the additional

AoIs during that discharge, as part of the Segment 4 compliance monitoring.

OR

The Site may evaluate alternative water management options, which avoid immediate discharge including, but not limited to, treatment, storage or disposal.

2. Wastewater Treatment Plant (WWTP) Influent Radiological and Metals Monitoring: The Site has made an effort to eliminate any possible connections between waste streams containing radionuclides and WWTP influent. Therefore, it is assumed that radiologic loads will not significantly increase from baseline values. Radiologic parameters include total plutonium, total americium, total uranium, tritium, as well as alpha and beta activity. Metals parameters include for the total recoverable fraction - arsenic, beryllium, cadmium, chromium (total), iron, lithium, and thallium; plus special metals (total recoverable fraction) – silver, copper, manganese, nickel and selenium. Decontamination and decommissioning (D&D) activities

could potentially introduce radiologic loads to WWTP influent. The influent is monitored to track sources of contaminants that may be introduced during the cleanup process, through evaluation of pollutant loads and concentrations coming through the WWTP collection system.

IF: Influent loading for any of the radiologic parameters exceeds baseline

values determined from historical data

THEN: Evaluation will be performed to determine the source of contamination.

3. Performance Monitoring: Performance monitoring is conducted where specific D&D operations or remedial action pose a concern for a specific contaminant release that could impact surface water or groundwater. Performance monitoring is integrated with groundwater investigations and conducted to improve monitoring network resolution to isolate impacts of individual projects. CDPHE conducts performance monitoring in association with the Mound and East Trenches groundwater plume and treatment system, and Solar Pond Plume Treatment System.

a. Mound and East Trenches – VOC and metal contamination are present in the area of the Mound and East Trenches plume (south of South Walnut Creek). In order to ensure that stream standards are being attained, monitoring for VOCs and selected metals will be conducted in South Walnut Creek in the immediate vicinity where the groundwater contaminant plumes may be intersecting the stream.

IF: VOC or metal concentrations exceed stream standards

THEN: The monitoring frequency and number of sampling locations may be increased.

ELSE: VOC monitoring will be discontinued after three years and metals concentrations will be reviewed using the following Decision Rule.

IF: Metals concentrations are lower than stream standards, but significantly higher than the concentrations found at other RFETs locations.

THEN: Further investigation of in-stream concentrations and the cause of unusually high concentrations will be considered.

ELSE: Metals monitoring may be discontinued after a period of three years.

b. <u>Solar Pond Plume Treatment System</u> – The Solar Ponds groundwater contaminant plume contains elevated concentrations of nitrate, uranium and chloride, as well as lower concentrations of several metals. A groundwater treatment system has been installed, monitoring is being conducted to ensure that stream standards are being attained. The Site collects nitrate and uranium parameters. CDPHE collects metals and nitrate (as part of the *Ad Hoc* Nitrate Study).

IF: Metals or nitrate concentrations exceed stream standards.

THEN: The monitoring frequency and number of sampling locations may be

increased.

ELSE: Metals and nitrate monitoring will be continued until it has been demonstrated that metals concentrations at the most down gradient portion of the Solar Pond Plume are declining.

- 4. <u>Ad Hoc Program:</u> Ad Hoc Monitoring may be requested by DOE or the stakeholders to collect specific information related to special projects or to support decision-making processes. CDPHE has taken the responsibility for an evaluation of nitrate loading on Walnut Creek, and man-made versus natural uranium by inductively coupled plasma/mass spectrometry (ICP/MS) methodology.
 - a. <u>Nitrate Loading</u> Nitrate from the Solar Pond Groundwater Plume and treated effluent from the on-site Sewage Treatment Plant pose potential impact to surface water in the Walnut Creek Drainage and pond system. To supplement in-place continuous performance monitoring, for more accurate evaluation of nitrate loading, CDPHE is conducting additional water quality monitoring, consisting of grab samples for nitrate and ammonia analysis.

IF: No upward trend or high variability is detected.

THEN: Monitoring will continue on a quarterly basis.

ELSE Monitoring frequency may change.

b. <u>Uranium ICP/MS</u> – Conducted to augment the ICP/MS evaluation of groundwater at RFETs. The Uranium ICP/MS study has been undertaken to evaluate where man-made uranium isotopes are present in groundwater versus natural uranium in groundwater. The Site is supporting CDPHE in the collection of samples and analysis by ICP/MS.

IF: Sample results indicate non-natural uranium,

THEN: Evaluate potential sources of non-natural uranium and whether loading from that source may change over time.

5. <u>Stream Segment 4, Non-POC Monitoring</u> – POC monitoring will be supplemented to assess the effect of reduced flows and reduced nutrient loading to the Walnut Creek drainage as a result of the Sites' closure process. Monitoring for select metals will be conducted to ensure that stream standards are attained. To assist with the assessment of loading inorganics, nutrients (nitrate and ammonia) and physical parameters (pH, dissolved oxygen, hardness, total suspended solids) are also collected.

IF: Concentrations or loadings of specified contaminants exceed their 95% upper tolerance levels (UTLs)

THEN: CDPHE will notify the Site and the Cities, and RFETS may propose a change in ambient standards.

	Analytes of Interest								
Analytes		Air	Water	Purpose of Monitoring					
Radio nuclide	Pu	X	X	High level of public concern. Known carcinogen. Known past releases (within the past 8 years) have exceeded RFCA stream standards and action levels. This provides reasonable cause to expect future releases in excess of RFCA Action Levels.					
	U	X	X	Known renal toxicity. Past exceedances provide reasonable cause to expect future releases in excess of RFCA stream standards and action levels.					
	Am	X	X	Known carcinogen. Known past exceedances provide reasonable cause to expect future releases in excess of RFCA stream standards and action levels.					
	Tritium		X	Is an AOI due to past releases to drinking water supplies					
Metals	Be	X	X	Known to cause berylliosis in susceptible individuals when exposed in inhalation. May also cause contact dermatitis. Will be monitored as an indicator of releases from process and waste storage areas.					
	Cr		X	Physiological and dermal toxicity. High level of regulatory concern due, in part to the chromic acid of incident of 1989. Low levels can cause significant ecological damage.					
	Ag		X	Highly toxic to fish at low levels, if chronic. State of Colorado has temporarily removed its stream standard for silver, while under study. The study has been completed, and the standard will be reinstated at the next triennial review of South Platte stream standards, if not before. Used at RFETS only for photographic development. Routinely accepted by POTWs as municipal waste, but discharge is regulated. May be removed from this list later if data do not support concern.					
	Cd		X	Highly toxic to fish at low levels, if chronic. Known human carcinogen (prostate cancer) and depletes physiologic calcium. Used at RFETS in plating processes. Monitoring data for the Interceptor Trench System (ITS) and the proposed discharge of untreated ITS waters into Walnut Creek provide reasonable cause to expect future releases in excess of RFCA Action Levels					
	Hardness		X	Required to evaluate metals analyses, due to its effect on solubility to these metals.					
Particulates	Total suspended particulates	X		Monitored to provide information on total airborne particulate levels. Filters also used for metals and radionuclides analyses.					

Analytes of Interest									
Analytes	Air	Water	Purpose of Monitoring						
	PM ₁₀ particulates	X		Monitored to provide information on fine airborne particulate levels. Filters also used for metals and radionuclides analyses.					
Volatile Organic Compounds	VOCs	X	X	A variety of volatile organic compounds, some of which are toxic to humans and ecology. Known discharges to air and water as well as groundwater infiltration.					
Real Time Monitoring of Physical and Indicator Parameters	PH		X	Toxicity to humans and ecology. Regulatory concern due to chromic acid incident. Real-time monitoring is an inexpensive and effective method of detecting acid spills such as (chromic acid or plutonium nitrate) or failure of treatment systems.					
(Note A)	Conductivity		X	Conductivity is an indicator of total dissolved solids, metals, anions, and pH. Real-time monitoring of conductivity is an inexpensive indicator of overall water quality.					
	NO ₃		X	Past releases near RFCA stream standards and action levels upstream of ponds provide reasonable cause to expect future releases in excess of RFCA stream standards and action levels. ITS discharges are often high in nitrate, and may challenge RFCA action levels.					
	Flow		X	Required to detect flow events, evaluate contaminant loads and plan pond operations and discharges. Affects nearly every decision rule, and is the most commonly discussed attribute of RFETS surface waters.					
	Oxides of Nitrogen	X		Monitored due to RFETS historical use of nitric acid.					
	Ozone	X		Monitored as part of the CDPHE network. Not required or part of monitoring for RFETS.					
	Wind speed	X		Monitored to provide emergency response modeling information.					
	Wind direction	X		Monitored to provide emergency response modeling information.					
	Temperature	X		Monitored to provide emergency response modeling information.					

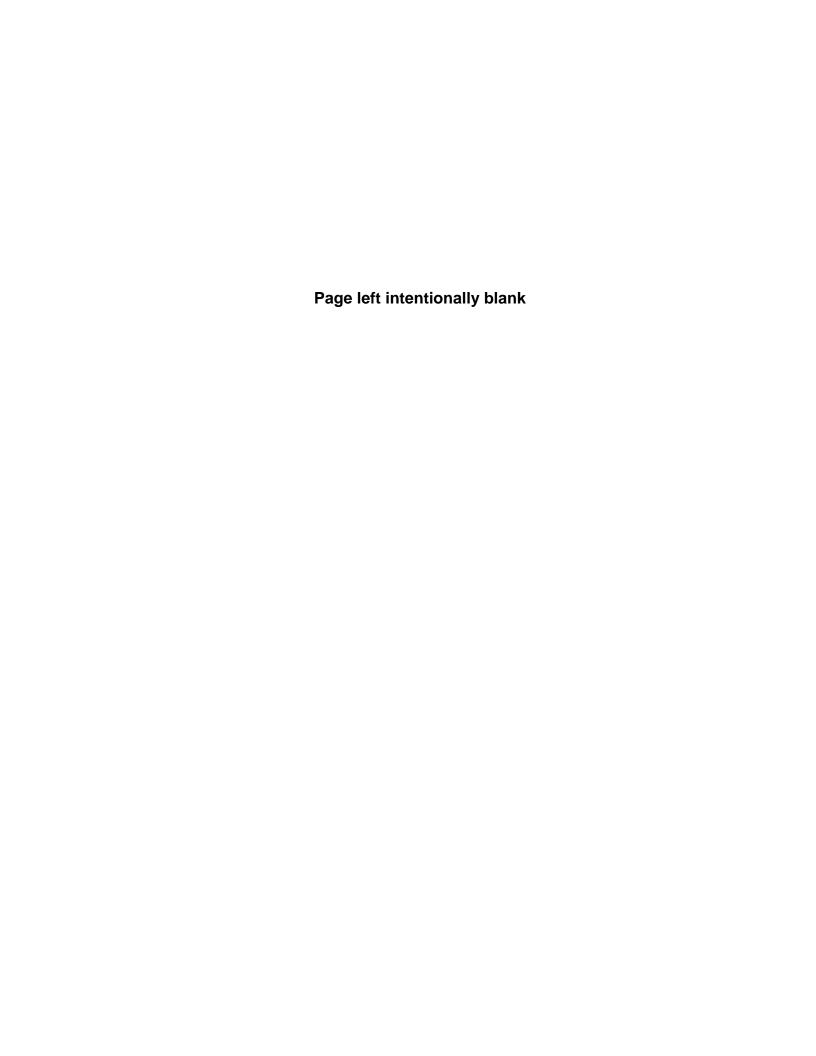
Note A: These parameters provide real-time indication for a wide variety of regulated contaminants, and are also required component for monitoring for AoIs. They require no laboratory analysis and are the RFETS most cost effective defensive monitoring.

NATIONAL AMBIENT AIR QUALITY STANDARDS

POLLUTANT	AVERAGING TIME	STANDARD
Carbon Monoxide (CO)		
Primary Standard	1 Hour ^(a)	35 ppm
Primary Standard	8 Hour ^(a)	9 ppm
Ozone (O ₃)		
Primary and Secondary Standards (up to 1997)	1 Hour ^(b)	0.12 ppm
Primary and Secondary Standards (as of July 1997)	8 Hour ^(c)	0.08 ppm
Nitrogen Dioxide (NO ₂)		
Primary and Secondary Standards	Annual Arithmetic Mean	0.053 ppm
Sulfur Dioxide (SO ₂)		
Primary Standard	Annual Arithmetic Mean	0.030 ppm
Primary Standard	24 Hour ^(a)	0.14 ppm
Secondary Standard	3 Hour ^(a)	0.5 ppm
Particulates (PM ₁₀)		
Primary and Secondary Standards	Annual Arithmetic Mean (d)	50 μg/m ³
Primary and Secondary Standards	24 Hour (b) prior to July 1997, (e) as of July 1997	$150 \mu\text{g/m}^3$
Fine Particulates (PM _{2.5}) (as of July 1997)		
Primary and Secondary Standards	Annual Arithmetic Mean (d)	$15.0 \mu g/m^3$
Primary and Secondary Standards	24 Hour ^(f)	65 μg/m ³
Lead (Pb)		
Primary and Secondary Standards	Calendar Quarter Average	$1.5 \mu g/m^3$
Total Suspended Particulates (TSP)		
Primary Standard	Annual Geometric Mean (g)	$75 \mu g/m^3$
Primary Standard	24 Hour ^(g)	$260 \mu g/m^3$
Secondary Standard	Annual Geometric Mean (g)	$60 \mu \text{g/m}^3$
Secondary Standard	24 Hour ^(g)	$150 \mu\mathrm{g/m}^3$

Not to be exceeded more than once per year.

⁽b) Statistically estimated number of days with concentrations above this level averaged over a three-year period, is not to be more than 1 per year.


The three-year average of the fourth maximum value for each year is not to exceed this level.

⁽d) The average of three years of annual averages (based on quarterly averages) is not to exceed this level.

⁽e) The three-year average of the 99th percentile for each year is not to exceed this level.

The three-year average of the 98th percentile for each year is not to exceed this level.

The TSP standard was replaced by the PM_{10} standard on July 1, 1987. TSP is now a State standard only and was temporarily suspended from 30 August 1993 to 30 October 1995 by the AQCC.

Colorado Water Quality Control Commission Standards for Radioactive Materials at and around RFETS

	SEGMENT 2 Standley Lake	SEGMENT 3 Great Western Reservoir	SEGMENTS 4a and 5 Woman Creek	SEGMENTS 4a, 4b and 5 Walnut Creek
Gross Alpha (pCi/L)	6	5	7	11
Gross Beta (pCi/L)	9	12	8	19
Plutonium (pCi/L)	0.03	0.03	0.15*	0.15 *
Americium (pCi/L)	0.03	0.03	0.15*	0.15 *
Tritium (pCi/L)	500	500	500	500
Uranium (pCi/L)	3	4	11	10

^{*} The modification is a narrative standard requiring that the concentration of americium and plutonium be consistent with attaining the numerical water quality standard in Segment 4(b) of Big Dry Creek

Standards for Inorganics and Metals

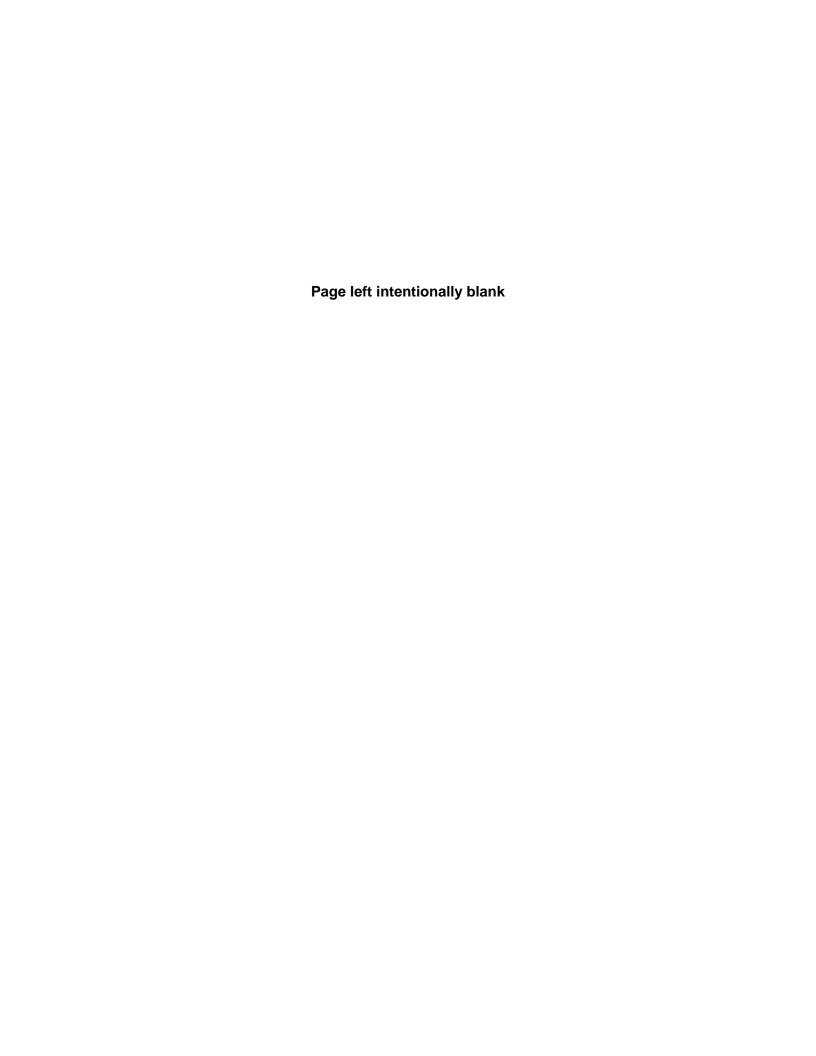
	SEGMENTS 4a & 4b	SEGMENT 5
Inorganic/Metal	Standards (μg/L)	Action Levels (μg/L)
Ammonia	*	*
Beryllium, total recoverable	4	4
Cadmium, dissolved **	1.5	1.5
Cadmium, Total recoverable	5	-
Chloride	250,000	250,000
Chromium (VI), dissolved**	11	11
Copper, dissolved**	16	16
Iron, dissolved	300	-
Iron, total recoverable	1000	1000
Manganese, dissolved**	50	1000
Manganese, total recoverable	200	-
Nitrate	10,000	100,000 ™
Nitrite	500	4500 ™
Phosphate, ortho	-	-
Phosphate, total	-	-
Selenium, dissolved**	5	5
Silver, dissolved**	0.59	0.59
Sulfate	250,000	250,000
Sulfide	2	2

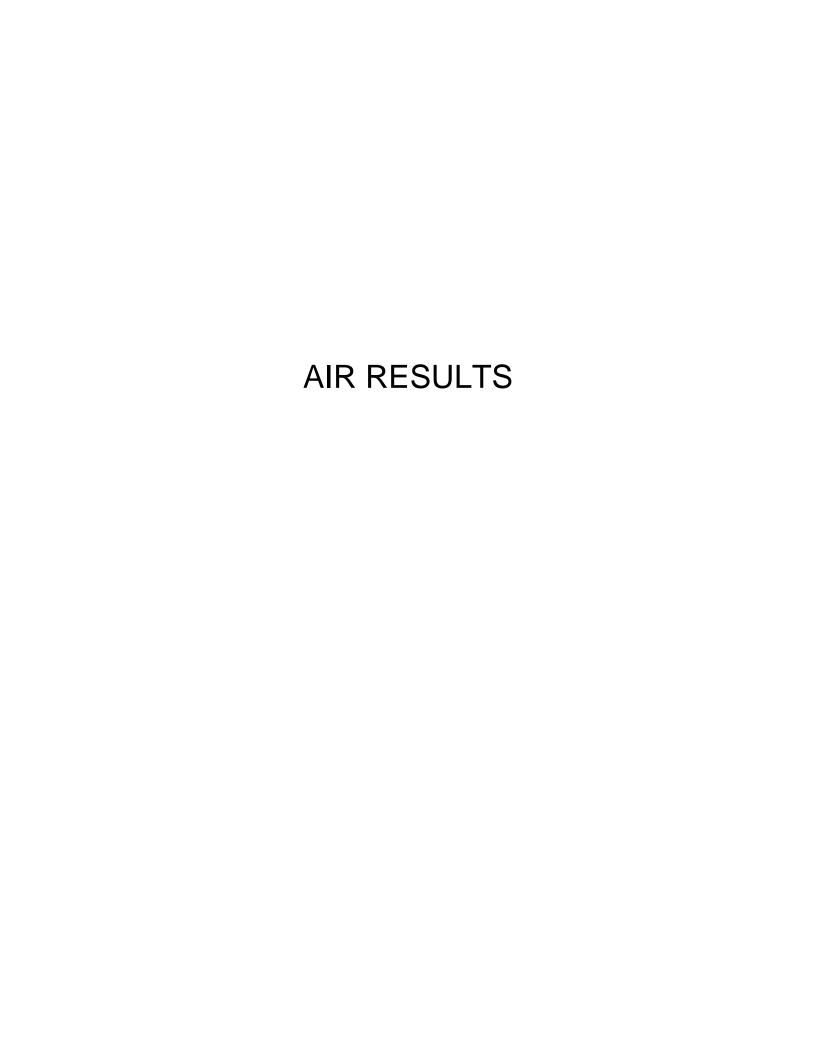
^{*}There is no unionized ammonia standard for Segment 5 or Segment 4b. A standard of 0.1 mg/L applies to Segment 4a.

^{**}The standards for these metals were calculated using a formula based on hardness. A hardness value of 143 mg/L was used because this is the average hardness found in these waters.

TM - Temporary Modification

EPA Method 524.2 for VOCs in Surface Waters


VOCs	MCL (μg/L)	MDL (μg/L)	PQL (μg/L)	VOCs	MCL (μg/L)	MDL (μg/L)	PQL (μg/L)
1,1,2-Tetrachloroethane	none	0.5	0.5	Chloroform	5.7	0.5	0.5
1,1,1-Trichloroethane	200	0.5	0.5	Chloromethane	none	0.5	0.5
1,1,2,2-Tetrachloroethan	0.18	0.5	0.5	Dibromochloromethane	none	0.5	0.5
1,1,2-Trichloroethane	3	0.5	0.5	Dibromomethane	none	0.5	0.5
1,1-Dichlorethane	none	0.5	0.5	Dichlorodifuoromethane	none	0.5	0.5
1,1-Dichlorethene	7	0.5	0.5	Ethylbenzene	700	0.5	0.5
1,1-Dichloropropene	none	0.5	0.5	Fluorotrichloromethane	none	0.5	0.5
1,2,3-Trichlorobenzene	none	0.5	0.5	Hexachlorobutadiene	14	0.5	0.5
1,2,3-Trichloropropane	none	0.5	0.5	Isopropylbenzene	none	0.5	0.5
1,2,4-Trichlorobenzene	70	0.5	0.5	Naphthalene	28	0.5	0.5
1,2,4-Trimethylbenzene	none	0.5	0.5	Propylbenzene	none	0.5	0.5
1,2-Dichlorobenzene	600	0.5	0.5	Styrene	100	0.5	0.5
1,2-Dichloroethane	0.38	0.5	0.5	Tetrachloroethene	5	0.5	0.5
1,2-Dichloropropane	0.52	0.5	0.5	Toluene	1000	0.5	0.5
1,3,5-Trimethylbenzene	none	0.5	0.5	Trichloroethene	5	0.5	0.5
1,3-Dichlorobenzene	600	0.5	0.5	Vinyl chloride	2	0.5	0.5
1,3-Dichloropropane	none	0.5	0.5	Xylene, (total)	10,000	0.5	0.5
1,4-Dichlorobenzene	75	0.5	0.5	cis-1,2-Dichlroethene	70	0.5	0.5
2,2-Dichloropropane	none	0.5	0.5	cis-1,3-Dichloropropene	none	0.5	0.5
2-Chlorotoluene	none	0.5	0.5	n-Butylbenzene	none	0.5	0.5
4-Chlorotoluene	none	0.5	0.5	sec-Butylbenzene	none	0.5	0.5
4-Isopropyltoluene	none	0.5	0.5	tert-Butylbenzene	none	0.5	0.5
Benzene	1.2	0.5	0.5	trans-1,2-Dichloroethene	100	0.5	0.5
Bromobenzene	none	0.5	0.5	trans-1,3-Dichloroethene	none	0.5	0.5
Chloroethane	none	0.5	0.5	Methylene Chloride	4.7	0.5	0.5
Bromodichloromethane	0.56	0.5	0.5				
Bromoform	4.3	0.5	0.5				
Carbon Tetrachloride	0.27	0.5	0.5				
Clorobenzene	100	0.5	0.5				
Chloroethane	none	0.5	0.5				
1,1-Dichloropropene	none	0.5	0.5				


EPA Method 515.1 for Chlorinated Acid Herbicides

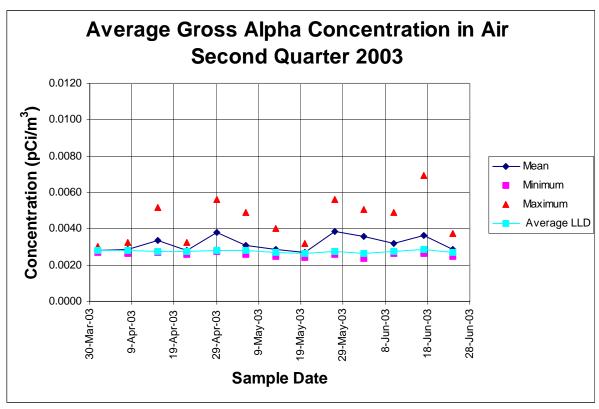
Contaminant	MDL (µg/L)	PQL (µg/L)	Contaminant	MDL (µg/L)	PQL (µg/L)
Acifluorfen	0.3	3	3,5-Dichlorobenzoic acid	0.8	8
Bentazon	0.4	4	Dichlorprop	0.3	3
Cloramben	1.2	12	Dinoseb	0.6	6
2,4-D	0.3	3	4-Nitrophenol	0.8	8
Dalapon	0.7	7	Pentachlorophenol	0.6	6
2,4-DB	0.5	5	Picloram	0.5	5
DCPA	0.4	4	2,4,5-T	0.3	3
Dicamba	0.3	3	2,4,5-TP	0.3	3

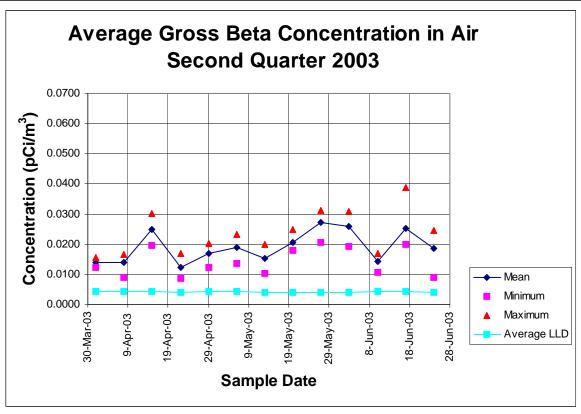
EPA Method 525.2 for SVOCs in Surface Waters

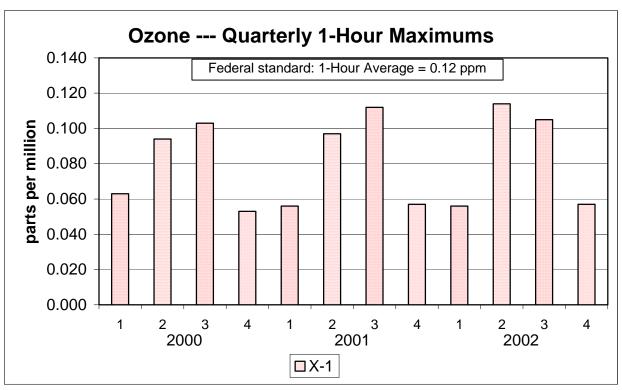
SVOCs	MCL (µg/L)	MDL (µg/L)	PQL (µg/L)	SVOCs	MCL (µg/L)	MDL (µg/L)	PQL (µg/L)
1,2,4-Ttichlorobenzene	none	5	10	Benzo(a)anthracene	none	5	10
1,2-Dichlorobenzene	none	5	10	Benzo(a)anthracene	0.2	5	10
1,3-Dichlorobenzene	none	5	10	Benzo(b)fluoranthene	none	5	10
1,4-Dichlorobenzene	none	5	10	Benzo(ghi)perylene	none	5	10
2,4,5-Trichlorophenol	none	5	10	Benzo(k)fluoranthene	none	5	10
2,4,6-Trichlorophenol	none	5	10	Butyl benzyl phthalate	none	5	10
2,4-Dichlorophenol	none	5	10	Chrysene	none	5	10
2,4-Dimethylphenol	none	5	10	Di-n-butylphthalate	none	5	10
2,4-Dinitrophenol	none	25	10	Di-n-octylphthalate	none	5	10
2,4-Dinitroroluene	none	5	10	Dibenz(a,h)anthracene	none	5	10
2-Chloronaphthalene	none	5	10	Dibenzofuran	none	5	10
2-Methyl-4,6-dinitrophenol	none	25	50	Diethyl phthalate	none	5	10
2-Chlorophenol	none	5	10	Dimethyl phthalate	none	5	10
2-Methylnaphthalene	none	5	10	Hexachlorobutadine	none	5	10
2-Methylphenol	none	5	10	Hexachlorocyclopentadiene	50	5	10
2-Nitroaniline	none	5	10	Hexachloroethane	none	5	10
2-Nitrophenol	none	5	10	Indeno(1,2,3-cd)pyrene	none	5	10
3,3-Dichlorobenzidine	none	5	10	Isophorone	none	5	10
3-Nitroaniline	none	25	50	N-Nitosodi-n-propylamine	none	5	10
4-Bromophenylphenylether	none	5	10	N-Nitrosodiphenylamine	none	5	10
4-Chloro-3-methylphenol	none	10	20	Naphthalene	none	5	10
4-Chloroaniline	none	10	20	Nitrobenzene	none	5	10
4-Chlorophenylphenylether	none	5	10	Pentachlorophenol	1	25	10
4-Methylphenol	none	5	10	Phenanthrene	none	5	10
4-Nitoraniline	none	25	50	Phenol	none	5	10
4-Nitrophenol	none	25	50	Pyrene	none	5	10
Acenaphthene	none	5	10	bis(2-Chloroethoxy)methane	none	5	10
Acenaphthylene	none	5	10	bis(2-Chloroethyl) ether	none	5	10
Anthracene	none	5	10	bis(2-Ethylhexyl) phthalate	6	5	10

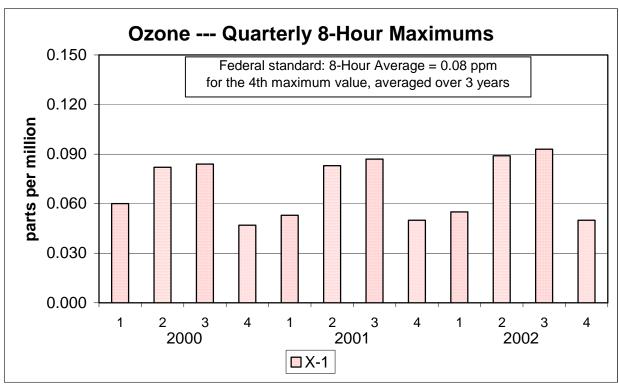
CDPHE AIR MONITORING SECOND QUARTER 2003

Laboratory and Radiation Services Division


1. General Discussion


Table A contains the complete gross alpha/gross beta results for the 2nd quarter 2003.


Table B-1 contains plutonium, americium and isotopic uranium results for the 4th quarter 2002 for all sample locations. All of these data show no obvious anomalies, compared to historical data.


2. Graphical Presentation

Graphs of pertinent and abnormal data from air monitoring are presented in this section.

Environmental Surveillance Report

TABLE A: GROSS ALPHA AND GROSS BETA RADIOACTIVITY CONCENTRATIONS IN SUSPENDED AIRBORNE PARTICULATE MATERIAL

SECOND QUARTER 2003

			Gr	oss Alph	na	Gross Beta		
Sampler Type	Number of Samples		Mean pCi/m³	Max pCi/m³	Min pCi/m³	Mean pCi/m³	Max pCi/m³	Min pCi/m³
TSP / Continuous	12	<	0.0023	0.0032	0.0013	0.0194	0.0287	0.0088
TSP / Continuous	13	<	0.0032	0.0056	0.0006	0.0213	0.0389	0.0125
TSP / Continuous	12	<	0.0027	0.0053	0.0006	0.0184	0.0307	0.0099
TSP / Continuous	13	<	0.0022	0.0044	0.0006	0.0176	0.0260	0.0113
TSP / Continuous	12	<	0.0029	0.0049	0.0015	0.0201	0.0291	0.0116
TSP / Continuous	13	<	0.0031	0.0069	0.0006	0.0223	0.0311	0.0157
TSP / Continuous	13	<	0.0016	0.0031	0.0001	0.0158	0.0233	0.0086
TSP / Continuous	13	<	0.0027	0.0050	0.0011	0.0185	0.0257	0.0127
TSP / Continuous	13	<	0.0035	0.0052	0.0017	0.0184	0.0238	0.0124
TSP / Continuous	12	<	0.0016	0.0027	0.0004	0.0182	0.0288	0.0091
TSP / Continuous	13	<	0.0025	0.0043	0.0010	0.0191	0.0296	0.0095
	TSP / Continuous	TSP / Continuous 12 TSP / Continuous 13 TSP / Continuous 12 TSP / Continuous 12 TSP / Continuous 12 TSP / Continuous 13 TSP / Continuous 13	TSP / Continuous 12	Sampler Type Number of Samples Mean pCi/m³ TSP / Continuous 12 0.0023 TSP / Continuous 13 0.0032 TSP / Continuous 12 0.0027 TSP / Continuous 12 0.0029 TSP / Continuous 13 0.0031 TSP / Continuous 13 0.0027 TSP / Continuous 13 0.0035 TSP / Continuous 13 0.0035 TSP / Continuous 13 0.0035 TSP / Continuous 12 0.0016	Sampler Type Number of Samples Mean pCi/m³ Max pCi/m³ TSP / Continuous 12 0.0023 0.0032 TSP / Continuous 13 0.0032 0.0056 TSP / Continuous 12 0.0027 0.0053 TSP / Continuous 13 0.0022 0.0044 TSP / Continuous 12 0.0029 0.0049 TSP / Continuous 13 0.0031 0.0069 TSP / Continuous 13 0.0027 0.0050 TSP / Continuous 13 0.0035 0.0052 TSP / Continuous 13 0.0035 0.0052 TSP / Continuous 12 0.0016 0.0027	Sampler Type Samples pCi/m³ pCi/m³ pCi/m³ TSP / Continuous 12 0.0023 0.0032 0.0013 TSP / Continuous 13 0.0032 0.0056 0.0006 TSP / Continuous 12 0.0027 0.0053 0.0006 TSP / Continuous 12 0.0029 0.0044 0.0006 TSP / Continuous 13 0.0031 0.0069 0.0006 TSP / Continuous 13 0.0027 0.0050 0.0011 TSP / Continuous 13 0.0027 0.0050 0.0011 TSP / Continuous 13 0.0035 0.0052 0.0017 TSP / Continuous 13 0.0035 0.0052 0.0017 TSP / Continuous 12 0.0016 0.0027 0.0004	Sampler Type Number of Samples Mean pCi/m³ Max pCi/m³ Min pCi/m³ Mean pCi/m³ TSP / Continuous 12 0.0023 0.0032 0.0013 0.0194 TSP / Continuous 13 0.0032 0.0056 0.0006 0.0213 TSP / Continuous 12 0.0027 0.0053 0.0006 0.0176 TSP / Continuous 12 0.0022 0.0044 0.0006 0.0176 TSP / Continuous 12 0.0029 0.0049 0.0015 0.0201 TSP / Continuous 13 0.0031 0.0069 0.0006 0.0223 TSP / Continuous 13 0.0016 0.0031 0.0001 0.0158 TSP / Continuous 13 0.0027 0.0050 0.0011 0.0185 TSP / Continuous 13 0.0035 0.0052 0.0017 0.0184 TSP / Continuous 13 0.0035 0.0052 0.0017 <t< td=""><td>Sampler Type Number of Samples Mean pCi/m³ Max pCi/m³ Min pCi/m³ Mean pCi/m³ Max pCi/m³ TSP / Continuous 12 < 0.0023</td> 0.0032 0.0013 0.0194 0.0287 TSP / Continuous 13 < 0.0032</t<>	Sampler Type Number of Samples Mean pCi/m³ Max pCi/m³ Min pCi/m³ Mean pCi/m³ Max pCi/m³ TSP / Continuous 12 < 0.0023

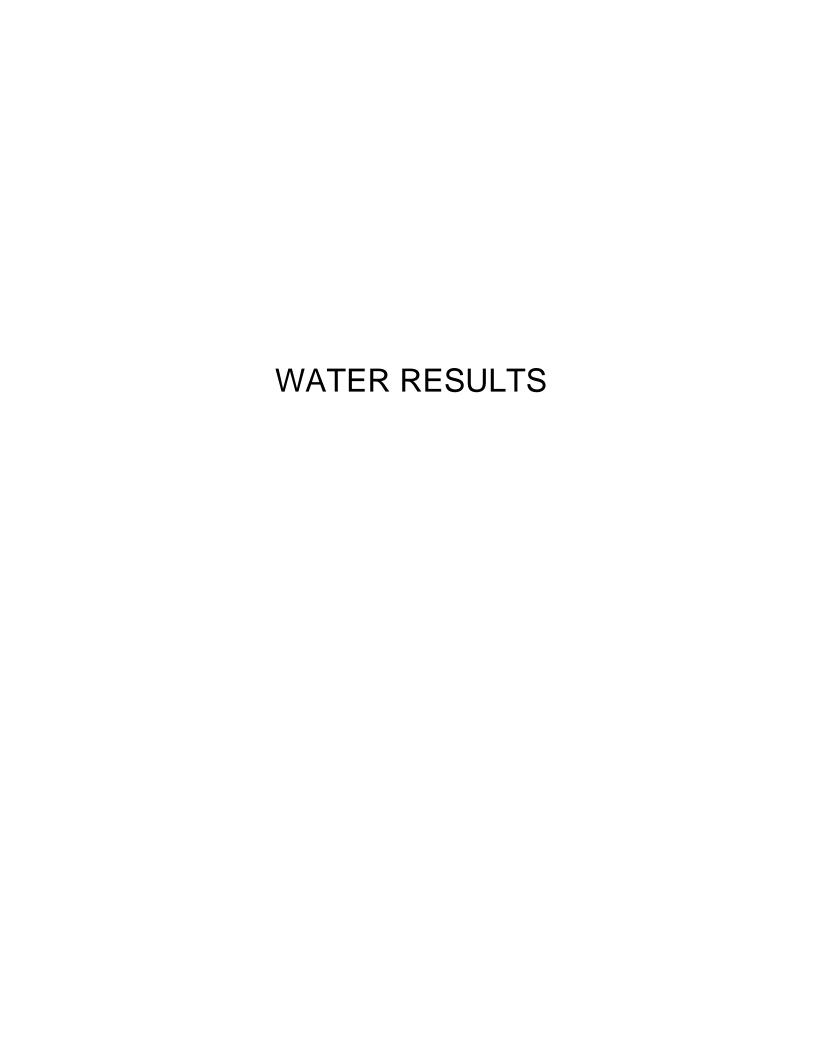
pCi/m³ = Picocuries per cubic meter

TSP = Total Suspended Particulates
PM10 = Particulate Material < 10 microns in diameter

Environmental Surveillance Report

TABLE B: ALPHA SPECTROMECTRIC ANALYSIS AND LONG-LIVED GROSS ALPHA RADIOACTIVITY CONCENTRATIONS IN SUSPENDED AIRBORNE PARTICULATE MATERIAL

FOURTH QUARTER 2002


								Mean
LOCATION	SAMPLER TYPE	239+240Pu pCi/M ³	²⁴¹ Am pCi/M ³	239+240Pu/ ²⁴¹ Am Ratio	234U pCi/M ³	²³⁵ U pCi/M ³	238U pCi/M ³	Gross Alpha pCi/M³
D-1	TSP/Continuou s	0.000012 <u>+</u> 0.000004	0.000004 <u>+</u> 0.000002	3.0 ± 1.8	0.000044	< 0.000006	0.000049	< 0.0043
D-3	TSP/Continuou s	0.000036 <u>+</u> 0.000006	0.000006 <u>+</u> 0.000002	6.0 <u>+</u> 2.2	0.000048	< 0.000005	0.000043	< 0.0034
X-1	TSP/Continuou s	0.000004 <u>+</u> 0.000002	0.000006 <u>+</u> 0.000003	0.7 <u>+</u> 0.5	< 0.000034	< 0.000007	0.000035	< 0.0030
X-2	TSP/Continuou s	< 0.000004	< 0.000003		0.000058	< 0.000006	0.000053	< 0.0038
X-3	TSP/Continuou s	< 0.000005	< 0.000006		0.000032	< 0.000004	0.000026	< 0.0038
X-4	TSP/Continuou s	0.000003 <u>+</u> 0.000002	< 0.000006		0.000032	< 0.000005	0.000027	< 0.0033
X-5	TSP/Continuou s	< 0.000003	< 0.000008		0.000058	< 0.000008	0.000056	< 0.0029

pCi/m³ = Picocuries per cubic meter

TSP = Total Suspended Particulates

Continuous = continuous sampling

CDPHE Surface Water Sampling

First Quarter 2003

Surface water sampling conducted by CDPHE for the 1st Quarter 2003, included:

- Wastewater Treatment Plant (WWTP) influent samples from Building 995 were collected on January 22, 2003, February 19, 2003, and March 26, 2003. Samples from the north and south parts of the sewer system were collected from Building 990 on March 26, 2003.
- Pre-discharge samples were collected from Ponds A-4 and B-5 on January 28, 2003, and from Pond B-5 on March 24, 2003.
- Nitrate and performance monitoring samples were taken from North and South Walnut Creek on March 5, 2003. VOC samples were taken at Ponds B1, B2N, B2S, B3-EFFL, and B4. Nitrate samples taken SW-118, SW-093, GS-13, A3, and GS-10. Chloride samples were taken at SW-093, GS-13, GS-10, and GS-9. Metals samples were taken at GS-9 and GS-13.

Table G provides a summary of the sample activity and parameters collected by CDPHE. Table H presents inorganic results and Table I presents VOC results.

Wastewater Treatment Plant Influent

WWTP Influent is monitored to evaluate routine and non-routine discharges to the WWTP. The CDPHE sampling supplements sampling conducted by the Site for WWTP operational evaluations and permit requirements. Only the CDPHE results are presented in this document. Reference Table G for monitoring specifics.

Copper, iron, silver, manganese, lithium, nickel, gross beta, and americium were detected in influent samples during this quarter. None of the detections exceeded the respective effluent limit or stream standard.

Pre-Discharge Monitoring

The Pre-Discharge sampling program is conducted for compliance evaluation of the Site's ability to discharge storm water and treated wastewater to the Big Dry Creek drainage. Pre-Discharge Monitoring is conducted at the terminal ponds on Walnut Creek (Pond A4 and Pond B5). Typically the Walnut Creek Ponds A4 and B5 are discharged 8-10 times per years and Woman Creek Pond C2 once a year. Sampling is conducted by both the Site and CDPHE. Only the CDPHE results are presented in this document. Reference Table G for monitoring specifics.

These quarters' pre-discharge samples from Pond B5 did not exhibit any concentrations above

established RFCA action levels or applicable WQCC stream standards.

These quarters' pre-discharge samples from Pond A4 did not exhibit any concentrations above established RFCA action levels or applicable WQCC stream standards

Point of Compliance - Surface Water Results

Point of Compliance monitoring is conducted below the terminal ponds and at the Site boundary along Indiana Street, on both Walnut and Woman Creek. Point of Compliance monitoring is conducted to evaluate Site compliance with WQCC stream standards and RFCA action levels, as appropriate. Point of Compliance monitoring activities are shared between CDPHE and the Site. Only the CDPHE monitoring results are presented in this document. Reference Table G for monitoring specifics. Samples did not exhibit any concentrations above established AFCA action levels or applicable WQCC stream standards.

Nutrient Sampling - North Walnut Creek

This *Ad Hoc* program conducted by CDPHE monitors nutrient concentrations related to nitrate and ammonia in the North and South Walnut Creek drainages as a result of Sewage Treatment Plant Operations and Solar Pond Groundwater Plume. The nitrate profile in the Walnut Creek drainages exhibits a pattern of elevated levels in excess of the underlying standard, since the time the French drain and active treatment system for the solar pond area was dismantled and discontinued, and the installation of the passive solar pond plume passive treatment project. Historically the highest exceedences are at GS-13, which more represent the full impact of the solar pond nitrate plume into North Walnut Creek.

These quarters' nitrate results ranged from <0.7 mg/L to 4.1 mg/L. The highest result was from the sample collected above Pond A-3. All results were less than the temporary modification of 100 mg/L. The normal Colorado standard for nitrate is 10 mg/L.

These quarters' total ammonia results ranged from 0.05 mg/L to 1.6 mg/L. Calculating for unionized ammonia exhibited concentrations ranging from 0.0002 to 0.0122 mg/L, compared against the conservative unionized standard of 0.1 mg/L (segment 4a stream standard), no samples exceed the stream standard.

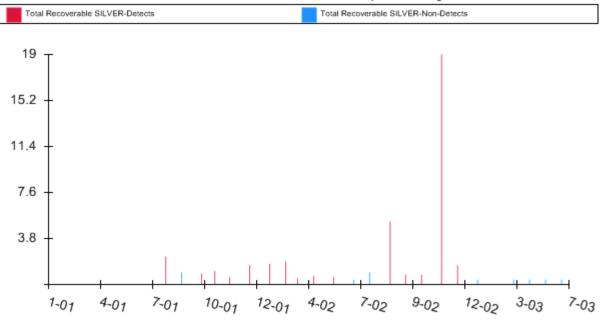
Performance Monitoring - Mound/East Trench Plume

The Mound and East Trenches groundwater contaminant plumes contain volatile organic compounds (VOCs) and select metals. Groundwater collection and treatment systems are in place and appear to be effective. However, it is possible that some contaminated groundwater either was down gradient of the collection systems before installation, or that some groundwater may be by-passing the collection trenches. There is no in-stream monitoring specified in the Decision Documents for these systems that can either verify or disprove this. In order to ensure that stream standards are being attained, monitoring for VOCs and selected metals was commenced during second quarter 2002 in South Walnut Creek in the immediate vicinity of where the groundwater contamination plumes may be intersecting the stream.

Trichloroethylene and cis1,2dicloroethylene were found in Pond B2, at concentrations below state surface water standards.

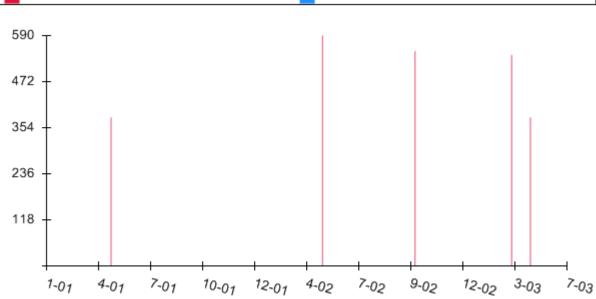
Performance Monitoring – Solar Pond Plume

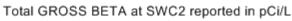
The Solar Ponds groundwater contaminant plume contains high levels of nitrates and uranium, and lower concentrations of several other metals. Groundwater collection and treatment systems have been installed, and the treatment appears to be effective. However, it is possible that some contaminated groundwater either was already down gradient of the collection system before it was installed, or, that some groundwater may be bypassing the collection trench.

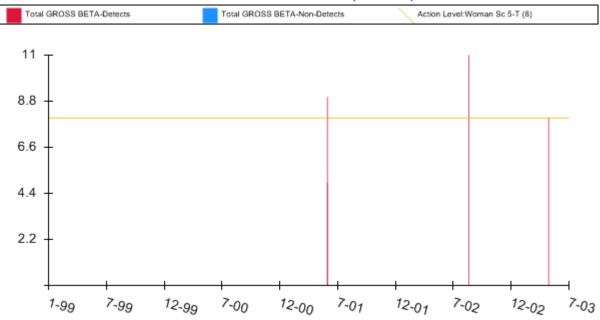

While the Site monitors in-stream uranium concentrations, CDPHE will perform in-stream monitoring for metals. This data will be used in order to ensure that stream standards are being attained. It should be noted that both the Site and CDPHE monitor nitrate concentrations at this location, and the CDPHE nitrate monitoring is described in the ad-hoc section of this ESR.

No exceedances were found.

.




Total Recoverable SILVER at INFL reported in ug/L



CHLORIDE-Detects

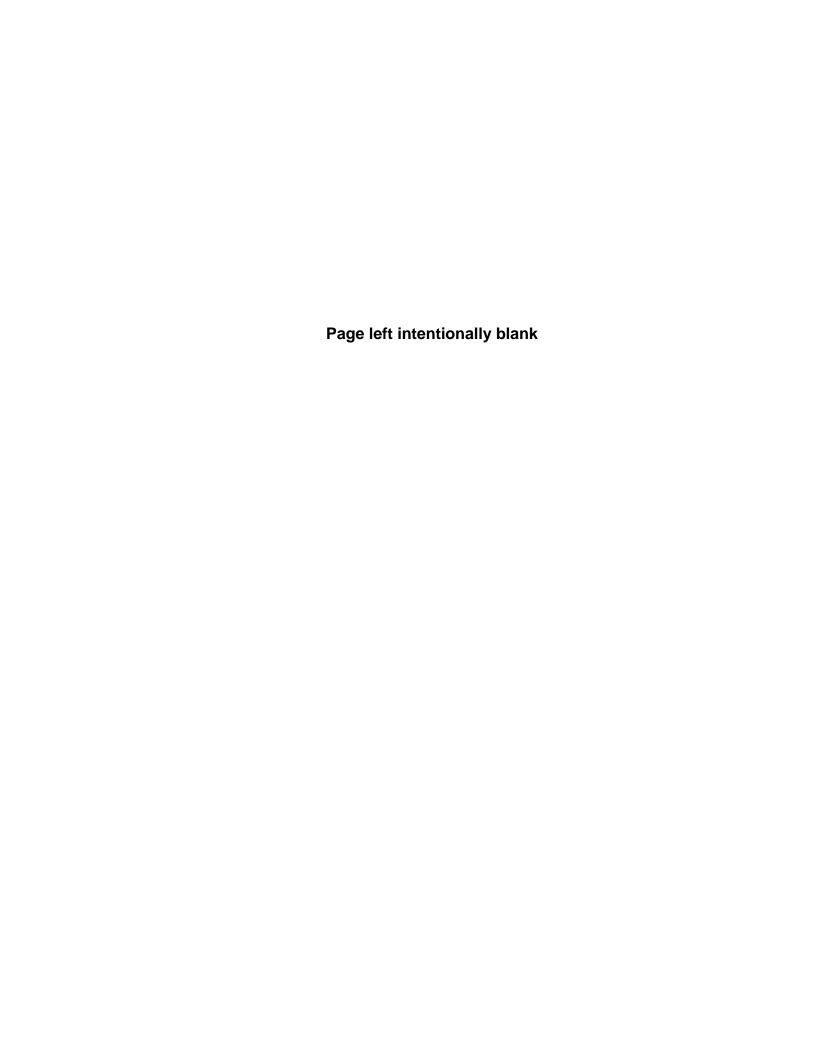
				TABL	E G – C	DPHE SI	JRFACE	WATER I	MONITOR	ING PR	OGRAM				
Sampling Fr Location	equencie ns & Para		Pre Dis	charge		ent Plant luent	Performanc	e Monitoring	Ad Hoc Program	Stream Se	egment 4, PO	C Monitorin	ıg, Non-PO	C Monitorino	j at Indiana
Parameter or Method	Method	Total # Analyses Per Year All Sites	Pond A4 or Pond B5		Following Equalizati on Basin	: Bldg 990 N. & S. Interceptors Prior to Equalizatio n Basin	Plume (footnote a)	Plume	Nitrate Study 8 Stations (footnote b)	(foo	ntnote c) No Pond Release		Release	Events - No Pond Release ^d	
			SWA4 or SWB5	SWC2	INFL	990 INFL_N 990 INFL_S	SWB2, SWB3, GS09	GS13	various	SW114 (GS03) Walnut Ck	SW001 (GS01) Woman Ck	SW114 (GS03) Walnut Ck	SW001 (GS01) Woman Ck	SW114 (GS03) Walnut Ck	SW001 (GS01) Woman Ck
Field pH		na			ature Will be	Collected for	All Samples								
Field Temp, C		na	>>>>>> Field pH ar	nd Temper	ature Will be	Collected for	All Samples								
Field DO		na	10/yr ¹	1/yr ¹											
RADS - Total	/nfiltoro	4/ DIIGH													
Americium -	TRU	11	10/yr ¹	1/vr ¹											
241	SPEC		10/31												
Plutonium - 239/240	TRU SPEC	11	10/yr ¹	1/yr ¹											
Gross Alpha	900.0	11	10/yr ¹	1/yr ¹											
Gross Beta	900.0	11	10/yr ¹	1/yr ¹											
RADS - Total (unfiltered)															
Americium - 241	TRUSP EC	20			Monthly ²	Quarterly ¹									
Plutonium - 239/240	TRUSP EC	20			Monthly ²	Quarterly ¹									
Gross Alpha	900.0	20			Monthly ²	Quarterly ¹									
Gross Beta Uranium, Fluorometric	900.0	20 25	Quarterly ¹	1/yr ¹	Monthly ² Monthly ²	Quarterly ¹ Quarterly ¹									
Metals - Diss (filtered)															
Ag	200.8	22 - 26	Quarterly ¹				Quarterly ¹	Quarterly ¹		Quarterly ¹	1/yr ¹		2 / yr ¹	2 / yr ¹	2 / yr ¹
Cu	200.8	22 - 26	Quarterly ¹	1/yr ¹			Quarterly ¹	Quarterly ¹		Quarterly ¹	1/yr1		2 / yr ¹		2 / yr ¹
Mn Ni	200.7 245.1	22 - 26 22 - 26	Quarterly ¹ Quarterly ¹	1/yr ¹ 1/yr ¹			Quarterly ¹ Quarterly ¹	Quarterly ¹ Quarterly ¹		Quarterly ¹ Quarterly ¹	1/yr ¹ 1/yr ¹		2 / yr ¹ 2 / yr ¹		2 / yr ¹ 2 / yr ¹
Se	200.8	22 - 26	Quarterly ¹	1/yr			Quarterly ¹	Quarterly ¹		Quarterly Quarterly	1/yr ¹		2 / yr ¹		2 / yr ¹
-	200.0	22 20	Guartony	., yı			Quartoriy	Quartony		Quartoriy	., y.	- / y'	- / y:	- / y'	- / y:

Metals - Total Recoverable	1 1]	ĺ			
metals rotal recoverable								

				TABL	E G – C	DPHE SU	JRFACE	WATER I	MONITOR	ING PRO	OGRAM					
Sampling Fre Location	equencies ns & Para		Pre Dis	charge		ent Plant luent	Performance	e Monitoring	Ad Hoc Program	Stream Se	gment 4, PO	C Monitorin	ng, Non-PO	C Monitoring	g at Indiana	
Parameter or Method	Method	Total # Analyses Per Year All Sites	Pond A4 or Pond B5		on Basin	n Basin	Plume (footnote a)	Plume	Nitrate Study 8 Stations (footnote b)	ons (footnote c)		Stations (footnote c) No Pond Rele		Release	elease Events - No Release	
			SWA4 or SWB5	SWC2	INFL	990 INFL_N 990 INFL_S		GS13	various	SW114 (GS03) Walnut Ck	SW001 (GS01) Woman Ck	SW114 (GS03) Walnut Ck	SW001 (GS01) Woman Ck	SW114 (GS03) Walnut Ck	SW001 (GS01) Woman Ck	
(unfiltered)																
As	200.8	42 - 46		1/yr ¹	Monthly ²	Quarterly ¹	Quarterly ¹	Quarterly ¹					2 / yr ¹		2 / yr ¹	
Be	200.8	42 - 46		1/yr ¹	· · · · · · · · · · · · · · · · · · ·	,	,	Quarterly ¹		,	.,		2 / yr ¹		2 / yr ¹	
Cd	200.8	42 - 46	Quarterly ¹	1/yr ¹	· · · · · · · · · · · · · · · · · · ·	Quarterly ¹	Quarterly ¹	Quarterly ¹		,	,		2 / yr¹		2 / yr ¹	
Cr(VI) dslvd??	200.8	42 - 46	Quarterly	1/yr ¹	Monthly ²	Quarterly	Quarterly ¹	Quarterly		Quarterly ¹	1/yr¹		2 / yr ¹		2 / yr ¹	
Fe	200.7	42 - 46	Quarterly ¹	1/yr1	Monthly ²	Quarterly ¹	Quarterly ¹	Quarterly ¹		Quarterly ¹	1/yr ¹	2 / yr¹	2 / yr¹	2 / yr¹	2 / yr ¹	
Lithium	200.8	42 - 46	Quarterly ¹	1/yr¹	Monthly ²	Quarterly ¹		Quarterly ¹		Quarterly ¹			2 / yr ¹	2 / yr ¹	2 / yr ¹	
Thallium	200.8	42 - 46	Quarterly ¹	1/yr ¹	Monthly ²	Quarterly ¹	Quarterly ¹	Quarterly ¹		Quarterly ¹	1/yr ¹	2 / yr ¹	2 / yr	2 / yr	2 / yr	
Special TR Modiscontinued		iltered) For	STP Influer	nt - until d	omestic sev	wage contrib	utions are									
Ag	200.8	20			Monthly ²	Quarterly ¹										
Cu	200.7	20			Monthly ²	Quarterly ¹									-	
Mn dslvd??	200.7	20			•	Quarterly ¹										
Ni	245.1	20			Monthly ²	Quarterly ¹										
Se	200.8	20			Monthly ²	Quarterly ¹										
Hardness as CaCO3	130.2	22-26	Quarterly ¹	1/yr ¹			Quarterly ¹	Quarterly ¹		Quarterly ¹	1/yr¹	2 / yr¹	2 / yr ¹	2 / yr¹	2 / yr ¹	
Organic Analyses																
VOCs	502.2	8					Semi- Annual ¹									

	TABLE G – CDPHE SURFACE WATER MONITORING PROGRAM															
Sampling Fre Location			Pre Disc	harge		ent Plant luent	Performance	e Monitoring	Ad Hoc Program	Stream Se	gment 4, PC	C Monitoring, Non-POC Monitoring at Indiana				
Parameter or Method	meter or Method Total # Analyse Per Yea All Site		Pond A4 or Pond B5	Pond C2	Bldg 995 Following Equalizati on Basin	Interceptors Prior to	Plume	Solar Pond Plume	Nitrate Study 8 Stations (footnote b)			•	er Flow - No Release	Events -	ng Storm No Pond ase ^d	
			SWA4 or SWB5	SWC2	INFL	990 INFL_N 990 INFL_S		GS13	various	SW114 (GS03) Walnut Ck	SW001 (GS01) Woman Ck	SW114 (GS03) Walnut Ck	SW001 (GS01) Woman Ck	SW114 (GS03) Walnut Ck	SW001 (GS01) Woman Ck	
Nutrients/Inor	ganics															
Ammonia as	350.2	52 - 56	10/yr ¹	1/yr ¹					Quarterly ¹	Quarterly ¹	1/yr ¹	2 / yr ¹	2 / yr ¹	2 / yr¹	2 / yr ¹	
Nitrite/Nitrate as N	353.2	52 - 56	10/yr ¹	1/yr ¹					Quarterly ¹	Quarterly ¹	1/yr ¹	2 / yr ¹	2 / yr ¹	2 / yr ¹	2 / yr ¹	
Phosphate, T Orthophosph ate	365.1 365.2		10/yr ¹ 10/yr ¹	1/yr ¹ 1/yr ¹							1/yr ¹ 1/yr ¹	2 / yr ¹ 2 / yr ¹	2 / yr ¹ 2 / yr ¹	2 / yr ¹ 2 / yr ¹	2 / yr ¹ 2 / yr ¹	
Solids, total suspended Chloride	160.1 325.3	40 - 44 5	10/yr ¹ Quarterly ¹		Monthly ¹	Quarterly ¹				Quarterly ¹	1/yr ¹	2 / yr ¹	2 / yr ¹	2 / yr ¹	2 / yr ¹	

^a Metals and hardness monitoring will be conducted at GS09, below Pond B4. VOC monitoring will be conducted in Ponds B-1 and B-2 from the surface, and at the outfall from Ponds B-3 and below B-4 at GS09. VOC monitoring will be conducted in late fall
b Nitrate Special Study Stations: SW118, SW093, GS13, Pond A-4, GS10, EFFL, Pond B-5, SW114. Station EFFL


Sample

is the outfall from the STP.

^c Metals monitoring at Indiana Street "During Pond Releases", will be conducted for those pond discharges where metals monitoring was done for the Pre-Discharge sample.

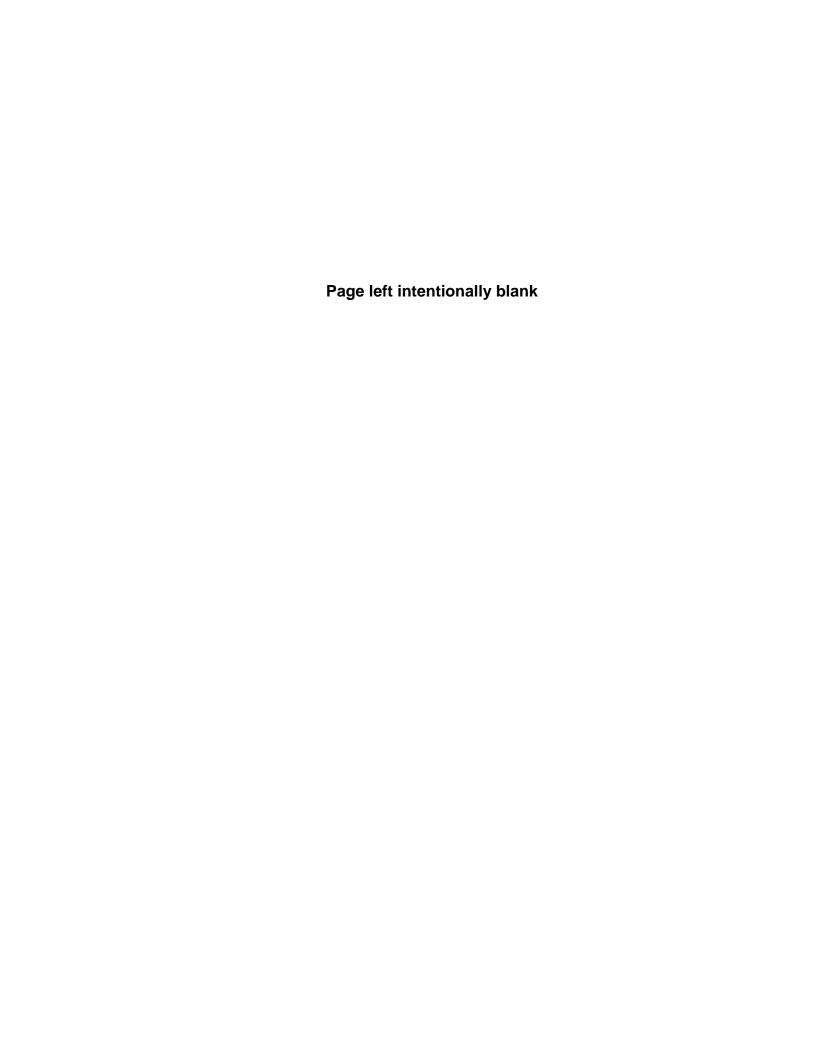
d "Storm Event / No Pond Release" related monitoring may be conducted by the Site as part of it's Buffer Zone Hydrologic Monitoring Program. If not, the State will attempt to schedule grab sample collection.

Grab

Location	Sample Date Parameter	Analy	ysis				Units	*Analysis* 1st 2nd
Influent to Sewaş	ge Treatment Plant (INF	L)						
	4/23/2003							
	рН		7.46			SU		
	Temperature		15.9			°C		
	Americium ²⁴¹		0.009	+/-	0.004	pCi/L		
	Gross Alpha	<	8			pCi/L		
	Gross Beta		25	+/-	8	pCi/L		
	Plutonium ²³⁹⁺²⁴⁰		0.010	+/-	0.006	pCi/L		
	Uranium, Total	<	3			ug/L		
	Arsenic, Total Re	coverable <	1			ug/L		
	Beryllium, Total R		1			ug/L		
	Cadmium, Total F		0.3			ug/L		
	Chromium, Total		0.3			ug/L		
	Copper, Total Re		25			ug/L		
	Iron, Total Recov		210			ug/L		
	Lithium, Total Red		11 40			ug/L		
	Manganese, Tota Nickel, Total Rec		40 150			ug/L ug/L		
	Selenium, Total R		1.2			ug/L		
	Silver, Total Reco		0.4			ug/L		
	Thallium, Total Ro		1			ug/L		
	Total Suspended		36			mg/L		
	5/21/2003							
	pH		7.52			SU		
	·					°C		
	Temperature		17.9			_		
	Americium ²⁴¹	<	0.017			pCi/L		
	Gross Alpha Gross Beta	<	8 26	+/-	0	pCi/L		
	Plutonium ²³⁹⁺²⁴⁰	<	0.019	+/-	0	pCi/L pCi/L		
	Uranium, Total	<	3			ug/L		
	Arsenic, Total Re		1			ug/L		
	Beryllium, Total R		1			ug/L		
	Cadmium, Total F		0.3			ug/L		
	Chromium, Total		5			ug/L		
	Copper, Total Re	coverable	13			ug/L		
	Iron, Total Recov	erable	300			ug/L		
	Lithium, Total Red	coverable	8			ug/L		
	Manganese, Tota		58			ug/L		
	Nickel, Total Rec		30			ug/L		
	Selenium, Total R		1.2			ug/L		
	Silver, Total Reco	verable <	0.4			ug/L		
	Sodium		170,000			ug/L		
	Thallium, Total Ro		1			ug/L		
	Total Suspended	Solids	130			mg/L		
	6/18/2003							
	Americium ²⁴¹	<	0.011			pCi/L		
	Gross Alpha	<	5			pCi/L		
	Gross Beta		18	+/-	5	pCi/L		
	Plutonium ²³⁹⁺²⁴⁰	<	0.010			pCi/L		
	Uranium, Total	<	3			ug/L		

	ample Pate Parameter	Analysis	*Analysis* Units 1st 2nd
	Arsenic, Total Recoverable Beryllium, Total Recoverable Cadmium, Total Recoverable Chromium, Total Recoverable Copper, Total Recoverable Iron, Total Recoverable Lithium, Total Recoverable Manganese, Total Recoverable Nickel, Total Recoverable Selenium, Total Recoverable Silver, Total Recoverable Thallium, Total Recoverable Total Suspended Solids wage Treatment Plant (INFL) 8/2003	< 1 < 1 < 0.3 < 3 10 300 68 50 < 30 1.5 < 0.4 < 1 15	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L
0/11	Dissolved Oxygen pH Temperature Americium ²⁴¹ Gross Alpha Gross Beta Plutonium ²³⁹⁺²⁴⁰ Uranium, Total Arsenic, Total Recoverable Beryllium, Total Recoverable Cadmium, Total Recoverable Chromium, Total Recoverable Chromium, Total Recoverable Iron, Total Recoverable Lithium, Total Recoverable Lithium, Total Recoverable Selenium, Total Recoverable Selenium, Total Recoverable Silver, Total Recoverable Thallium, Total Recoverable Thallium, Total Recoverable Total Suspended Solids	3.40 8.26 18.8 < 0.013 < 4 26	mg/L SU C C pCi/L pCi/L pCi/L pCi/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug
Pre-Discharge Moni Pond A4 4/23	toring 8/2003 Total Dissolved Solids Dissolved Oxygen pH Temperature Americium ²⁴¹ Gross Alpha Gross Beta Plutonium ²³⁹⁺²⁴⁰	830 9.69 8.29 15.3 < 0.029 < 5 10 +/- 4 0.006 +/- 0.004	mg/L mg/L SU °C pCi/L pCi/L pCi/L pCi/L

Location	Sample Date	e Parameter	Analy	cic			Units	*Analysis* 1st 2nd
Location	Dute	Uranium, Total	rinary	4			ug/L	15t 21tu
		Oranium, rotai		4			ug/L	
		Arsenic, Total Recoverable	<	1			ug/L	
		Beryllium, Total Recoverable	<	1			ug/L	
		Cadmium, Total Recoverable	<	0.3			ug/L	
		Chromium, Total Recoverable	<	3			ug/L	
		Copper, Dissolved	<	5			ug/L	
		Iron, Total Recoverable	`	19			ug/L	
		Lithium, Total Recoverable		17			ug/L	
		Manganese, Dissolved		4			ug/L	
		Nickel, Dissolved	<	30			ug/L	
		Selenium, Dissolved		2.5			ug/L	
		Silver, Dissolved	<	0.4			ug/L	
		Thallium, Total Recoverable	<	1			ug/L	
		Ammonia as N		0.04			mg/L	
		Chloride		380			mg/L	
		Hardness as CaCO3		220			mg/L	
		Nitrate/Nitrite		5.6			mg/L	
		Orthophosphate		0.02			mg/L	
		Phosphate, Total		0.013			mg/L	
		Total Suspended Solids	<	10			mg/L	
		Unionized Ammonia		0.0021			mg/L	
Pond B5								
	4/21/200	2						
	4/21/200			0.06			CII	
		pH		9.86			SU	
		Temperature		15.0			°C	
		Americium ²⁴¹	<	0.007			pCi/L	
		Gross Alpha	<	5			pCi/L	
		Gross Beta		14	+/-	4	pCi/L	
		Plutonium ²³⁹⁺²⁴⁰	<	0.009			pCi/L	
		Uranium, Total	<	3			ug/L	
		Arsenic, Total Recoverable		1			ug/L	
		Beryllium, Total Recoverable	<	1			ug/L	
		Cadmium, Total Recoverable	<	0.3			ug/L	
		Chromium, Total Recoverable	<	3			ug/L	
		Copper, Dissolved	<	5			ug/L	
		Iron, Total Recoverable		35			ug/L	
		Lithium, Total Recoverable		8			ug/L	
		Manganese, Dissolved		37			ug/L	
		Nickel, Dissolved	<	30			ug/L	
		Selenium, Dissolved	<	1.0			ug/L	
		Silver, Dissolved	<	0.4			ug/L	
		Thallium, Dissolved	<	1			ug/L	
		Ammonia as N		0.04			mg/L	
		Chloride		330			mg/L	
		Hardness as CaCO3		210			mg/L	
		Nitrate/Nitrite		0.58			mg/L	
		Orthophosphate		0.4			mg/L	
		Phosphate, Total		0.56			mg/L	
		Total Suspended Solids		10			mg/L	


Lagation	Sample	e Parameter	Anale	.a . a				I Inita	*Analysis* 1st 2nd
Location	Date	Farameter	Analy					Units	1St 2Hu
		Unionized Ammonia		0.0266			mg/L		
	6/16/200	3							
		Dissolved Oxygen		10.48			mg/L		
		рН		9.34			SU		
		Temperature		21.1			°C		
		Americium ²⁴¹	<	0.011			pCi/L		
		Gross Alpha	<	5			pCi/L		
		Gross Beta		9	+/-	4	pCi/L		
		Plutonium ²³⁹⁺²⁴⁰	<	0.007	• •	•	pCi/L		
		Uranium, Total	<	3			ug/L		
		Arsenic, Total Recoverable		2			ug/L		
		Beryllium, Total Recoverable	<	1			ug/L		
		Cadmium, Total Recoverable	<	0.3			ug/L		
		Chromium, Total Recoverable	<	3			ug/L		
		Copper, Dissolved	<	5			ug/L		
		Iron, Total Recoverable		23			ug/L		
		Lithium, Total Recoverable		40			ug/L		
		Manganese, Dissolved		24			ug/L		
		Nickel, Dissolved	<	30			ug/L		
		Selenium, Dissolved		1.4			ug/L		
		Silver, Dissolved	<	0.4			ug/L		
		Thallium, Total Recoverable	<	1			ug/L		
		Ammonia as N	<	0.03			mg/L		
		Chloride		250			mg/L		
		Hardness as CaCO3		220			mg/L		
		Nitrate/Nitrite	<	0.3			mg/L		
		Orthophosphate		0.36			mg/L		
		Phosphate, Total		0.43			mg/L		
		Total Suspended Solids		10			mg/L		
		Unionized Ammonia	<	0.0145			mg/L		
Pond C2									
	4/28/200	3							
		Dissolved Oxygen		7.01			mg/L		
		рН		6.96			SU		
		Temperature		15.8			°C		
		Americium ²⁴¹	<	0.011			pCi/L		
		Gross Alpha	<	4			pCi/L		
		Gross Beta		8	+/-	4	pCi/L		
		Plutonium ²³⁹⁺²⁴⁰		0.021	+/-	0.007	pCi/L		
		Uranium, Total	<	3			ug/L		
		Arsenic, Total Recoverable	<	1			ug/L		
		Beryllium, Total Recoverable	<	1			ug/L		
		Cadmium, Total Recoverable	<	0.3			ug/L		
		Chromium, Total Recoverable	<	3			ug/L		
		Copper, Dissolved	<	5			ug/L		
		Iron, Total Recoverable	<	10			ug/L		
		Lithium, Total Recoverable		10			ug/L		

Location	Sample Date	e Parameter	Analy	vs i s	Units	*Analysis* 1st 2nd
		Mangapaga Diggalyad		4	ug/l	
		Manganese, Dissolved Nickel, Dissolved	<	4 30	ug/L ug/L	
		Wickel, Dissolved		30	ug/L	
		Selenium, Dissolved	<	1.0	ug/L	
		Silver, Dissolved	<	0.4	ug/L	
		Thallium, Total Recoverable	<	1	ug/L	
		Ammonia as N		0.03	mg/L	
		Chloride		200	mg/L	
		Hardness as CaCO3		190	mg/L	
		Nitrate/Nitrite	<	0.3	mg/L	
		Orthophosphate		0.02	mg/L	
		Phosphate, Total		0.02	mg/L	
		Total Suspended Solids	<	10	mg/L	
		Unionized Ammonia		0.0001	mg/L	
Nutrient Moni	toring					
Walnut Creek		St. (SW114)				
	5/29/200	3				
		Ammonia as N		0.11	mg/L	
		Chloride		320	mg/L	
		Nitrate/Nitrite	<	0.3	mg/L	
South Walnut	Creek abov	ve B-Series Bypass (GS10)				
	5/29/200	- -				
	3/2//200	Ammonia as N		0.05	mg/L	
		Chloride		410	mg/L	
		Nitrate/Nitrite		2.7	mg/L	
T-001	a m					
Effluent from	Sewage Tro	eatment Plant (EFFL)				
	6/18/200					
		Ammonia as N		0.54	mg/L	
		Chloride		240	mg/L	
CW/110		Nitrate/Nitrite		1.3	mg/L	
SW118						
	5/29/200					
		Ammonia as N	<	0.03	mg/L	
		Nitrate/Nitrite	<	0.3	mg/L	
Walnut Creek	below Port	tal 3 (SW093)				
	5/29/200	3				
	2, 27, 200	Ammonia as N	<	0.03	mg/L	
		Chloride	`	430	mg/L	
		Nitrate/Nitrite		1.3	mg/L	
					-	

	Sample	,					*Analysis*
Location	Date	Parameter	Analy	sis		Units	1st 2nd
Pond A4							
10114111	# / 2 0 / 2 00	-					
	5/29/2003						
		Ammonia as N		0.04	mg/L		
		Nitrate/Nitrite		5.7	mg/L		
Pond A3							
Tonu 715							
	5/29/2003	3					
		Ammonia as N		0.05	mg/L		
		Chloride		280	mg/L		
		Nitrate/Nitrite		8.4	mg/L		
Pond B5							
	5/29/2003	2					
	3/29/2003	o Ammonia as N		0.00	n/l		
		Nitrate/Nitrite	_	0.03 0.3	mg/L mg/L		
		Nitrate/Nitrite	<	0.3	mg/L		
~ . ~							
Creek Sampling							
North Walnut C	reek abov	ve Pond A-1 (GS13)					
	5/29/2003	3					
	5/25/2005	Arsenic, Total Recoverable	<	1	ug/L		
		Beryllium, Total Recoverable	<	1	ug/L		
		Cadmium, Total Recoverable	<	0.3	ug/L		
		Chromium, Total Recoverable	<	3	ug/L		
		Copper, Dissolved	<	5	ug/L		
		Iron, Total Recoverable		12	ug/L		
		Manganese, Total Recoverable		43	ug/L		
		Nickel, Total Recoverable	<	30	ug/L		
		Selenium, Dissolved		10	ug/L		
		Silver, Total Recoverable	<	0.4	ug/L		
		Sodium		180,000	ug/L		
		Thallium, Total Recoverable	<	1	ug/L		
		Ammonia as N	<	0.03	mg/L		
		Chloride		510	mg/L		
		Hardness as CaCO3		520	mg/L		
		Nitrate/Nitrite		31	mg/L		
South Walnut	Creek belo	ow Pond B-4					
	5/29/2003	3					
	5,27,200.	Arsenic, Total Recoverable	<	1	ug/L		
		Beryllium, Total Recoverable	•	1	ug/L		
		Cadmium, Total Recoverable	<	0.3	ug/L		
		Calcium	•	220,000	ug/L		
		Chromium, Total Recoverable	<	3	ug/L		
		Copper, Dissolved	<	5	ug/L		
		11111	•				

Location	Sample Date	e Parameter		Analysis			*Analysis* 1st 2nd
		Iron, Total Recoverable		410	ug/L		
		Manganese, Dissolved		110	ug/L		
		Nickel, Total Recoverable	<	30	ug/L		
		Selenium, Dissolved		1.6	ug/L		
		Silver, Dissolved	<	0.4	ug/L		
		Sodium		120,000	ug/L		
		Thallium, Total Recoverable	<	1	ug/L		
		Hardness as CaCO3		290	mg/L		
Walnut Creek at	Indiana	St. (SW114)					
	5/15/2003	3					
		Arsenic, Total Recoverable		1	ug/L		
		Beryllium, Total Recoverable	<	1	ug/L		
		Cadmium, Total Recoverable	<	0.3	ug/L		
		Calcium		170,000	ug/L		
		Chromium, Total Recoverable		3	ug/L		
		Copper, Dissolved	<	5	ug/L		
		Iron, Total Recoverable		16	ug/L		
		Lithium, Total Recoverable		8	ug/L		
		Manganese, Dissolved		16	ug/L		
		Nickel, Dissolved	<	30	ug/L		
		Selenium, Dissolved	<	1.0	ug/L		
		Silver, Dissolved	<	0.4	ug/L		
		Sodium		120,000	ug/L		
		Thallium, Total Recoverable	<	1	ug/L		
		Ammonia as N	<	0.03	mg/L		
		Hardness as CaCO3		220	mg/L		
		Nitrate/Nitrite	<	0.3	mg/L		
		Orthophosphate		0.2	mg/L		
		Phosphate, Total		0.28	mg/L		
		Total Suspended Solids		48	mg/L		
	6/23/2003	3					
		Arsenic, Total Recoverable	<	1	ug/L		
		Beryllium, Total Recoverable	<	1	ug/L		
		Cadmium, Total Recoverable	<	0.3	ug/L		
		Chromium, Total Recoverable	<	3	ug/L		
		Copper, Dissolved	<	5	ug/L		
		Iron, Total Recoverable		48	ug/L		
		Lithium, Total Recoverable		9	ug/L		
		Manganese, Dissolved		130	ug/L		
		Nickel, Dissolved	<	30	ug/L		
		Selenium, Dissolved		1.1	ug/L		
		Silver, Dissolved	<	0.4	ug/L		
		Ammonia as N	<	0.03	mg/L		
		Hardness as CaCO3		120	mg/L		
		Nitrate/Nitrite	<	0.3	mg/L		
		Orthophosphate		0.15	mg/L		
		Phosphate, Total		0.19	mg/L		
		Total Suspended Solids		20	mg/L		

	Sample	e				*Analysis*
Location	Date	Parameter	Analy	sis	Units	1st 2nd
Woman Creek	at Indiana	Street				
	6/23/200	3				
		Arsenic, Total Recoverable	<	1	ug/L	
		Beryllium, Total Recoverable	<	1	ug/L	
		Cadmium, Total Recoverable	<	0.3	ug/L	
		Chromium, Total Recoverable		3	ug/L	
		Copper, Dissolved	<	5	ug/L	
		Iron, Total Recoverable		15	ug/L	
		Lithium, Total Recoverable		16	ug/L	
		Manganese, Dissolved		25	ug/L	
		Nickel, Dissolved	<	30	ug/L	
		Selenium, Dissolved	<	1.0	ug/L	
		Silver, Dissolved	<	0.4	ug/L	
		Sulfate		36	mg/L	
		Thallium, Total Recoverable	<	1	ug/L	
		Ammonia as N	<	0.03	mg/L	
		Hardness as CaCO3		260	mg/L	
		Nitrate/Nitrite	<	0.3	mg/L	
		Orthophosphate	<	0.02	mg/L	
		Phosphate, Total	<	0.01	mg/L	
		Total Suspended Solids	<	10	mg/L	

Sample					*Analysis*
Location	Date	Parameter	Analysis Level	Units	1st 2nd
Pond B2 North					
	5/29/2003				
		Trichlorothethylene	0.5	ug/L	
		cis-1,2-Dichlorothylene	0.8	ug/L	
Pond B2 South					
	5/29/2003				
		Trichlorothethylene	2.4	ug/L	
		cis-1,2-Dichlorothylene	2.9	ug/L	

GLOSSARY

Ag silver Am americium

AOI analyte of interest

APCD Air Pollution Control Division AQCC Air Quality Control Commission

ALF action level framework

B found in blank Be beryllium

CAS chemical abstracts service number

Cd cadmium

CDPHE Colorado Department of Public Health and Environment

Cr chromium

D&D decontamination and decommissioning

DOE Department of Energy

EPA Environmental Protection Agency ESR Environmental Surveillance Report

H exceeds holding time
IMP Integrated Monitoring Plan

J detected but below practical quantitative limit

LARS Laboratory and Radiation Services

mg/L Milligram per liter

MCL Maximum Contaminant Level (below MCL is safe)

MDL minimum detection level

Nd not detected NO₃ nitrate

pCi/L picocuries per liter

pCi/m³ picocuries per cubic meter

PM particulate material ppb parts per billion ppm parts per million

PQL practical quantitative level

Pu plutonium

QNS quantity not sufficient

RFCA Rocky Flats Cleanup Agreement

RFETS Rocky Flats Environmental Technology Site

TLV ACGIH Threshold limit value TSP Total Suspended Particulate

TSS Total Suspended Solids

μg/L microgram per liter

μg/m³ micrograms per cubic meter

U uranium

VOCs volatile organic compounds

WQCC Water Quality Control Commission
WQCD Water Quality Control Division
WWTP wastewater treatment plan

If you have questions or comments about this report, or if you would like to be placed on the mailing or email list to receive copies of this report in the future, please write to:

Rocky Flats Program, Hazardous Material and Waste Management Division Colorado Department of Public Health and Environment 4300 Cherry Creek Drive South Denver, Colorado 80246-1530

Telephone (303) 692-3300

or

Rocky Flats Program
Laboratory and Radiation Services Division
Colorado Department of Public Health and Environment
8100 Lowry Boulevard
Denver, Colorado 80220

Telephone (303) 692-3090

INTERNET ACCESS

Air Pollution Control Division

Email arch.crouse@state.co.us
World Wide Web <u>www.cdphe.state.co.us/ap/</u>

Email gordon.pierce@state.co.us

World Wide Web www.cdphe.state.co.us/ap/

Hazardous Materials &Waste Management Division

Email edgar.ethington@state.co.us

World Wide Web <u>www.cdphe.state.co.us/hm/</u>

Laboratory and Radiation Services Division

Email tony.harrison@state.co.us

World Wide Web www.cdphe.state.co.us/lr/